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)
ith the aid of an exact fggm{llation of the renormalization method in quan-
tum electrodynamics which has been developed earlier, it is shown that not
all of the renormalization constants can be finite quantities. It must he stressed
that this statement is here made without any reference to perturbation theory.

~Introduction.

In. a previous paper!, the author has given a formulation
of quanium electrodynamics in terms of the renormalized Hei-
senberg operators and the experimental mass and charge of the
electron. The consistency of the remormalization method was
there shown to depend -upon the behaviour of certain functions
(IT (p¥, 21(p* and X, (p?)) for large, negative values of the ar-
gument p*. If the infegrals

I(—a) Zi(—a) :
STda, ~—a——da (l— 1,2) (1)
converge, quantum electrodynamics is a completely consistent
“theory, and the renormalization constants themselves are finite
quantities. This would seem to contradict what has appeared to
- be a well-established fact for more than twenty years, but it
~must be remembered that all calculations of self-energies etc. have
. been made with the aid of expansions in the coupling constant
e. Thus what we know is really only that, for example, the self-
_energy of the electron, considered as a Tunction of e, is not analy-
tic at the origin. It has even been suggested? that a different
“scheme of approximation may drastically alter the results obtained
ith the aid of a straightforward application of perturbation
1theory It is the aim of the present paper to show—without any
attempt at extreme mathematical rigour—that this is actually not
the case in present quaritum electrodynamics. The best we can
1 G. KArLgn, Helv. Phys. Acta 25, 417 (1952), here quoted as I.

2 Cf., e. g., W. THIRRING, Z. . Naturf. 6a 462 (1951). N. Hu, Phys. Rev. 80,
1109 (1950).
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hope for is that the renormalized theory is finite or, in other

words, that the integrals

Sﬂ<_a~)da, SZ——U’(".%O d

a?

a, (2)

a?

appearing in the renormalized operators, do converge. No dis-
cussion of this point, however, will be given here.

General Outline of the Method.

We start our investigation with the assumption that all the
- _ 1 . .
quantities K, (1 — L)™' and N (for notations, cf. I} are finite or

that the integrals (1) converge. This will be shown to lead to a
lower bound for I7(p*) which has a finite limit for — p*— ©,
thus contradicting our assumption. In this way it is proved that
not all of the three quantities above can be finite. Our lower
bound for I7(p?) is obtained from the formula (cf. I, Egs. (32)
and .(32 a))

I(p* =

14 R A 3

i 2, O FEDYD @
pE=p

It was shown in I that, in spite of the signs appearing in (3), the

sum for I (p?) could be written as a sum over only positive term

Thus we get a lower bound for IT (p*), if we consider the following

expression

V N,/ . , o
(P> =5 2 [<01j,lq: g 1% O

a+a'=p
In Eq. (4), <01j,]q,q"> denotes a matrix element of the cur-
rent (defined in I, Eq. (3)) between the vacuum and a state with
one electron-positron pair (for xy+ — o). The energy-momentum
vector of the electron is equal to g and of the positron is equal
to g¢’. The sum is to be extended over all states for which ¢ + ¢"=p.
We can note here that, if we develop the function I7 (p*) in
powers of ¢ and consider just the first term in this expansion,
only the states included in (4) will give a contribution. For this
case, the sum is easily computed, e. g. in the following way:

. 3 '
y ik = (2 10lInE-10l19P)

 ‘however, that with the assumptions” we have made h

- with

;and

derivatives of all the 4,’s dro

Y n2 3 . &
values of — p2. This corresponds, of course, to the well-known

divergence for the first-order charge-renormalization.We shall sce

ere the

lower bound for the cémplete IT (p*), obtained from (4), is rather

similar to J7® (p2).

. An Exact Expression for the Matrix Element of the Current.

