
Det Kongelige Danske Videnskabernes Selska b
Matematisk-fysiske Meddelelser, bind 26, nr . 8

Dan . Mat . Fys . Medd . 26, no. 8 (1951)

METHODS FOR MEASUREMEN T

OF AVERAGE VALUE S

OF ENERGY AND MOMENTU M

OF ,ß -RECOILS

B Y

O. KOFOED-HANSE N

København

i kommission hos Ejnar Munksgaard

1951



Printed in Denmark

Bianco Lunos Bogtrykkeri .



Introduction .

T
he recoil in '3-decay has been studied experimentally i n
various ways (1-2) ; in all cases it turned out that consider -

able difficulties are involved in the measurements of energy and
momentum of recoil particles . A major problem is always to
obtain an ideal geometry for the instruments . Since it is desir-

able to use one-atomic gases as sources of the radioactivity, th e
source extends all over the apparatus . This makes it difficult t o
obtain an ideal geometry, i . e ., to construct instruments whic h

select particles in a narrow energyinterval only, giving directly

the energy spectrum. For this reason the interpretation of th e

experimental results may introduce errors, and so far one has

been unable to decide experimentally between the differen t
possibilities as regards the angular correlation between ß-particle

and neutrino. It is thus of interest to look for experiments which
allow of a more direct interpretation .

It is the purpose of this article to discuss some methods fo r

the determination of average values of energy and momentu m

of the recoil particles in ß-decay . It will be our aim to avoid

measuring the energy distribution itself by means of an apparatu s

with complicated geometry . Instead, we want to carry out mea-

surements of a few average values which can be obtained from
instruments with a perfect geometry and while they do not giv e

all details of the energy distribution are sufficient to decide be-

tween the different possibilities for the angular correlation be-

tween ß-particle and neutrino .
The discussion given below indicates that it is possible t o

carry through this programme using rather simple instruments .
1*
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Measurements in Simple Fields .

Electric Fields .
The method of measuring the average value of the kineti c

energy ER divided by the charge z of the recoil particles' fro m
ß-radioactive noble gases which are followed by radioactiv e

daughter substances has already been described elsewhere an d

applied to two radioactive Krypton isotopes, Kr 88 and Kr 89 0.

The method consists simply in counting the number of particle s

reaching the plates of a plane parallel condenser (see Fig . 1) .

positive

	

negative
plate

	

1

	

plate

parabolic
orbit

Fig . 1 . The condenser used in the average energy measurements .

The radioactive gas is admitted into the space between the plate s

of the condenser at a pressure so low that the mean free path i s

considerably greater than the distance 2 a between the plates .

A potential difference, V, is set up between the condenser plates ,
and the particles move in parabolic orbits . Let the number o f

recoil particles reaching the positive plate be N + , and those

reaching the negative plate be N_ . We consider the limit of ver y
large condenser-plates . It is then easily shown that

ER

	

N+

	

< z i= 6 eVV ,

	

( 1 )

, z is expected to be at least 10 °/ o larger than unity because of several effects .
A discussion of this question is being prepared by Mr . AA . WINTHER . The most
important effect comes from the change of the nuclear charge from Z to Z -F 1
during the ß-process .
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where < > denotes the average value . The formula (1) will only

hold if V fulfills the condition

ma x
eVER

In (1) N = N+ + N is the total number of disintegrations . The

counting of the numbers N+ and N or rather the determination

of the ratio of these two numbers which is sufficient for th e

determination of (1) is easily carried through by the tracer method

because the daughter substances are radioactive .

We consider next the case that the condition (2) is not ful -

filled. Let us assume that our recoil spectrum is a single line fo r

which the energy ER = ER
max

= <ER> and the charge z = 1 .

We find

(2)

1
N+/N=

2

For eV = ER (1) and (3) join and have a common tangent .

(3)

Thus if (1) is used for eV-values slightly below ER the differenc e

between (3) and (1) is of the second order in ER -eV = A .

We find

N+(3)-N+(1)

	

3
d N+ /N+ =

	

N+ (3)

	

= 4
(4)

In Fig. 2 is shown N+/N and 6V N+ /N as functions of V.

It is seen that for Ve
> ERax

the function 6V N+ /N is a constant.

For V = 0 the functions have the values 1 / 2 and 0 respectively.

If we have a spectrum of recoil energies P (ER) dER instead

of a single line we find for voltages below the maximum energ y

of the recoil spectrum

nF ( V) =
N+lN =

o

	

eV

E
R	 P E )d

E
6 e V ( R

Complete knowledge of N+ /N for all values of V permits

in principle a determination of P (E R), and one finds

eV i Eå
ax

+ (1 1I/eV P
E ) dE . (5)

1~
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Fig .2 . N+ /1' and 6VN+ /N as functions of V for a single line of energy ER .

P(eV) = 4
d (dV)

nF f 14 eV
cl (~V)a

nF { 4 (eV)z
d (dV) 3 'F

	

(6 )

This relation shows that there is a one to one correspondanc e
between ni, and P . Unfortunately, nF is rather insensitive t o

the shape of the energy distribution . As an example let us con -

sider a very simple distribution P (ER) i . e .

