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Introduction and Summary.

1. In this work the theory of scattering and emission of light’
by an atom is developed on the basis of Kramers’ method of
quantizing the classical theory of the electron.? Accordingly, the
calculations - are. non-relativistic and we shall confine ourselves
throughout to electric dipole radiation. These restrictions. will
allow us to avoid all divergences.

Scattering will be described by means of stationary states of the
_bompound system of atom and electromagnetic field, which bear
a close amalogy to the customary classical treatment. To empha-
size this analogy the properties of each state are interpreted in
terms of a classical radiation field. Emission is described by super-
posing these stationary states in such a way that initially the
radiation field vanishes. .

- The scattering is calculated for incoming light with arbitrary
frequency, either in resonance with an absorption line or not. In
the latter case the result is equivalent to the well-known Kramers-
eisenberg formula. In the case of resonance—usually called
sonance fluorescence—not only the usual line shape is found,
ut also a small line shift, which in the current treatment is in-
nite and has to be discarded. The behaviour of the Raman scat-
ting inside the line width and the transition to non-resonance
e-also investigated.

2. Kramers’ theory starts from the idea that in the classical
eciron theory all physically significant results depend only on
e mass m and the charge e of the electron, and do not contain
ny reference to the structure of the electron. His program was
construct a structure-independent Hamiltonian that describes
e actual behaviour with the.best obtainable approximation. For
his. purpose the transverse electromagnetic field is decomposed

1*
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into a “‘proper field” and an “‘external field.”” The former is de:
fined as the non-retarded field, i. e. the field that follows from the
Biot-Savart rule.® It is determined by the instantaneous position
and velocity of the electron (in contrast with the sum of retarded
and advanced fields used by Diract). The vector potential A’
of the remaining external field is finite for a point-electron, sb_
that the average of A’ over the extended electron will be nearly
independent of the charge distribution. If now the equations 0
motion of the electron are expressed in terms of A’, the effect
“of the proper field being accounted for by an electr01nagneti¢
mass my, they contain only the total or ‘‘experimental” mass
m = mg + myg; they do not depend on the structure, except fo
the very small wave lengths in A’. The equation for the externa
field A’, however, still contains the proper field in such a w
that the formalism is only approximately structure-independent
The next step comnsists of writing these equations in Hamil
tonian form. First! Kramers used a Hamiltonian which ba
practically the same form as the usual one, but with the externg
field instead of the total field, and with the experimental mass m
instead of the mechanical mass m,. He showed that it describe
the secular effects correctly to the first order of e, whereas cert
high-frequency vibrations, caused by the interaction, are neg
lected. Later, Opechowski® found a Hamiltonian which is correc
in dipole approximation to the first order of e. Finally Kramers
constructed in dipole approximation a Hamiltonian which is cor
rect also to higher orders of e, and can therefore be applied t
the scattering of light.

envibration of the compound system. Hence the canonical
nsformation amounts to choosing the solutions for the free
ctron as basic elements. If the electron is karmonically bound,
i-further canonical transformation can be found which again
ransforms the Hamiltonian to normal modes, so that also in this
se the rigorous solutions can be obtained. This is performed
nchapter 1I, and some results are derived which are of later use.
If the binding force is of a more general character (ch. I1I),
ch a further transformation cannot be found, and one has to
ort to perturbation theory. With the aid of the above mentioned
lution of the free electron, however, the zeroth-order approxima-
n can be chosen in such a way that the interaction of electron
d radiation field is already partly included, namely as if the
ctron were free. The perturbation consists of the influence of
e binding on the interaction, and will be small for the high-
equency quanta. Indeed, the shift of the energy levels caused
the perturbation now turns out to be finite and small. This
s only a restricted physical significance, because the conver-
nce becomes effective at energies for which relativistic effects
ould not be neglected. Mathematically, however, it seems that
ere are no longer fundamental obstacles in solving the Schro-
nger equation by perturbation theory and obtaining physicalty
gnificant results for the scattering of visible light.

