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W
ith the aid of an exact formfilation of the renormalization method in quan-
tum electrodynamics which has been developed earlier, it is shown that no t

all of the renormalization constants can be finite quantities . It must be stressed
that this statement is here made without any reference . to perturbation theory .

Introduction.

In a previous papers, the author has given a formulatio n

of quantum electrodynamics in terms of the renormalized Hei-
senberg operators and the experimental mass and charge of th e
electron . The consistency of the renormalization method was

there shown to depend upon the behaviour of certain function s

(17(p'), lr (p2) and Z 2 (p2)) for large, negative values of the ar-

gument p2 . If the integral s

da,
	 	 (-a)

da
a

	

(i = 1, 2)a

converge, quantum electrodynamics is a completely consistent

theory, and the renormalization constants themselves are finite

quantities. This would seem to contradict what has appeared t o
be a well-established fact for more than twenty years, but it

must be remembered that all calculations of self-energies etc. have

been made with the aid of expansions in the coupling constan t

e . Thus what we know is really only that, for example, the self -
energy of the electron, considered as a function of e, is not analy-

tic at the origin . It has even been suggested' that a different
scheme of approximation may drastically alter the results obtained

with the aid of a straightforward application of perturbation

theory. It is the aim of the present paper to show-without any

attempt at extreme mathematical rigour-that this is actually not
the case in present quantum electrodynamics . The best we can
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hope for is that the renormalized theory is finite or, in othe r

words, that the integrals

ÎI(-a)

	

da,	 	 da,

	

(2 )

	

,

	

a

appearing in the renormalized operators, do converge . No dis-

cussion of this point, however, will be given here .

General Outline of the Method .

We start our investigation with the assumption that all th e

quantities K, (1 - L)-1 and
N

(for notations, cf . I) are finite or

that the integrals (1) converge. This will be shown to lead to a

lower bound for 17 (p 2) which has a finite limit for - p2 =- co ,

thus contradicting . our assumption . In this way it is proved that

not all of the three quantities above can be finite. Our lower

bound for 17(p2 ) is obtained from the formula (cf . I, Eqs. (32)

and (32 a))

-3p2r(z) p

It was shown in I that, in spite of the signs appearing in (3), th e

sum for II (p2) could be written as a sum over only positive terms.

Thus we get a lower bound for 17 ( p 2), if we consider the following

expressio n

In Eq. (4), <0 I Jv I q, q '> denotes a matrix element of the cur -

rent (defined in I, Eq . (3)) between the vacuum and a state with

one electron-positron pair (for xo -->- - co) . The energy-momentu m

vector of the electron is equal to q and of the positron is equal

to q ' . The sum is to be extended over all states for which q + q' = p .

We can note here that, if we develop the function II (p2) in

powers of e 2 and consider just the first term in this expansion ,

only the states included in (4) will give a contribution . For this

case, the sum is easily computed, e . g . in the following way :
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The function 17 (0) (p 2) has the constant limit 12
n2

for large

values of -p 2 . This corresponds, of course, to the well-know n
divergence for the first-order charge-renormalization .We shall see ,
however, that with the assumptions' we have made here th e
lower bound for the complete 17(p2), obtained from (4), is rather
similar to 17 (0) (p 2)

An Exact Expression for the Matrix Element of the Current .
Our next problem is to obtain a formula for <0 q, q'>

with which we can estimate the matrix element for large value s
of - (q + q') 2. For this purpose we first comput e

CJµ (x), y( 0) (x')] = -N S (13) [J (x), f ( 3 )] dx
,,,

(6)
iN S ( 13)Y4[ j (x), yß (3)] dix„

	

f

(Cf . I, Eq. (54).) The last commutator can be computed with -
out difficulty if we introduce the following formula for ju (x)

ieN 2

	

L

	

2 v(
)

	

1 -Lia s (x) + 1 L

	

â x a 	 xv	 -L6 ~ 4 O A4 (x) (7)

= å u1

	

61,48 7.4

	

(7a)

sA (x) =

	

(x), Y~ (x) j

	

(7 b)

'he expression (7) is written in such a way that the second time -
derivatives of all the A/2 's drop out . With the aid of I, Eqs . (4)-
(7) we now get

H(p2) - V -~ ,

I <OI .wI z >I 2 (-
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eN

2
[jµ(x), y (3)]x,:'°xo =

	

L~Fa7 [S d (x), y) (3 ) ]

c e

1 -Litt),Y4Y;,.y'(x)~(x-

	

) .