- Our 'next problem is to obtain a formula for Oljla ¢
Wlth which we can estimate the matrix element for large values
of — (g + ¢")2. For this purpose we first compute

[j,u(x), PO ()] = —NS§£13) [jlu(x), F(3)] dx’"’ ‘

- - (6)
— zNSm‘S,gle) Vs [jlt (x), v (3)] BB, J

(Cf. I., Eq. (5.4).) The last commutator can be computed with-
out difficulty if we introduce the following formula for Ju ()

) ieN'? L 824 (x)
r)y— —— T
]M( ) 1—LEﬂm(xH_ﬁ—L‘fMﬁax,axv —L3,, 04, (x) (7

R
Suld = 5#)L—L6,u45/7.4 (72)
1.
5@ = 3B @), 39 @) (7b)
The expression (7) is written in such a way that the second time-

P out. With the aid of I -
(7) we now get of I, Egs. (4)
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V ’
0) 2y .Y -(0) ’
ARG =255 > €017, 1 gs g> 12
¢+e' =p
Ve? ’ —
= gpt o, OO0y, 019D g g0y, (g’ [p® ] 0> | (5)
a+q =p :
et ( 21112)/ 4m?1 2 z
= (12BN Sy E s PP 4m?
1272 p? ' + p? 2[1 | p2+4m2]|
) L/
 The function I (p*) has the constant lirnit T; — for large
n
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U, 9 By, = 223 152, 9 (3]

ie _ —_—rre (8)
:"T:—LEM),MVA‘/’(SC)Q(UC;&" ).
It thus follows that

), 90 (@] = — NS (A3 U (). (D] "

©
Sy ().

We then proceed by computing

<O, (), 9@ (2], @ (27} [0

= leN SMS(M)HS@Q) N§5(13)d”' a

><[<0|[J'H(w),{w“”(2),f(3)} 105 €O, (@, T @), ()} 0],

If this expression is considered as an identity in x’ and x' it
will obviously give 'us a formula for <0|j,|q,¢> and for
Cqli,lg>- (Cf 1, Eqgs. (68) and (77).) We transform the right-
hand side of (10) in the following way:

02, 1 = N @), Ty s @ e — L iepa )+ KIs(52)

and, hence,
€010, (@), @ (2), FBRI10> = 728 (32)<0] [, (@), 4,(3)] | 0>
+ NS_df” <O, (), {F(3), F(4N1] 05 S (42).

The last term in (10) can be treated in a similar way:

i

U@ 50 @) = N\ @), Fsande+ N

and

NS (18) a0 1B @), 1B} 0) = — O] {7 (@), v (@)

Yoo

+ iNS%(lS) e () d*x"}| 0y = iS(1x) {1 —l]

L@@ &,

i, N

. Collecting (12), (13) and (14) we get

<O {0, Gy p® (@], ¥ ()30
= lfL[1+2(N“‘1)] éﬁls(l x)y; S(x2)

Hv

—e§s<13ms<s2)dx'"<oHj @), 4,310

(15)
v fa (e s sy <0l Uy 0,43, F 31055 (42)
8 (a5 (18) 0 {7 ), T, @), F @105 5 (42).
The second term in (15) can be rewritten with the aid of the
* functions 17 (p%) and IT (p?).
O15,@. 4,110 = { D3 011/, . 7,41 0> darv |
{
o . | (16).
= 2 )3Sdpe’°(3 "¢ (p) [P, p1— P O (p ) JI -
We are, however, more interested in the expression
1 0 g ip(x 7
5[1‘{‘8(:83) 1<0|[ J (x), 4;(3)] |O> = (227)48(1])61’( 3) [T (p?)
1 62925(3 ) an
+ime (p) T(p)] +5[1 + ¢ (2 3)] aj,
where ’
ipx ]7
§D(m)—<2 )3ldpep o (p) (p) (17 a)
Obviously, we have
DBx)=0 (18 a)
a0 (3 o
‘—aig,‘”) = —ill (0)6(x— (18 b)