1!F
R

ax = cons t . for ER ' ER
a x

P (ER)

	

0

	

for ER > ER
ax

Obviously the value 1/ER
ax

accounts for the normalisation . The

distribution (7) is shown in Fig . 3 . From formula (5) we find

ER

(7)



ds-

O

	

E max

eV -~

	

R
Fig . 3 . The figure shows a hypotetical recoil energy-distribution together with
the corresponding N+ JN curve. The dotted line is the N+ JN curve for a singl e

line spectrum with the same average energy as the hypotetical distribution.

N+ 'N=

2~~ eV!ERax
2 v/

E
	 flx for eV < ER-ax

ß

m

12
Emax

e V

	

for e V> E .
ina x

R ~

	

/ x

(8)

Furthermore it is easily verified that (8) leads to (7) when for-
mula (6) is applied . (8) is also shown in Fig . 10 together with

the curve for a single line with the average energy ER
ax/2 .

The small deviation between the curves illustrates the difficultie s

in carrying through an analysis of curves of the type N+/N in

order to obtain the energy spectrum, and it is seen that countin g
experiments are hardly sufficiently accurate for this purpose .
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The method described so far uses a determination of th e
number of recoil particles reaching the condenser plates . This

type of measurements is most easily carried out in such cases
where the radioactive noble gas has a radioactive daughter

substance as in the case of Kr 88 or Kr89 . For these gases, how-
ever, several difficulties arise . First of all it is not easy to deter -
mine the disintegration schemes in question (4) . Secondly, we

are concerned with forbidden ß-decay in both cases ; thirdly ,
we cannot neglect the Coulomb effect for Z-values as high as 37 ,
corresponding to the Rubidium recoil . Without any exaggeratio n

we may state that it would be of much more theoretical interest

to examine the recoil from the lightest noble gases, e . g . He 6 and

Ne23 . In these cases, however, we can only measure the recoil s
by the current they produce in the condenser . The intensitie s
which are available give rise to very small currents .

The positive current going to the positive plate in the averag e
energy condenser will be of the order of magnitud e

<ER>
• 10-12 ampere/millicurie .

	

(9)
e V

The construction of the so-called vibrating reed electrometer s
(5) has made it possible to detect currents as low as 10-17
ampere, and it should thus be possible to carry out a measurement
with a few microcuries of a radioactive gas .

Of course we get a current not only of recoil atoms but als o

of electrons . The positive current going to the positive plate i s

proportional to the average energy of the recoil particles, and th e

negative current will be approximately equal to half the number
of disintegrations per second times the electronic charge e be-

cause the motion of the ß-particles will not be influenced to any

large extent by the very weak electric field . Consequently we find
for a given value of V a current going to the. positive plate given
by

i+ = Ne { (ER)/(6 Ve) -1/2} .

	

(10)

where N is the number of disintegrations per sec . In this formula
we have neglected the current from the secondary electron s

emitted during the 13-process itself . These electrons usually hav e

a rather low energy i . e . a few eV . Consequently they may be
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removed by means of a magnetic field parallel to the plates o f
the condenser . This important point will be discussed in mor e
detail in the following .

Magnetic Fields .

We next consider the motion of the disintegration product s

in a homogeneous magnetic field. The recoil particles move in

n+1 nt 2
i -. o

H

	

i

2a

Fig . 4 . A series of equidistante planes . H is perpendicular to the plane of th e
figure.

helical orbits, and the radius of the circular motion in a plan e
perpendicular to the field is

pR • c •sin 8

Hez '

where B is the angle between the momentum pR and the magnetic

field H, so that 0 < Ø < 7c .
Suppose that the radioactive gass fills a large space in whic h

is placed a large number of parallel plane plates with a spacing

of 2 a (see Fig. 4). The homogenous magnetic field is parallel
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to the plates. We need only discuss the projection of the particl e
orbits on a plane perpendicular to the magnetic field . Let us firs t

take all those orbits for which e has the same value. The centres
of the circles in which the particles move are evidently distrib-

uted homogeneously all over the space . For the particles hittin g

the plates the distance between the centre and a plate is les s
than e . Therefore, a fraction x = e/a will hit the plates if e ( a

and, of course, if e j a all particles hit the plates, or x = 1 .

Summing over all recoil particles we get a particular simpl e
case if all e's are smaller than a, i . e ., i f

ma x
PR ~ Hea /c ,

which is a condition similar to (2). When (12) is fulfilled s o
that x = e/a the fraction Nl /N of the total number of recoils ,

N, that. are able to reach the plates is given by the simple ex -

pression

(12 )

N1/N

	

1P/a 2 sinØd Ø P(pR)dpRS (pR , z

0 0 (13)

c
4 Hea (PR /z) .