It thus follows that

[jm(x),7V(°)(x')] = - N

	

(13) [j,a(x), f(3)] dx
" ,

-x

We then proceed by computin g

< 0 1 {[ju (x) , y' (0 ) (x)] , V(0) (x")} I 0 >

=	 ieN
-L

eta. S(1 .x)yÂ. S(x2)-NS
x
S(13)dx" '

x [<0 I [jt, (x), {1(°) (2), ' f (3 )}] I 0 ><0 I [j ,, (x), yß (0 ) (2)1 f (3)) 1 0 > ]

If this expression is considered as an identity in x' and x" i t

will obviously give 'us a formula for <0 I j~ I q, q '> and for

<q I j~ I q '> . (Cf. I, Eqs. (68) and (77) .) We transform the right-

hand side of (10) in the following way :

x', ,

{v(0)(2),f(3)} = N S{f(3), 7(4 ) }S(42)dx iv - N [ieyA(3)+K]S(32 )
r

and, hence ,

<0I [jm(x), {y,(0)(2), f (3)}] I 0 > = 1V YÂ S(32)<0I [jµ(x), AÂ (3)] 1 0 >

.x' -

+N dxiv <0 [(x), {f( 3), f (4)}] 1 0 > S (42) .
x

The last term in (10) can be treated in a similar way :

[j,u (x), iV (0) (2)] = N Ç''c[j ,u (x), f (4)] S (12) dxiv + 1 eNL v (x) Y),S(x 2) $;,.(1

and

N ~ S (13) dx", < 0 1

	

(x) , f ( 3 )} I 0> = - <0 1 { y' (x) , 4,v(0) (x,

-I- iN S S (13) y 4 y' (3) d 3x"' } 10> = iS (1 x)

7

Collecting (12), (13) and (14) we get

< 0 1 {[j,, (x) , y(0) (x' )] , 'W(°) (x")} I 0 >

t e=

	

L
[1+2(N-1)] 12,1, S(1x)yaS(x2 )

1 -

- e ~ S(13) y~ S (32) dx"' <0 I [jw (x) , A A (3)] I 0 >
r.

-N2 ,d
x", Sdiv S ( 13) <O [j (x), {f (3), f (4 )}] 10> S(42 )

N2 dx,,,
``
d

+

	

xIv S (13) <o l {f (3), [j (x), f (4)]} I 0> S (42) .
J_x

The second terni in (15) can be rewritten with the aid of th e
functions ff (p2 ) and ff (p2) .

<0(x ),2,1 ( 3 )]0 > = DR (34) <0 I [j~ (x) , :4(4)] 10> dx Iv

- 1

	

i p( 3x)

	

~

	

~(P2 )(2~)3 . dpe

	

8 (P) [P,uPa.-P- a~7]
P2

.

We are, however, more interested in the expressio n

[1 + 8 (x3)] <0 I [j i,(x) , A A ( 3 )] I O> =
(2

i
S7

r~)

)4

~
dPeip(x3) [17- (p 2 )

2
+ i~te(p)H (P2 )] + [1 +8(x3)]

a axØ(
)

	

~

	

A.

0(x)
(2 n)3 ~ dpetpx 8 (P)

H
p
P

?)

	

.