4. In order to describe the scattering process we construct
stationary solution of the Schrédinger equation, satisfying
& boundary condition that the ingoing radiation shall consist
-a monochromatic wave. This solution will then also contain
1 outgoing wave of the same wave length, and the phase dif-
tence between both has to be found from the Schrédinger
ation. This phase shift contains all relevant information about
¢ physical quantities describing the scattering; indeed it is the
gunterpart for light waves of the phase matrix in Heisenberg's

3. In chapter I we obtain in dipole approximation a Ham
tonian which is correct in all powérs of e, in the following w
In the ordinary Hamiltonian the field is expanded in mult
pole ‘waves and only the electric dipole waves are retained: B
means of a canonical transformation this simplified Hamiltonia
is cast into a form which only contains the constants m an fleory of the S-matrix.
and is practically structure-independent. This new form will ' The above solution may also contain outgoing waves of dif-
the starting point of our calculations. We shall call it Kram fitent wave lengths, namely Raman radiation. The intensities of
Hamiltonian, although it differs slightly from the form he us¢ separate Raman lines follow, of course, from the coefficients

If there is o binding force, this new Hamiltonian appears fthis solution, but these coefficients need not be computed ex-
the sum of an infinite number of oscillators, each referring to itly. Tt appears that the Raman radiation is associated with
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imaginary terms in the phase shift mentioned above, so that the
probability for Raman scattering can be calculated directly from
this phase shift. :

Non-stationary solutions of the Schrédinger equation can b
obtained by superposing the stationary solutions. If the supe
position is chosen in such a way that at ¢ = 0 the radiation
field vanishes, then the field that appears at { > 0 can only be
due to emission by the atom. Hence, such a non-stationary stat
serves to describe spontaneous emission. Again the phase shif
(as a function of the incoming frequency) is sufficient to fint
all data about the emission process. The scattering by an atom
in an excited state also requires a non-stationary solution, bu
this problem is not treated in the present work. ’

The properties of the ingoing and outgoing electromagne
radiation fields have, of course, to be interpreted by computin
expectation values of certain field operators, for instance th
square of the field strength. However, it is possible to Tepresen
all relevant features of the quantum-mechanical field by a classicd
analogue. This classical field is constructed in such a way tha
the (classical) time average of any relevant quantity is equal {4
the expectation value of the same quantity in the quantum
mechanical state.

mount of order e2. However, the centre of the line does not
xactly coincide with the atomic frequency, but shows a small
e shift. With the ordinary Hamiltonian this so-called Lamb-
ctherford shift® could only be computed by means of an ad hoc
rescription for the subtraction of infinite terms.? -

Inside the line width the Raman lines are very strong and their
tensities are proportional to those of the corresponding emission
nes. Therefore the scattering process may be visualized as the
sorption of an incoming photon and subsequent spontaneous
mission. This picture is, however, only partly true, because
veral detfails are not represented correctly. .
In chapter VI the formulae obtained for resonance and non-
gonance are combined into one formula for the phase shift,
hich holds for all values of the incoming frequency and for
ny binding force. This equation shows that the transition be-
cen resonance and non-resonance is rather involved. The simple
evice of inserting imaginary damping terms in the resonance
tnominators of the Kramers-Heisenberg formula has only a
wstricted validity.

6. One feature of the transformation that served to eliminate
e electron structure has still to be mentioned. If the electron is

1110sen very small, and a fortiori in the limit of a point-electron,

e new Hamiltonian contains one oscillator with an imaginary -
quency. This corresponds to the well-known self-accelerating
flution of the classical electron®. As emphasized by Bhabha?,

his. solution of the equations of motion cannot be found by a

berturbation calculation based on an expansion in e, because it
n,o’% analytic in e = 0.

As there is no proper way to quantize an oscillator with

aginary frequency, the transformed Hamiltonian cannot be

ried over to quantum mechanics. Of course, even in classical

heory. the self-accelerating motion makes a rigorous solution of
-equations of motion meaningless. A plausible procedure,

iiwever, consists of discarding the anomalous -oscillator from the

miltonian; it will be shown that this leads to agreement with

erimental results. Tt is important that no radiation is assoc1ated
h this oscillator.