for x;" = x,. It thus follows

PP(3x 02 _
3) dx (aw;L) (%clué‘xl [8 (.’L‘ 3) @(332)] +21 (O) é,uzla}.‘té ('CL 3) (19)
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Using the equation _ | 6(x) = % [1+¢e(x)], (23 2a)
62’}:’ S(13)y,8(82) =0, (20) we obtain from (22) _ ,
we get ' <01J/t|q’q>
= <0|j<°>tq, ¢ [1—ﬁ(<q+q'>2>+ﬁ<o>—mn<<q+q'>2) 1

v+
— S [1+ ¢ 3)] S(13) 9, 5(32) (0] [j, (), 4; ()] |O>d

— 0

+2 }+ze<0!w(°’lq>/1 (—4, q)<0|‘P‘°’lq> I

This is the desired formula for the matrix element of the current.

- (o_ii)_‘* S " S dpe® S (13) 3, S(32) LT (p?) + ime (p) T (p)]

L Y
+16/‘41——_LS(1 x)y4S(oc2).

Analysis of the Function Ay (p’, p).
We now want to investigate the function Au (p’, p) in some
detail, especially ‘studying its behaviour for large values of
—(gq+q)* in (24). For simplicity, we put x = k + 4 and study

Introducing (21) into (15) we obtain
O {1, @), p@ @], w<°>($”)}|0>

. . 2 dP 1 x3 . 2
:ze\d;c S(Q )4 ip )3(13)';/ S(32)[1 H(p)

. I (0)— ime (p) T (p?)]
Pz IVs<13)<o| TRORGONION 105 5(42)

e—

A0, p) = Sde'”dacIv ¢ PEITIED N2 L (236 (2 4) CO{F(3),
(@), FDT 30> —8(3)6(34) 0| [, (), { F(3), F(a) Y]] 0> ).

_N® ‘We treat the twd terms in (25) separately. The first vacuum ex-
pectation value can be transformed to momentum space with the

-aid of the functions

m

8

X

- N\ de\ det¥ S (13) CO[{F(3), [, (x), F (130> S (42)
’ S_f S_f UDQORF@. U, A = TIC01 71 e LARISUIPINNED
+g£1(§——>§MAS(1x)ylS(x2) P”—p

A7 (P p) = VE2XOfl2 < il 2> <z flo> (2T)

The first term in (22) describes the vacuum polarization and is :
quite similar to the corresponding expression for a weak external
field (cf. I, Appendix). The remaining terms contain the ano
malous magnetic moment, the main contribution to the Lamb shift -
etc. Introducing the notation

— N26(23) 6 (34) <0 [j, (@, {f 3, F(DI]0)
+N%6(x38) 6 (x4 <0 |{f(3). [j, (@), F(DI}] 0>

2le(N 1)
1_

-le ; i (3x) + ip(x4) ’
= (3a) SS dpdp'e AM(P »P)

B (p ,p)—V22<01f|z><v|fl Szl 0y (28)

B;“)<p’,p>=V22_<0ljklz'><z'mz><z|f\0>- (29)
H then follows that

: . = 1 7, ip (3x) 4 ip (xdd ;
3 SOF), [ (), F(D] }] 0> = i E { P EDFRELAD (G p)
L5M47}45(m3)6(34) (23y : g . ‘
— P (34) +ip (4x) B;f) (p’,p)—F &P (x4)+ip (43) B;\,_) (P,:P) l

ip’(4x) +ip (x3) 4(—) o+ +
_elp x plx Ak (p,p)}.