In this formula P(pR)•S(pR ,z) is the relative probability that
a particle is emitted with the momentum PR and the charge
value z. We note that usually, to a good approximation, (pR/z>

= (PR) ( 1 /z>
It is evident that a measurement on a gas in the space betwee n

just two parallel plates (Fig . 5) of this kind is equivalent to a

measurement on the whole periodic set of plates . We thus

have an apparatus closely similar to that discussed in the previou s

paragraph, only with the electric field replaced by a magneti c
field .

Instead of considering a number of parallel plates we ma y

imagine any kind of tube, parallel to the magnetic field, and
with a cross section such that by periodic continuation it can

completely fill out the plane perpendicular to H ; examples of

this are shown in Fig . 6 . We can then again use the argument
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based on the homogeneous distribution of the centres of th e

circles, which makes it easy to find the relative number of recoils

hitting the walls of a single tube .

As a simple example we take tubes with cross sections of th e

kind shown in Fig . 6, and which have an inscribed circle, th e

Fig. 5 . The collecting system used

	

Fig . 6 . Sections of tubes of the typ e
in the average momentum instru-

	

where the section has an inscribe d
ment.

	

circle .

radius of which we take to be a . If the condition (12) is full -

filled we find for all such tubes

~c c

	

1z\ _ 2 (--c )~ 2 ~ 7 a
1N= 2 Hea~PR 3 Hea ~PR- i

	

(14)

It may be remarked that for all tubes allowing their periodic

continuation and for the magnetic field fullfilling conditions

similar to (12) one can measure a combination of <pRfz* and

<pR/z 5 > only, like in (14) .

The measurement of Nl can be performed if there is a radio-

active daughter substance, as in the measurements mentioned i n

the description of the average energy instrument . If one wants

to use a gas where the daughter substance is . not radioactive on e

can measure directly the electric current to the plates instead o f

the number reaching the plates . Now, the electrons emitted in

the ß-decay have momenta of the same order of magnitude a s

the recoils, and their contribution to the current will compet e

with that from the recoils . The number of electrons reaching the
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plates will be given by an expression similar to (13) . It is seen
that the total current to the two parallel plane plates become s

i = -Ne
c

(CPR - (P )) ,4 Hea

	

~

where <pß> is the average momentum of the electron . Here one
has the advantage that the charge of the recoils does not appea r
in the formula for the current . The effect from the secondar y
electrons is quite small and has been neglected (see equ . 28) .

Finally, consider the case of the two parallel collector plate s
when the condition (12) is not fullfilled . For a single line the
Number, N1, of recoils hitting the plates is then found to b e

N

	

1

	

Heal cpR

	

Hea
-tIN

2 / 1-( cPR + Hea
Are sin c

	

(16)
PR

For low magnetic fields we may write (16) as the followin g
series

N1/N=-1/6(hy
PR

-1/40- . . . .J,

	

(17 )
PR ,

where

(15)

h=
Hea

c
(18)

is a measure of the magnetic field involving the geometrical
parameter, a, of the apparatus ; h has the dimension of a momen -
tum . The series (17) converges for (h/pR) < 1 . However, th e
convergence is less rapid than might appear from the terms in (17) .

The curves for
2

N 1/N = N 'l /N = n(h) represented by (13)

and (16) where N 'l is the number of recoils reaching one of th e
collector plates and for (nh) are illustrated in Fig . 7 as function s

n
of h . For h > pR the curve 8hn/ r is a constant giving directl y
the value of PR . For h = 0 these functions equal 1/2 and 0 ,
respectively .

For a spectrum we find when (12) is not fulfilled,
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h ~

t
8hN'

7Ô0

	

P
h -->-

Fig . 7 . N'/N and 8 hN1/Tr,N as functions of h for a single line with the momentum p .

( 1. 9 )

S h

A PR

H 8 h
P( pR) dPR ,

0

and in an analysis of a curve n = n (h) in order to obtain the

momentum distribution we find the relation

P(h) = -12h
d2

n-4h2
d3

n,

	

(20)
dh~

	

dh 3

which shows the one-to-one correspondance between n and the
momentum distribution .

spr
1

	

,	
h z pR

	

h
n (h) =

	

V/' )
- -i- Are sin - P (RR ) dpR

4

	

~PR

	

h

	

PR
h

P .
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Discussion of Experimental Questions .

Finite Extension of Collector Plates .

So far we have considered only idealized measuring instru-

ments . We must therefore treat the numerous corrections that

can come in so that the effectiveness of the apparatus can b e

estimated .

An important question will be the size of the- instrument .

Suppose that one wants to utilize a certain finite region of th e

collector plates
Fig. 8 . The figure shows that parabolic orbit which corresponds to the maximu m

value of R .

condensers or tubes mentioned above . The question is then ho w
far one must extend the condenser plates and the homogeneou s

field beyond this finite region to ensure that no disturbing en d
effects occur .