5. With the method ocutlined above, the scattering by an at
in the ground state is calculated (chs. IIT and IV) for the case?
non-resonance, i. e. for incoming frequencies that are not ne
to an absorption frequency. The result is expressed in terms. ol
the phase shift, but it can be checked to be equivalent to th
Kramers-Heisenberg formula. The expression for the phase shi
contains real terms of order e?, describing the Rayleigh scatterin
and imaginary terms of order ef, associated with the Rama
radiation. '

Chapter V is devoted to the case of resonance. Adopting t
porarily some simplifying assumptions, the phase shift is-calcu
ated for incoming waves with frequencies in the neighbourhoo
of an absorption frequency. Just as in the classical treatmen
the phase shift strongly increases inside the line width, pass
through the value z/2 in the cenire of the line and finally;
the other side of the line, differs from the value w by a sina
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The symbol ~ denotes the mean value over the extended

Chapter I. Derivation of the Hamiltonian. ectron, 1. e.

eA — FAMe(r—R])dr = (AR+ 1) o(|x|) dr.

the motion of the electron is confined to a region around the
rigin that is small compared to the wave lengths present in the
xternal field'!, then this mean value is practically 1ndependent
[ the position B of the electron, so that one may write

7. In this chapter Kramers’ Hamiltonian is deduced from the
usual one in the following way. In the non-relativistic Hamilton:
lan for an extended electron the transverse field is expanded in
electric dipole waves, all other multipole waves being omitted
By means of a first canonical transformation the proper field o
the electron is separated from the total field, so that only the ex-
ternal field occurs in the new Hamillonian. By a second canonical
transformation the remaining A2 term is 1ncorporated in the oscil:
lators of the field. ‘

The Hamiltonian thus obtained is, in dipole approximation;
equivalent to the Hamiltonian given by Kramers. The electron
is characterized only by the charge e and the experimental mass
m; the details of the structure have, for all practical purposes,
been eliminated. Therefore one may take a simple model, and
we shall choose a point-electron in order to get manageable
formulae.

The formalism of the deduction is adapted to both classical
theory and quantum mechanics.

~

eA = A (™o (r)) dr. (2)

his condition is certainly fulfilled when dealing with the scat-
ring of visible light by atoms. Physically it amounts to neglecting
‘the-transport of (canonical) momentum from the transverse field
‘the electron; indeed from (1) and (2) follows

P = —99/6R = —VV(R). (3)

hen A is expanded in multipole waves, the result of this ap-

roximation is that only the electric dipole waves are coupled with
the electron: all other multipole waves are zero in the origin and
Lhence do not contribute to (2) if ¢ falls off rapidly.

8. After elimination of the longitudinal field the remaining
transverse field can be described by a vector potential A with
div A = 0. The Hamiltonian of the system electron + field then
takes the form?!®

9. As far as electric dipole radiation is concerned the expansion
f the field inside a large sphere of radius L may be written

n nw
A@—%Z - ﬁ%i w="7"" ()

1
SZ):21

—eA) 4 V(R) +8—S{E2+(rot INDY NG |
7 . ) here are three directions of polarization corresponding to the three
omponents of g,. & means “transverse part of”” and may be defined by!2

(5)

where —E/4 7 is the canonical conjugate of A.
sinv, r

sin»
Tq, nl

~fnt 5 @) v} I

R and P are the position and the momentum of the electron, e and mg
its charge and mechanical mass. The function ¢ will describe the charge
distribution, so that {¢dr = e¢. We shall put ¢ = i = 1 througho
this work. A and E are the vector potential and the field strength
the transverse electromagnetic field, V is the static potential resulti
from the elimination of the longitudinal field. For the sake of simplici
we do not consider an external magnetic fleld, although it will be
portant in certain experiments. How it can be taken into account h
been indicated by Kramers?.