(24)

(30)
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Our discussion started with the assumption that all the renorm-
alization constants and, of course, all the matrix elements of"
the operators j, (x) and f (x) are finite. As this is a condition on
the behaviour of, for example, the function IT (p?) for large values.
of —p?, and as this function is defined as a sum of matrix elf:-‘
ments, it is clear that we also have a condition on the matrix:
elements themselves, ¢. e. on the functions A and B defined in
(26)—(29) for large values of — p?, —p" and — (p—p’)* To get:
more detailed information on this point we consider the expres-
sion

We further note that from (34) it follows that

Fa(p) = Valjpl 252, la>— Ve

P =p) 4 p P = pldap

2> <2 2. (38)

I every expressioril appearing in our formalism is finite, the

- integral in (37) must converge. This means that)
7

im F,. (B, p)) = 0. (39)

Po>3®

2|1, (), 45" (@) |2 ]

. L (31)
L azD(CC _"CC) "o ot D /_r!l (
= —ig—y 632#53% +ldoc Fw(x YD (x ) l

witﬂ

- Putting 1 = 4 = k we then get from (38) and (39)

Hm >z ]f ]2 P (= 1) NF+NET = g (40 a)

Po>% pi¥l=p(dip

lim >"|<z]j,

P> — p(i')=p(1)__p

: and ' v
Fy(@—a") = 0 (z—a") (2] [ (@), @Dl 25 (32) [P (NN = . (40D)

(cf. I, Eq. (A. 8) and the equation . of motion f_or 4, (x)). Sup
posing, for simplicity, that |z> does not contain a photon with

If we first consider a state |z> with no scalar or longitudinal
energy-momentum vector k, we have

photons, it can be shown with the aid of the gauge-invariance
- of the current operator (cf. I, p.426. Eq. (47) there can be
verified explicitly with the aid of (32) and (33) above) that
“only states | z')> with transversal photons will give a non-vanish-
j \ing contribution to (40 a) and (40 b), and these contributions are
+all positive. We thus obtain the result

C2lj ()12, k>
L

. ’ ’r (0) ’ 3
_ﬁkﬂkv<0|A;0>(x)[k>+-lde F,,(x—a") 0] 4 (") | k>,

Writing

B lim|<{z|j, |2 >|* = (41)

1P{F—p() | >0

Flu‘;h (CL o xll) . 6 (.T . xll) -

1 ‘ .i r—x
(M)ggdpem ' Fa(p) (38

and using the formula . if none of the states |z> and |z’ ) contains a scalar or a longitu-
_-dinal photon. Because of Lorentz invariance which requires that

Eq. (41) is valid in every coordinate system, it follows, however,
that (41) must be valid for all kinds of states. If we make a
Lorentz transformation, the *‘transversal’’ states in the new
coordinate system will in general be a mixture of all kinds of
states in the old system. If (41) were not valid also for the scalar

and longitudinal states in the old system, it could not hold for
the transversal states in the new system.

e(x—a'") = Lpg(ﬂeir(mﬂ_”‘;') (35)

in T
we get

e o ' :
(Fy (x—x") = a;t—)zxdpe‘p(x‘x WFu(p)+inF(p)y  (36)

with

(]
— dt _ :
F,M (P) = P\ — F/M (B, pot ). - 37 1) The case in which the integrals converge without the functions vanishing
T ‘ will be discussed in the Appendix.
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From equation (41) we conclude that

6(x3)0(xd)<0|{F(3), @), FO1 0>
lim A (p',p) = 0 ‘

9 4) - = P DB Hip(A)  F oo
(—pyore (428) (zn)SSSJPdP ¢ [F (0. p) (47)
. (+) ¢ .t o ’ . o ' 5 ’ )
lim B, (p', p) = 0 (42D) — 7 F (p', p) + in (Fy (p', p) + F, (p', )] J
—p2>c0 . . .
lim BE(_) (p',p) = 0. ' (42 cv) ~In quite a simil.ar way it can be shown that the second term in
o (25) can be written in a form analogous to (47) with the aid of
“a function G, (p’, hich als c : ; ]
- It is, of course, not immediately clear that the sum over all the 1t thus follofv(sp p) which also has the properties (44) and (46).
terms in (26)—(29) must vanish because every term vanishes

lim A, (p',py = 0. (48)
\ —(p—p)>w

] .
It must be stressed that this property of the function 4(p’, p)
is a consequence of (41) and thus essentially rests on the as-

sumption that all the renormalization constants are finite quan-
tities.