We discuss first the condenser with an electric field . Let R
be the projection of the parabolic orbits on the plan of the con -

denser . In Fig . 8 is shown an orbit and its projection R. Now,
to prevent particles created outside the condenser from reachin g
the collectors, i . e ., the central part of the plates we must deman d
that the protection ring has a width equal to the maximum valu e

of R. R is a maximum when ER - E
max

and when V cor -
responds to the limiting case of equality in (2) . Furthermore thi s
parabola shall touch the positive plate of the condenser in Fig . 8 .
One finds easily

maxR

	

= 3V3•a,

	

(21 )

where 2 a is the distance between the condenser plates .

In the instrument for the measurement of the average mo-
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mentum it is evident that we want to have extra condenser plate s
corresponding to complete periods in the periodical motion i n

the magnetic field . The largest period corresponds of course to

a particle with the maximum energy and to the limiting case o f

the equality in (12). In the direction perpendicular to H th e

protection
plate

collector
plat e

Ri i

~

Fig .9 . R1 and Ril for the magnetic field instrument.

largest period is found in a motion entirely in the plane perpend-

icular to H and its magnitude is given by

R = 2 a .

	

(22)

In the direction parallel to H the largest period is found for a
particle moving in the direction of the field . Such a particle is

not at all influenced by H but we may introduce a period as the

limiting value of the period for particles moving nearly parallel

to H. In this way we find

R11 = 2 7c a .

	

(23)

The magnitude of R1 and R i d is illustrated in Fig . 9. For He 6
and Ne 23 we have that pm' 9 me and it follows from the

condition (12) that we must have at least Ha 15000 Gauss cm .
This shows that it is necessary to have a magnetic field extending
over a rather large region of space .

tR-d

1/7
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The conditions (21), (22), and (23) hold when the condition s
(2) and (12) are fulfilled. If this is not the case the protectio n

areas must be larger . We need not discuss this point in detai l

but only notice the order of magnitude of the protection rin g

necessary in the extreme case of F = H 0 when a certain
accuracy in the experiment is demanded . Let us furthermore
limit ourselves to the case of the collector plate being the centra l

part of a circular plate condenser with the radius R. It can easily
be shown that to the first order in a/R the number of particle s

reaching one of the collectors is given b y

Nt/N = 2 (1 - a/R) .

This means that the protection ring must be rather large to enabl e
us to apply formulas like (3) down to very low voltages . However ,

the effect (24) diminishes rapidly for increasing electric potentia l

difference V in the condenser .

Field Inhomogenities .

So far, we have treated homogeneous fields only. However,

it is clear that deviations from the desired homogenity may occur .

Therefore, we shall discuss qualitatively the influence of fiel d
inhomogenities in order to find an upper limit to the inhomog-

enities when a certain accuracy in the experiment is demanded .

Consider first the case of a nearly homogeneous electric field .
Inhomogenities can arise from the effects of the ends of th e

condenser. As an example one may take two circular plates o f

radius R and placed at a distance 2 a . We shall he interested

in the case R »» 2 a, for which case a simple solution has bee n
given by ROSE (3) . The inhomogenities near the border will the n

decrease with the distance from the edge, and be proportiona l

to exp {- n (R - r)/a} . Because of this rapid exponential de-
crease the field can be closely homogeneous in the greater par t
of the condenser . This shows that effects from the edges easil y

can be made sufficiently small . However, small deviations fro m

the desired form of the surface of the condenser plates or va-

(24)
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riations in the contact potential of the surface due to impurities

may cause local inhomogenities of the field .

One can make a rough estimate of the change in N+ and N_

which results from inhomogenities of the above kind . Let us

consider a rather extended inhomogenity of the field, e . g . ,

= -Faz-b(z2 -2rJ )

F (z, r) = (-bx, -by, FQ -I- 2 bz)

(25)

where z is the distance across the condenser as measured fro m

the central plane, and r is the distance from the axis. We assume

that ba «« Fo . With a field of this kind one finds that in th e
central region of the condense r

1 ER

	

2

N+ /N= <6

V

>
(

1+CbV) .

	

(26)

where C is of the order of unity . Therefore, ba 2 f V is a measure
of the relative change in the number of particles striking the

positive plate .

In the instrument with a magnetic field the influence of in-
homogenities will be of a similar order of magnitude as for electric
fields . But it should be noted that in addition special effects ma y

come in . For instance, if the gradient of the magnetic field ha s

a component perpendicular to H and parallel to the collector

plates the circles in which the particles move will not only travel

in the direction of the field but also have a motion perpendicular

to the plates . There can therefore be a slight tendency for th e

particles to move towards one of the plates . An estimate of thi s
effect shows, however, that the relative correction to N,_ is less
than A H/H, where 4 II is the total change of H through the
instrument .

In this connection we note that it is important that the mag-

netic field is exactly parallel to the collector plates . A deviation

by an angle a will bring about a relative error in the measure -

	

ment of about a l f (4 a)

	

a where 1 is the dimension of the in-

strument parallel to H .

	

Dan .Mat.Fys .Medd. 26, no. S .
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We found that field inhomogenities do not give rise to relativ e
errors larger than the inhomogenities themselves . Apart from

inhomogenities in the field there may be differences in the density
in space of the radioactive substance if one is concerned with

a very short lived isotope. Effects of this kind have been studied

in the examination of the Kr S9 recoil (2) .