. . 2,
t gives rise to a factor 3 in the mean values over the electron, because

. 2
T (sin vpr)/r = g‘hﬂ"n + Or;

nd also in the normalization, because

S {% 4, (sin vnr)/r}zdr = % S {qn (sin 1;nr)/r}2 + 4 zredr.
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The orthogonal functions in the expansion (4) have the norm hich can be transfermed to principal axes by means of an

V4n consequently, if E is similarly expanded: rthogonal transformation

' '3 sinvar-
_E(r)=izvfpn P _(6)

then p, is canomcally con]ugate to q,. From (4) follows further-
more

q:?. = EXnn'q;;” pn = XX npn (12)

his is carried out in Appendix A, sections 1 and 2, with the
esult

il

p2 , ITCOST]n ” ” o
g+ (R+ ZI/S >+ T2+, (13)

Il

eK = Vm_LanSsin Ypr-0(r) - 4amrdr -2‘281111”, Q)

where where k, are the roots of a certain characteristic equation and

en = O,/ 4e*/3L, . and L, are defined by

Lk, = n,+ nm, . 0<17n<n/2;
L, = L—(cosn,)?x, 1/x = 2e*/3m.

d,, being a convergence factor which depends on the structurfé ) } (14)
of the electron and tends to 1 for a point-electron. Substituting

(4), (6) and (7) in the Hamiltonian (1), one gets ) ] )
, » . The structure of the electron enters into the Hamiltonian (13)
only through the equation for the k, (namely (A 6)). It may be
expected that its influence on the physical phenomena we are
nterested in is small. Therefore we may choose a point-eleciron,

n which case the characteristic equation becomes

= (1/2mg) P2+ V (B) —(1/mg) P Ze, 4,
1 ‘
+ (112 mo) (T entn)® + 5 £ (0 + Vn )

10. If now new variables are introduced by means of the tan Lk = kjx or tany = kjx. (15)
canonical transformation
" 11. For a free electron (V = 0), the Hamiltonian (13) fur-
nishes the correct solution (of course in non-relativistic dipole
approximation). The momentum P’ = P is constant (as a con-
séquence of the dipole approximation, ¢f. (3)) and R/ is linear
in ¢t. The electron at the point R fluctuates around the uniformly
moving point R’.. If no photons are present, then classically
R = R/, but in quantum theory there is still a fluctuating motion,
owmg to the zero point fluctuations of the field.* In this case the
square of the distance B — R’ has the expectation value

N o En ¢ Y _ , —en_
pn_pn’ qn_qn+mV2P,P_P,R R+Z 9

n n

n»
where

m = my+ X (&,/7,)%,
then the Hamiltonian becomes
= (12m)P+V{R + Z(e, /mvi) Do)

(10
(1/2m0)(28nqn)2+ Z(I) nqn) .

The third term on the right stems from the A2 term. Togethe (R — R = (2e/3m*) X (2 cos® nn/Lky) (knf2).  (186)

with the fourth term it constitutes a quadratic form in the fiel

, . Our factor cos?#, gives convergence for k— oo, but it be-
variables q,:

comes effective at too high values of k, owing to the neglect of

%ZAnn’ q;’l q;t' = %E{'pi ar.m’ —IL (1 /mﬂ) €n En’} q;lql,‘l" (11

* The influence of this fluctuation in the position of the electron on the
ysically measurable quantities has been studied by Weltons.
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recoil and relativistic effects (see also 40). There is a logarithmic §
divergence for k— 0, but any binding force will cut off the lower §
values of k and thus make the expression finite (see ref. 13). ‘| nection between P and P’, because they did not confine themselves
It may be added that fluctuations with infinite mean square §
amplitude are known in probability theory™* and that the result “§
for a free electron is not unacceptable, because the mean square - the electromagnetic mass is small compared to the mechanical
amplitude is not an observable quantity. It will be shown in 15 4

that physically measurable quantities do not suffer from this infra- 1

red divergence.