What really follows from (40) is, however, that the sum of all
the absolute values of {z] J'M|z’> must vanish. If the limits in
4 and B are then performed in such a way that p* and p’® are
kept fixed for 4 and (p—p')? and one of the p¥s are kept fixed
for the B’s, equations (42) will follow.

To swmmarize the argument so far, we have shown that if ;

we write . : It is clear from (24) that the function 4, transforms as the

. ) 1 ip (32) + ip (x4 - “matrix y, under a Lorentz transformation.- The explicit verifica-

{ 3), W0 = =5\ \ dpdp’e” PEUR (' P -

UMORAONIONMUN (2 n)SSS pep ¢ x(®5p) tion of thlS from (23) is somewhat involved but can be carried
we have : through with-the aid of the identity

lim F, (p’,p) = 0. (44).3

—(p—p P>

23) 6(x4){f(3), [j, (), [(D]}— 6 (x3) 0(84) [, (), {f(3), f(4)}] }( )
49

Introducing the notations (24)0(x3){f(9), ], (@), (3]} —6(x4)6(43) [, (2) . A F (), F(3)}]
F(p'.p) = d‘cF (' — e, p) (45 %) | and the canonical comimutators. Eq. (49) can also be used to
. prove the formula

and —1 P T ,
) v — A, ¢, C = 4,(—q.9) (50)
BGp) = S?Fk p+e0) (451) , |
~which is, however, also evident from (24) and the charge in-
. _variance of the formalism. From the Lorentz invariance it fol-
Kflows that we can write

(¢ is ‘a ‘‘vector” with the components & = 0 for k=4 and
gy = 1) we find from (44) and the assumption that the integrals
in (45) converge that ; . ; . :
(45) 8 ) L) —Y’ Z(l)}p m)? [y, F€8+p, G¥¢+ p' HEE (iyp +m)¢ (51)
lim F, (p’,p) = lim F, . (p’,p) = 0
—(p—pY->=» —(p—p P> fe
where the functions F, G and H . .are uniquely defined and de-
pending only on p? p”%, (p—p’)* and the signs e(p), e(p’) and
e(p—p’). From (50) it then follows

(cf. the Appendix). With the aid of the notations (45) we can
now write
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00" (. N ple(— 52 a ,
Fe (—p,p) F (‘P:P) ( )j tion constants K, ZITT and (———li [3) are finite, the function
G (—p.,p") = H¥¢(—p, p). (52b)

I (p*) cannot approach zero for — p®—> co. This is an obvious
contradiction and the only remaining possibility is that at least
‘one (and probably all) of the renormalization constants is in-
finite.

1. . . .
The case N = 5 18 rather too special to be considered seriously.

We can note, however, that N must approach 1 for e — 0 and
that one of the integrals in I Eq. (75) will diverge at the lower
limit for x — 0, independent of the value of e. The constant N

Utilizing (51) and (52) we get

e 0150 >A, (=, )<0¥Oq> = <01jPq. > R((g+¢))
e ) _ ) o
+§;S((q+q)2)(qu_q#)<0|w(°)|q 50| p®@]g>

where, in view of (48),

lim R ((¢+ )" = th((q+q ¥ =0. (54

. 1 . .
could thus at the\utmost be equal to 5 for some special combina-
—(g+q)y>n

)
The equations (53) and (54) are the desired result of this pa- tion (or combinations) of ¢ and IZ—; As u is an arbitrarily
ragraph. small quantity it is hardly possible to ascribe any physical
_significance to such a solution, even if it does exist.