	

(17 a )

we have

Ø(3x)= 0

a
đ x3 x)

	

ifi (0) d (x- x'")

	

(18 b)
°

for xô" = x0 . It thus follows

0 2 0 (3 x) _

	

a2
(x3)	

axax,L

	

axi, ax~
[8(x3)15 (3 .x)]+2iff(0)8Fi4 ba 4 b(x3) . (19)

l eNL

	

S(1
x) Yi y (x)

(15)

(16)

(18a)
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Using the equation

~~4
dx" dpe`p(x3) S (13) y~ S (32) [-~ (p2) -I- i~te (P) H(P2) ]

+i81241L L S(1 x)y4 S(x2) .

Introducing (21) into (15) we obtai n

< 0 1 {[i (x) , y(o) (x' )] T(0) (x")) 0 >

= ie dx"' --4e
ip(x3)

S(13)y~S(32)[1-17(p 2)

+ 17 (0) - inE (p) 11(p2 ) ]
x

	

x' "

-N2 sdx,,, çI

dxI`T
S(13) <0I [j (x), {f(3), f(4)}] 1 0 > S (42)

-~ ....-,

N2 Çdx'" dxw S (13) < 0 1 {f (3), [jd, (x) , f (4)]'? I 0 > S (42)

+2ie(N-1)

	

S(lx)y,S(x2) .
1- L

	

11'

The first term in (22) describes the vacuum polarization and i s

quite similar to the corresponding expression for a weak externa l

field (cf . I, Appendix) . The remaining terms contain the ano -

malous magnetic moment, the main contribution to the Lamb shif t

etc . Introducing the notatio n

-N2 0 (x 3) 0 (34) <01 [j, (x), {f (3), f (4))] 10 >

+ N 2 0 (x 3) 0 (x 4) <0 1 {f(3), Lim (x), f(4)]} 10 >

1

	

}

- 2 ie(N-1)
L8

4 y4 a(x3)å(34)
-L

dpdp'
(3 x) + iP (x4) A m (p ' p)

(2
~) ~`

0 (x) = [ 1 + (x)] ,

we obtain from (22)

< 0 IJi, l q , q'>

= < O l j(o) q, q'> [1_ft((q+q)2)+(o)_iHcq+q)2)

(24)
N-1 1

+21
=Z, + ie <0U p() l q' >11~(-g', q) <0l y(o) I q> .

This is the desired formula for the matrix element of the current .

Analysis of the Function Arc (p' , p) .

We now want to investigate the function Au (p', p) in some
detail, especially studying its behaviour for large values o f
- ((I + q ' ) 2 in (24) . For simplicity, we put ,u = k + 4 and study

k (p,p) =

	

dx„dxive tp'(3x)-'P(x4) N 2 {O(x3)0(x4)<0I{f(3),
(25)

jk(x), f(4 )] } I 0 > - 0 (x 3) 0 (34) < 0 I [jk (x), { f (3), f (`1 ) } ] l 0 > } •

We treat the twd terms in (25) separately . The first vacuum ex-
pectation value can be transformed to momentum space with th e
aid of the function s

A(k+ (p' p) = V2Z< 0 if1 4 >< z' jjk l z >< z lfl0> (26)
p( `) ° P
p (,- , )= p ,

A% ) (p' , p) = V2~<o

	

fIz'><z'lJk l z ><zlflo> (27 )

B(k
+)

(P ' p) _ V2.1<Olflz'><z'Itl z ><zlJk lO> (28)

B'k-) (p', p) = V2S< 0 ljkI z '>< z'Ifl z >< z If10> . (29)

we get

- e 2[1+e(x3)]S(13)yÄS(32)<0I[j~(x),A(3)]10>dx "

x"'
S(13)yA S(32) = 0,

1

9

(23 a)

It then follows that

0 I{f(3),[Jk(x),f(4)] }I0> = ti~2
P, p

ip' ( 34) + ip ( 4 x ) Bk+)(
P ' ,p)+ e z P' (x 4 )+ z P (43) B k )(p ' , p )

- e `P (4x) + iP (x3)A(-)
(p

i
k

	