Secondary Electrons, Collisions .

In case we want to measure the currents produced by the
recoils and the ß-particles the most important source of erro r
will arise from the secondary electrons . These electrons ma y
either be ejected from the recoil ion immediately after the emissio n
of the ß-particle or by internal conversion of subsequent y-rays ,

or they can be secondary electrons from the walls of the chamber
and from collisions with gas atoms . In either case they are of
comparatively low energy .

Let us consider the electric field instrument first . In order
to eliminate the secondary electrons it will be necessary to appl y

a weak magnetic field parallel to the condenser plates . Accord-

ingly, we are lead to discuss the motion of charged particles i n

crossed electric and magnetic fields so as to find corrections to
be applied to our formula (10) due to the influence of a magneti c
field on the motion of the recoils and due to the combined actio n

of the electric and magnetic fields on the motion of the ß-particles .
This means that the contribution from the electrons to the cur -

rent (10) may deviate considerably from 9 Ne ; instead we may

put in (10) a function of H, F and-as neither (2) nor (12) is
fullfilled for the electrons-of the geometry of the instrument as
mentioned in connection with (24) ; i . e ., we put

ir3 + = Ne • KG (F, H),

	

(27)

where K is a certain function of F and H and where the index G
refers to the geometry of the instrument . It can be shown tha t
the influence of the electric field may be neglected within certain

limits and consequently we may omit the variable F in the
function K in (27) .
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In the average momentum instrument the effect from th e
secondary electrons is small . The secondary electrons from th e

recoil atoms will give a relative increase in the right hand sid e
of equation (15) of order of magnitude

n <Pe%

	

<Pe >x

	

N <p~~ =- (<zi 1) <p,
3>

,

where n is the number of secondaries, <pc> 'their average mo-

mentum and <z) is the average charge of the recoil ions . In thi s

expression for x, the first factor n/N can be considerably smaller
than unity, e . g., about 1/io• The average momentum of the

secondaries will usually correspond to an energy not larger

than 100 eV . If <pa> corresponds to an energy of more tha n

one MeV the ratio <pe>/<pß) will be less than 1/ioo• Therefore x

can easily be less than 1 0/00 . This illustrates the order of mag -
nitude of x . Of course, for each particular ,3-emitter x can b e

estimated rather accurately . In unfavourable cases x may b e

considerably larger than 1 °/00 ; for if the ,3-decay is followed
by y-rays with a large internal conversion coefficient the number

of electrons ejected per recoil ion, or n/N, can become somewhat

larger than 1 because of Auger effect. For this reason also it is

especially convenient that n/N = <z) - 1 can be determined

directly from the experiment, cf. equ. (30) .
Inhomogenities in the field may allow some of the secondary

electrons emitted from the collectors to move away along th e

lines of force . This effect disappears if the inhomogenities ar e

symmetrical about the centre of the instrument .
Connected with secondary electrons is the question of change

of charge of the recoils during their flight . Thus, the emission o f

the /3-particle may give rise to a release of one or more electron s
bound in the recoil atom. The life-times for emission of thes e

secondaries will be of the order of Auger life-times, i . e ., less

than 10-10 sec. However, during this time interval the recoils ca n

only travel about 10-3 cm, and therefore the secondaries can be

regarded as being emitted immediately after the ß-decay . It is

seen that the charge values that a negative ,3-emitter can take o n

are + 1, 2, etc . while a positive /3-emitter can have z = -1, 0, + 1 ,
etc . The possibility of charge values 0 and -1 makes measure -

2 *

(28)
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ments of the present kind on positive ß-emitters slightly differen t
from the case of negative ß-emitters .

Collisions between the recoils and the residual gas atoms ca n

cause a change of charge but will always lead to energy loss . It

is therefore essential that the pressure is sufficiently low . One

will expect that, denoting the mean free path by 2 and the lengt h

of the collector plates by 1, the relative effect of collisions wil l

be of the kind -1/A -log 2/1 and a/A for the magnetic and

electric field instruments, respectively. The magnitude of the

effect can be measured directly by applying different pressures ,

so that this source of error can be estimated accurately by ex-
periment . The experiments on the recoil of Kr 8 ° mentioned above

indicate that the pressure effect is - 1 at pressures of abou t

2 . 10-5 mm Hg for the more unfavourable case, the magnetic
field instrument .

The Determination of N.