The proof presented here makes no pretence at being satis-
' factory from a rigorous, mathematical point of view. It contains,
for example, a large number of interchanges of orders of inte-
grations, limiting processes and so on. From a strictly logical -
point of view we cannot exclude the possibility that a more

© singular solution exists where such formal operations are not

Completion of the Proof.

We are now nearly at the end of our discussion. From the
assumptions made about I7 (p?) (and its consequences for o,
cf. the Appendix), Egs. (53) and (54), the limit of Eq. (24)
reduces to

'y = (0O Sl 0 +2t7\i —1 allowed. It would, however, be rather hard to understand how
_(QET;,S_O lj lg. a5 =< |J# 71 1—L the excellent agreement between experimental results and lowest
2]\—1 order perturbation theeory calculations could be explained on
=<0 (0)\ 2T p P
Ju 19T the basis of such a solution.
Our inequality (4) now gives
I(p*)>—5= S |<0 i, la:a"> P Appendix.
L= 9 N — It has been stated and used above that: if
i § <0liple o> P (B2 (56)
q+q -p ~
AN & faN—1V Fa) — P f W gy (ro) = (A1)
_ 2 .
= Up )< L>">12n2<1—L> o

where f(x) is bounded and continuous for all finite values of «
and fulfills

Except for the possibility of N being exactly 5 (mdependent of |
[fx+y—Ff@) <Myl for all x (A.2)

2

e* and Ez‘) we have then proved that, if all the renormaliza-
M
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and if the integral converges, both f(x) and f(x) will vanish for
large values of the argument. This is not strictly true, and in
this .appendix we will study that point in some delail.

We begin by proving that if the integral in (A. 1) converges
absolutely and if

lim log x| f(x)| = (A.3) -
xH-oe .
it follows that :
lim f(x) = 0. (A.4)
x>t oo ]
; he integral _dx is not convergent and that the
(Note that the integra = logx

vanishing of f(x) is already implicit in (A. 3).) To get an upper .

bound for f(x) when x> 0 we write

0 ! x/2

\ Nt
y &
Flx) = P\ dy =|\+P\+ Y—=% dy. (A.5):
vo 0 x2 V3zp

(The limit & — — oo is simpler and need not be discussed ex-
plicitly.) The absolute value of the first term in (A.5) is ob-|
viously less than

22 5 a:/'zd

2 2\ .9 _ 4 A.6)

;Slf(y)|dy<c°n3t'm logy_+O ( )
0 0

The last term can be treated in a similar way and yields the
result
#00
y—x = /3
3xf2 Sx/2

The remaining term can be written

3x/2 ¥ 2/2
Sﬁl S%[f(x+y)~f(x—y)] }
x{2 0 (A
£ /2 .a:/z .
S (g — fle—y) +S% flx+y)|+ \ f(x —J)l-
0 £ e
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In view of (A.2) and (A.3), the three terms in (A.8) vanish
separately for large values of x. It thus follows

lim f(x) =

q.e.d.

As the function I7(p*) is positive the condition (A. 3) seems

_ rather reasonable from a physical point of view. On the other

hand, the functions F, in (45) are not necessarily positive. It
is, however, also possible to construct a more general argument
where (A. 8) is not used, and where even the vanishing of f(x)
is not needed. Ingtead, we then require that from

Fx) = P %”y)d fy) =0 for y=<0  (A.9)
©wo

~ will follow

e+ ®
' F(y)
@) =— »——;_yxd (A.10)
where both f(x) and f(x) are finite,
Note that
1 #+ o d
z
_P -
7 \(Z“x)@’*y)
(¢ o
- = il +w)z —iwx—iwy Wiy
=i S % dwldW2 S dze e _I wlwﬁ2| (A.11)

1

= —\ dw,e iw; (y—x)

5 = §(y—ux).

It"then follows that the integral

STl+f<x)+m @I, ST1+2f<x>ldx
X X

s divergent, because the second term is convergent in view of
(A.10). This is everything that is needed for the proof.
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