,p)} •

-e

{ e iA (3x) +ip(x4)A(
k+)(1)

',p)

(30 )
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Our discussion started with the assumption that all the renorm-

alization constants and, of course, all the matrix elements of

the operators ji,(x) and f (.x) are finite. As this is a condition on

the behaviour of, for example, the function 11(p 2 ) for large values

of -p2, and as this function is defined as a sum of matrix ele -

ments, it is clear that we also have a condition on the matri x

elements themselves, i . e . on the functions A and B defined i n

(26)-(29) for large values of -1)2,-p '2 and - (p - p ' ) 2 . To get

more detailed information on this point we consider the expres-

sion

< z I ~Ju (x) , Avo) (x' )] i z i

i
L ô2 D (x ' x)

_ -

	

+ dx" F~ v (x-x ' ) D(x-x ' )

	

1-L ôx
,u

ôx

~ (x-x" ) = O(x -x" )< z I {J, (x),J„(x")] I z >

	

(32 1
with

(cf. I, Eq . (A, 8) and the equation of motion for A t,(x)) . Sup

posing, for simplicity, that I z) does not contain a photon with

energy-momentum vector k, we have

< z ÎJl,,,(x)1 z,k i

L
L kv< 0 I A (:) (x)I k i i dx ' Fuv (x- x")< O 140) (x'') k

~
.

Writing
1 a iP (
'Fm) (x-x") = 9(x-x" ) (2n)2 dpe

	

FuA(P )

and using the formula

1

	

dr
e(x-x") = -P -e2Z(xo-x,')

we get

iFut(x -x")

	

'
_

(27L) 4 dPelA (x
a~

/)1
-
F,ux (P) -I- tn Fµa(P)i

with

FµA(p) = P
dz

P~R(p, po T
Z

Nr . 12

	

1 1

We further note that from (34) it follows tha t

1,Å(p) =

	

>< z' <z ' zi . (38 )
Pfr? = P (-) + p

	

Pfc') = P (=)-P

if every expression appearing in our formalism is finite, th e
integral in (37) m,ùtst converge . This means that')

lim F,7 (P , Po) = 0 .
p,±± ,n

Putting ,u = 2 = k we then get from (38) and (39 )

lim e< z I JkI z' >I 2 (- 1 ) = 0

	

(40 a)
Pu-›,x A~'~>=P(-) + P

lim

	

1<zlJk Iz ' >I
s (-1) N-)+vr = 0 .

	

(40b )
no ± - JD P(,')= A (=)-n

If we first consider a state z> with no scalar or longitudina l
photons, it can be shown with the aid of the gauge-invarianc e
of the current operator (cf . I, p . 426 . Eq. (47) there can b e
verified explicitly with the aid of (32) and (33) above) tha t
only states 1 z'> with transversal photons will give a non-vanish-

ing contribution to (40 a) and (40 b), and these contributions are
all positive. We thus obtain the result

lim l< z IJk l z' > = 0
I A (o` )-Pp '') I ->- ø

if none of the states I z> and 1 z ' > contains a scalar or a longitu-
dinal photon . Because of Lorentz invariance which requires that
Eq . (41) is valid in every coordinate system, it follows, however ,
that (41) must be valid for all kinds of states . If we make a
Lorentz transformation, the "transversal" states in the new
coordinate system will in general be a mixture of all kinds o f
states in the old system. If (41) were not valid also for the scalar
and longitudinal states in the old system, it could not hold fo r
the transversal states in the new system .

1) The case in which the integrals converge without the functions vanishin g
will be discussed in the Appendix.

(39)

(41)
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From equation (41) we conclude that

lim A(k±) (p', p) = 0

lim B(k+) (p ' , p ) = 0
-p' 4- 00

lim B (17 ) (p ' , p) = O .

	

(42 c )

It is, of course, not immediately clear that the sum over all th e

terms in (26)-(29) must vanish because every term vanishes .