In order to determine average values of energy or momentu m
of the kind discussed in the two first sections it will be necessar y
to know N, the total number of disintegrations . In the averag e

energy instrument a measure of N is easily found when the num -

ber of particles can be counted, i . e ., when the radioactive nobl e
gas has a radioactive daughter substance . In this case N =

N+ + N_ where N_ and N+ are the number of particles collecte d

on the negative and the positive plate respectively . But when

currents are measured N must be determined in a different
manner . According to (10) and (27) we ge t

i+ = Ne 1/6
(E

(29)

in that approximation where the influence of the electric field
on the ß-particles and of the magnetic field on the recoils ca n

be neglected . In the same approximation i_ is given by

1 <Eß >
i_ = Ne <z> -

6 Ve -
KG (H)l .

	

(30)
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Here, one further unknown quantity, <z), comes in which compli-

cates the determination of N. A measurement at two different volt -

ages gives

<Ex) = 6 Vi V2I~ G (H)	
x -

xV2
Vt ,

where x = i 2/i 1 . It is of importance that we cannot hope t o

deterrnjne <ER) with greater accuracy than Kor N can be deter -

mined . (30) further allows <z> to be determined, and with the

same accuracy as N can be measured. The determination of N
is complicated and usually can not be carried through with an y

great precission .

In the magnetic field case we meet with the same difficulty

and with the further complication that even when the number

of recoils reaching the collectors are counted the determinatio n

of N must be carried out separately before (15) can be used .

This difficulty can be overcome by first measuring i according

to (15) and after that applying an electric field across the con -

denser so strong (a few thousand volts) that no recoils can reac h

the positive collector plate but at the same time weak enough

so as not to affect the electrons . Neglecting some corrections which

we shall calculate in the following sections the current is the n

given by the second term in (15) . By measuring the current s

with and without electric field we find

	

<PR-Al>

	

(32)z/z + =

	

<
p13 >
	 .

The determination of (32) has the advantage that if the measure-

ments are carried out in a double condenser and the magneti c

field is the same in the two condensers, this field need not b e

very accurately constant in time because H is then eliminated

in (32) .
We notice that the measurement (32) can be carried through

with the same accuracy as the average energy determination b y

means of much less accurate measurements of the currents in

question. Further, it is seen that the determination of (32) even

for the same accuracy as the determination of the average energ y

contains more valuable information because (32) gives better

(31)
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Fig . 10 . Theoretical values for (pR - p )/(pp for different maximum energies
and for different angular correlations for the angle between the momenta of the

electrom and the neutrino.

08 -

06 .

a=- 1

0
9

(pR2J

Amax 2

04 .

02

0 i
10

Fig . 11 . Theoretical values for (pa)Ipr2 for different maximum energies an d
for different angular correlations as in Fig. 10.
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possibilities for distinguishing between the different angular cor-
relation between electron and neutrino in ß-decay . This cor-
relation is of the type (1 + avp/c•cos @i3) . Fig . 10 shows (32 )

for different maximum ß-energies and for different values for a
in this correlation function . Fig. 11 gives <ER>/ERax in the
same kind of plot's . It is seen that the relative difference be-
tween the curves for the different possibilities for a is more pro-
nounced in Fig . 10 than in Fig . 11 .

The above discussion and in particular the application o f
equation (32) leads us to study in more detail the motion o f
particles in crossed electric and magnetic fields so as to find th e
corrections to be applied and to determine the region of validit y
of the approximations used in formulas (29), (30) and (32) .

Crossed Electric and Magnetic Fields .

The Equation of Motion .

We shall now treat the relativistic motion of charged particle s
in homogeneous, perpendicular electric and magnetic fields . Let
the electrical field point in the direction of the x-axis, with th e
numerical value F, while the magnetic field has the direction o f
the z-axis and the value H. We will be interested primarily i n
the motion in the x-direction, and the collector plates will b e
parallel to the y, z-plane . The motion is governed by

dt p
= eF-I-L i•,H~,

	

(33)

p being the momentum and i the velocity of the particle . Con-
servation of energy give s

mc2

	

mc2
	 = Fe (x -{- xo) -}-	

( )
2
/c2

	

y1 - vo /c2

where in is the rest mass of the particle, v„ the initial velocit y
and xo the initial value of x .

Introducing (34) in the x, y-components of (33) and dim -

(34)
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inating y from the resulting equations we find an equation fo r

the motion in the x-direction ,

Ss2 + S 2s - (c2 N 2 ) s aß (N
+

U OF7 )

= cH/F,

rnc2 1

V1 -vålc' eF

s=x	 .x 0 + a ;

ß has the dimension of a velocity, while a and s are lengths .

Integrating (35) once we fin d

s 2s 2 = As 2 + 2 Bs + C,

	

(36)

A = c2 - ß2,

B = aß(ß 1'-I- vo) ,

C = a2 (vox 2 -ß 2 - 2 ßv o 1 - c2 ) •

From this s, and x, can be found as a function of t . However, in

the present connection we are looking only for possible minimu m

and maximum values of x, in order to find the maximum dist-

ance for collection of particles on the plates . We therefore pu t

s = 0 in (36), and the solution of the resulting equatio n

f(s)=As e +2Bs+C=0,

	

(37 )

will give the extrema of s from which x' and xmm can be

found. Since B 2 j AC the equation has always real solutions .