What really follows from (40) is, however, that the sum of all

the absolute values of < z j, I z ' > must vanish. If the limits in

A and B are then performed in such a way that p 2 and p '2 are

kept fixed for A and (p-p' ) 2 and one of the p 2 's are kept fixe d

for the B's, equations (42) will follow .

To summarize the argument so far, we have shown that if

we write

(01 {f(3), [fk (x) f(4)]} l a > =	 	 s

	

dpdp'e'p ( 3 x )
+ip ( x 4)Fk (p, p) (13 4(2 or )

we have
lim Fk (p ' , p) = O .

	

(44)

-(11-

Introducing the notations

d
Fk(P,P) = î Fk (p -er, p)

and

,

	

dz
Fk(P , P) = r Ft~(P , P + EZ)

(e is a "vector" with the components ek = 0 for k=4 and

e t, = 1) we find from (44) and the assumption that the integrals

in (45) converge tha t

lim Fk (p ', p) = limFk (p ' , p) = 0

	

(46)
-(p-pT ±

(cf . the Appendix) . With the aid of the notations (45) we can

now write

0 (x 3) 0 (x4) ( 0 I (f(3), [jk (x), f (4)] } I 0 >

(2 7

	 1s

	

dpdpreip'(3a)+ip(x4)
LFk(P P)

-rc2Fk(P' ,P)+i~(Fk(P i,P)+,P))l •

In quite a similar way it can be shown that the second term i n
(25) can be written in a form analogous to (47) with the aid o f
a function G k (p ' , p) which also has the properties (44) and (46) .
It thus follow s

It must be stressed that this property of the function Ak (p ' , p)
is a consequence of (41) and thus essentially rests on the as-
sumption that all the renormalization constants are finite quan-
tities .

It is clear from (24) that the function A 14 transforms as the
matrix yµ under a Lorentz transformation . The explicit verifica-

tion of this from (23) is somewhat involved but can be carried
through with the aid of the identit y

(:r3)0 (x4){f(3),[,jl.4(x), f(4)]}-0(x3) 0(34)[j~(x), {f(3), f(4)} ]

Î(x .4)0( .x 3){f(4), [j~(x),f(3)]} -0(x4)0(43) [j14 (x),{f(4),f(3)}]
(49)

and the canonical commutators . Eq . (49) can also be used to

prove the formul a

-C-111(-q',q)C = A1LT (- q , q' )

	

(50)

which is, however, also evident from (24) and the charge in -
variance of the formalism . From the Lorentz invariance it fol -
lows that we can write

p ',p) =S' ~(iyP'+m)e [y,uFee+p
m Gee+p~H°e](iyP+ n)) e (51 )

e'= o , i e ° o , l

where the functions F, G and H are uniquely defined and de -

pending only on p 2, p'2
(p- p')2 and the signs e (p), e (p') and

«(p-p') . From (50) it then follow s

limAk (P ',p) = O .
-(p-p')'4-os

(48)



FPP' (-p,p') =

GpP (-p, p') = HQ e (--p', P) •

Utilizing (51) and (52) we get

ie <OI Tp(°)I q'>A,u(-g',g)<oly(°)I q > _< O Ij (1 °)I q, q'>R((q +q')2)

+ 2ms(( q + q ') 2)(qu-q')<0I ivc°)I q'><01~v`°)Ig >

where, in view of (48) ,

	

lim R ((q + q ' )2 ) = lim S ((q + q ' ) 2 ) = 0 .

	

(54 )
-(q+q')'->oo

	

-(q+4)a->o o

The equations (53) and (54) are the desired result of this pa -

ragraph .

Completion of the Proof.