According to (36) the orbits obey the inequality f (s) > O . There -
fore, for A < 0, i, e ., F < H, the solutions of (37) will represent the

minimum and the maximum of a periodic motion in x of the par-

ticle . Since for A ( 0 the magnetic field is stronger than the electri c
field the motion is just in this case dominated by the magnetic

field . Though the condition, H > F, is independent of the mass ,

charge, and initial velocity of the particle the period in x wil l

with

and

with

and
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depend on these quantities . For A> 0 the motion described b y
(36) will lie outside the solutions of (37), and if the particle is

positively charged the motion in x will have a minimum but no t

a maximum. In this case, where F > H, the motion is thus ape-

riodic and resembles the motion in a pure electric field .
Now, since we want to have a periodic motion in x, at leas t

for the secondary electrons in order that they can move away

along the magnetic lines of force, we can limit ourselves to the

case of A < 0, or F < H. Inserting the values for ca, ß and s we find

max

	

lnc2

	

F
min	 	 _ _ 	x -x p =

C y1 - vQ/c 2 H L -
F2 .

~
1

H v+

	

oq V (

	

Hvov,) 2 v ox 2 (H 2

	 )

~T c

	

1+ ~ c -F- c
2 F2

1

	

(38)

We are particularly interested in the oscillation length ,
xmax - xmin Denoting this quantity by 21 we find from (38) that

mc 2

	

H vo

	

vo x

v

2

	 	 ~ (1 + ~ 2 + 	

(H2

	

) -

	

(39 )
1 v/c2 H 2 - F 2

	

F c

	

c 2

It is seen that for F/H approaching 1, 1 tends to infinity .

For completeness we shall write down the expression corres-

ponding to (38) as found in a non-relativistic calculation . Here ,

max

	

12

	

2

	

2

xmin - xo = mc2 H2 1 i
F

v~~~l /(1 +~v~~1 + v~ ~ 2 .
V

	

11

(non-rel .) (40)

The equation (40) differs from the relativistic expression whe n

F/H is close to unity. This deviation is connected with the fac t
that in the non-relativistic approximation the orbits will b e

periodic in x for any values of F and H.
With the use of (38), (39), and (40) we can now proceed t o

calculate the number of particles striking the collector plates .
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Number of Particles Hitting the Collector Plates .

From the number of particles emitted in different direction s

from every space point we can with the use of (38) calculate th e

total number of particles hitting the collector plates. The number

of particles emitted between .x ° and x° + dx° , in the angular

positive

	

negativ e
plate

	

i

	

i

	

plate
N

\

T \H
0 a X
2a	

	

+V

	

1 0

Fig. 12 . The collector system in the instrument utilizing crossed electric an d
magnetic fields .

intervals d T, d O and with energy between E and E -r dE, and
charge value z, will be given b y

N . 2a°• 41Z SinBdBdcpP(E)S(E,z)dE .

	

(41 )

In this formula P(E) S (E, z) is the relative probability that a

particle is emitted with the energy E and the charge z . The di -
rection of the fields is as in the preceding paragraph, and th e
positive and negative condenser plates are the planes x = - a
and x = a, respectively (see Fig . 12) .

As in the case of single fields we may first consider som e
particularly simple cases. It is important that for given value s
of F and H the recoil particles and the electrons behave quit e
differently. In particular the large mass of the recoil particle s

means that according to (39) their oscillation length in the .-
direction is more than 10 3 times that of the electrons .

Let us demand that the orbits of all recoils have x""' > a .

This means that particles travelling towards the negative plat e

are not able to go back to the positive plate but will strike th e

\
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negative plate . This simplifies the discussion considerably . The
condition for this is evidently that the right hand side of (38 )
shall remain greater than 2 a if we use the + sign before the

square root and choose the most unfavourable value of vo y . This

leads to

Mc 2F/ Hvm
a< ell' \1-F - c/

	

(42)

Now, the motion of the ß-particles is mainly governed by the

magnetic field and therefore, as mentioned above, it is favour -

able to have magnetic fields of the order eHa p'er`/c . Inserting

this in (42) we find an approximate lower limit on F

Illu x
F ? 2 HvR /c .

The number of particles striking the positive collector plat e

can be calculated in the following manner . For a given value of

vo we first find the upper limit of the starting point x 0 , let us call

it x" p , for which the particles hit the positive plate . We therefor e

put x'' " _ - a in equation (38) and the left hand side becomes

equal to - (a + x") ; in the right hand side we use the minus
sign in front of the square root because we are concerned with
xmin . Since (43) shows that (H/F) (uric) is smaller than

unity, we develop the square root in powers of this quantity .