We are now nearly at the end of our discussion. From th e

assumptions made about II (p 2) (and its consequences for H (p 2 ) ,

cf. the Appendix), Eqs . (53) and (54), the limit of Eq. (24)

reduces to

-(gllq')Q<01i
1 q , q' > _ <O IJ(°) I q , q' > [1 +II(0)+2 1 -L}

2N- 1
_ <O I J° ) I q , q' >(

	

l -L

Our inequality (4) now gives

H (P2)> -3P

	 ,
I< O IJ f ~I q > q '>I 2

q+q ' = p

3p
2

		

I<OIJ(°)qq'>IZ
2N- 1

( 1 -L )_
q+q ' = A

(°)

	

/2N-1 _, e 2 2N- 1
=II (P~ ) \ 1-L)

	

12 2 (1L
)

Except for the possibility of N being exactly
2

(independent o f
2

e2 and
2

we have then proved that, if all the renormaliza -

tion constants K,
-N

and (1=L) are finite, the function

lI (p 2) cannot approach zero for - p 2 --> oo . This is an obviou s
contradiction and the only remaining possibility is that at leas t
one (and probably all) of the renormalization constants is in -
finite .

The case N = 2 is rather too special to be considered seriously .

We can note, however, that N must approach 1 for e -> 0 and
that one of the integrals in I Eq . (75) will diverge at the lower

limit for ,u -- - 0, independent of the value of e . The constant N

could thus at the\utmost be equal to
2

for some special combina-

tion (or combinations) of e 2 and -2-- . As ,u is an arbitrarily

small quantity it is hardly possible to ascribe any physica l
significance to such a solution, even if it does exist .

The proof presented here makes no pretence at being satis-
factory from a rigorous, mathematical point of view . It contains ,
for example, a large number of interchanges of orders of inte -
grations, limiting processes and so on . From a strictly logica l
point of view we cannot exclude the possibility that a mor e
singular solution exists where such formal operations are no t
allowed. It would, however, be rather hard to understand how

the excellent agreement between experimental results and lowest
order perturbation theory calculations could be explained o n
the basis of such a solution .

where f(x) is bounded and continuous for all finite values of x
and fulfills

f(x + y)-- f(x)I <MI y I for all x

	

(A . 2)
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and if the integral converges, both f(x) and T (x) will vanish for

large values of the argument . This is not strictly true, and in

this .appendix we will study that point in some detail .

We begin by proving that if the integral in (A . 1) converges

absolutely and if

it follows that

.0

x

	

x

	

(Note. that the integral	
dx	 is not convergent and that the
log

vanishing of f(x) is already implicit in (A . 3).) To get an upper

bound for f(x) when x > 0 we write

7co

	

/ xf2

	

.3 xf2Ĥ cc

(x) = P f(y)dy = ! + P +

	

f(9) dy . (A .5)

	

y-

	

y- x
vO

	

` o

	

x/2

	

3x/2 /

(The limit x --~ - oc, is simpler and need not be discussed ex -

plicitly.) The absolute value of the first term in (A . 5) is ob-

viously less than

In view of (A. 2) and (A . 3), the three terms in (A . 8) vanish
separately for large values of x . It thus follows

q. e . d .

As the function 11(p 2 ) is positive the condition (A . 3) seems
rather reasonable from a physical point of view . On the other
hand, the functions Fk in (45) are not necessarily positive . I t
is, however, also possible to construct a more general argumen t
where (A. 3) is not used, and where even the vanishing of f(x)
is not needed . Ih.tead, we then require that from

r (x) P	 (~)dy ; f (y) = o for y < 0

	

(A . 9 )y - x
., o

will follow
. +~

f(x) _ -~2
P

~
	 (y)dy

lim f(x) = 0

(A. 10)

x12

	

x/2

2

	

f (y) dy < const . 2

	

d

	

0

	

(A. 6 )
x log y

0

	

0

The last term can be treated in a similar way and yields

result

	 (y) I dy~ 0 .

3x/ 2

The remaining term can be written

3x/2

P f(y)dyy- x
x/2 s

x/2

Yy [f(x + y) - f(x- y) ]

o

f(x + y) -f( x- y) f (x + y) f(x -y)S
Edy

y
0

is divergent, because the second term is convergent in view of
(A. 10) . This is everything that is needed for the proof.
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