Finally, using (41) we sum over all velocities of emission an d

over the direction of emission remembering that the summatio n

only goes over those particles for which the initial motion is

towards the positive plate, when (43) is fullfilled . The total

current of recoils to the positive plate is then found to b e

Ne 1

	

1 H vRmax12
	 	 vxi , R = -• <ER> +-- -	 < ER

	

+ . . . .
V 6[

	

20 F c/

	

vR

This gives immediately the current of recoils to the negative plat e

-R = Ne(z>-i+

As. to the f-particles, the influence of the electric field wil l

because of their high energy remain only a small perturbatio n

(43)

(44)

(45)
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on their motion in the magnetic field . For these particles we ca n
again demand that the period 21 of their oscillatory motion i n
the x-direction is always smaller than 2 a . Using the value of 1
in (39), and with F smaller than H, we thus have the condition

FW max / H l~max

	

climax w max
(
F

Imax =	
eH 2

1 1 -I- F -	 c )
= He + He H <a,

where WWI is the energy of the ß-particle including the rest mass .
For pure magnetic fields the condition was, equ . (12) ,

cp'nax/(He)
< a . The extra term (Wß r`ax /He) (F/H) in (46) is small for

relativistic particles (it can be e . g. about 1 °/oo) if F is smal l

compared with H, and in the usual cases (46) reduces to (12) .

The two conditions (43) and (46) can be combined in a
simple manner. Neglecting the small term in (46) we get a lowe r

limit on Ha and introducing this in (43) we find, since V = 2 aF,

eV > eV ' = 8
ERax

	

(47)

which shows the lower limit on the potential difference that is t o
be imposed in order that the present simple formulae exhibiting
a marked difference between ß-particles and recoils can b e

applied . For the lightest noble gases, He ß , Ne 23 , and A 4 ' we find

for V ' the values 12000, 4000, and 400 volts, respectively .

In the calculation of the current 1 +13 of fi-particles to th e
positive plate we can make a series development of the squar e
root in (38), developing in powers of (F/H) (c/v) . It is here
convenient to write

V()1/Hv
z v 2

	

Hv

	

H (v - v )

+ ) +
(H2
F2-1) ti (1+

Fc

~1 -2

	

Hvl 2

Fe 1~--	/ (

	

Fc )

	

(48)

Hv v - v
1+-1- 	 1	 y + . . .F .c

	

v1

where vi = vx + v y', and where we have neglected higher or-
der terms in F. By integration over the angles and the velocitie s
the final expression for the current becomes

(46)
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~ ~~ c<p~i <F

	

J=

	

-}- . . . .

	

(49)
2 2aHe 2aHeH

where higher terms in F/H are neglected . In pure magnetic field s

we have only the first term inside the brackets . The change due

to the electric field is in relative measure approximately the sam e

in (49) as in (46) . The formulae (44), (45), and (49) give to-

gether the correct expressions for the current to the plates . The

total currents are in the first approximation

(1

<ER >
_

n 413>i= Ne
6 2 aFe 4 2 aHe-

. . )i

1<ERi ~<c.N)
= Ne

62 aIe 42aHe+

	

(51 )

It is thus seen that the following quantities can be measured :

<P'3-PR>
<

from (15), <ER> `p,3) c, (zR)/(P,3 )

and by an absolute calibration of the instrument we can fin d

N <p a> so that the total number of disintegrations can be deter -

mined with the accuracy with which <p,> is known from ex-

periment or theory. The <ER>-term in (50) or (51) is of cource

found by measuring i± for different values of F. The accuracy

of the determination of <ER>J<pß>c is much less favourable• than

for the other quantities since the <ER>-term in these formulae

is small compared with the <0-term . When comparing the

measurement of <ER> in (50) and (51) with that in the electric

field instrument, (29), one finds that the accuracy that can h e

obtained is of the same order of magnitude in the two cases .

Although in (50), (51) the relative magnitude of the <ER>-term
in the currents is 3 times less than can be obtained in th e

electric field instrument the absolute measurements and the

knowledge of the geometry of the instrument can be more precis e

for the crossed field instrument .

(50)



Summary .

A discussion is given of some proposed experiments in whic h

average values of the energy and momentum of recoil particle s

from one atomic gases can be determined . The method is based

on a simple connection between these average values and th e

number of recoils collected on the plates of a plane parallel
condenser filled with a radioactive inert gas at a low pressure.
The average energy of the recoil particles can be measured for

suitable electric potential differences between the plates . If in -

stead one uses a magnetic field parallel to the plates the averag e

momenta are obtained . There are significant differences betwee n
measuring the number of recoils striking the plates and th e

currents to the plates .

In order to find the effectiveness of the instrument a numbe r
of possible deviations from the idealized instrument are treated .
These include the finite size of the condenser, inhomogenitie s

of the field, the question of secondary electrons, and difficultie s

in the determination of the total number of disintegrations .
The discussion shows that it is most favourable to compar e

measurements of currents performed first with a purely magneti c

field and secondly with a combined electric and magnetic field .

In this way it is possible to determine the difference between th e

average values of the recoil and ß-particle momenta divided by

the average value of the momentum of the ß-particles . This rati o

depends strongly on the angular correlation in the emission o f
the 13-particle and the neutrino . Furthermore this instrument
enables one to find the average value of the recoil energy an d

the average value of the charge of the recoil ions .

The accuracy with which the pertinent quantities can be
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determined in the measurements described here is expected t o
exeed that of previous recoil experiments. Thus one can hop e

to obtain a rather precise check on the coupling between th e

particles involved in fl-decay .
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his interest in the present work, and to Prof . J . C . JACOBSEN for
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connection with this paper .
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