12. The physical meaning of the transformation (8) can be seen

from the corresponding decomposition of the field: A = A"4 A"

Here A’ is of the form (4) with ¢, instead of g, and

Ao(r) = EZ]/%iP'S“””’" = %359(“ D )

mvi r mJ|r—1'|

(with the aid of (A 22)). We shall call A° the proper field of the
electron and A’ the external field. If P’/ were the electron
velocity, A% would be identical with the proper field as defined:
by Kramers®. Now, however, this is only true in first approxima-

tion, because P’ is the canonical momentum

P/m= R = R—I— Oe.

Owing to this difference in the field that has been split off, (13)

is slightly simpler than the Hamiltonian actually given by Kramers:

At first sight, Bloch and Nordsieck’s transformation®® seems
to be rather the same as our transformation (8), but there is an
essential dillerence. Since they used the unbound electron as
zeroth approximation, they could replace with sufficient approx-

imation (P—e_&)z/2 my by v(P— ez) and consider the velocity:

vector v as a counstant:

H=v® —Ze )+ 2 @p TR0

Now the problem is not to transform this Hamiltonian to principal:
axes, but to get rid of the linear term in (. This is achieved by

the canonical transformation

Pa = Por o = Gnt+(enf290)V, P=P, R =R

Nr. 15 ’ 13

This transformation is much simpler than (8) since R = R/
On the other hand, Bloch and Nordsieck used a less trivial con-

to dipole approximation.
Pauli and Fierz'® supposed the electron to be so large that

mass. In this case, one can put in (8) m = m, and the transforma-
tion becomes identical to theirs. It is consistent with this approx-

4 imation to omit the A%-term in the Hamiltonian, and accordingly

they obtained the same Hamiltonian (13), but without the phase
shifts 5,. The transition to the point-electron is, of course, ex-
cluded.

Welton!® used the same Hamiltonian as Pauli and Fierz, with
a rather sketchy justification. Schwinger’s elaborate calculation
of the self‘energy” is based on the same idea, but meets all
requirements of relativistic invariance and does not use dipole
approximation. On the other hand, an expansion in e is used for
the canonical transformation and only the first power is computed.

13. The orthogonal transformation (12) amounts to choosing
a new set of orthogonal functions for the expansion of A’. It is

shown in A 4 that they are sine functions with wave number k,
and phase shift 7,: '

DAY :EZI/%q;sinvnr _ %Z]/%qﬁsm (Icnr~17_n).

r r

(18)

Owing to his slightly different definition of the proper field,
Kramers found as the external field belonging to a stationary
solution of the classical free electron, instead of (18),

Ay = T)/3(L, qn{sin Ueur — 1) + sin n, Y.

For a freely moving electron this field is finite atr — 0, in contrast
with our “external” field (18). After having obtained these solu-

 tions, Kramers could write the Hamiltonian for the free electron

mply as a sum of terms:

1 ” /;
5 z (pn2 + kﬁ qnz) B
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each term referring lo- an oscillalor associated with a stationar
motion. The Hamiltonian which we obtained by means.of twof
canonical transformations differs.from this one only by the adi
ditional term P’2/2 m, associated with the linear motion with
constant velocity.

eature, since it cannot oceur if the electron is chosen so big that
o Is positive. It may be expected therefore to be immaterial for
‘the phenomena we are interested in, just as in Lorentz’ theory,
provided it is treated in a suitable manner. In his classical theory*
irac gave the prescription that the initial situation should be
hosen in such a way that the final velocity is finite. That means
or our free electron that the initial p, and ¢, must be zero,
ecause otherwise they will increase exponentially. This amounts
o simply omitting the term (19) from the Hamiltonian of the free

It is noteworthy that after the first transformation (8) the transition:
to the point-electron is not yet possible, because the Hamiltonian‘ (1
still contains m,. Since the term with m, has usually been' omitted,
the necessity of the second transformation did not appear. The.factor
cos?yn,, however, which arises from it, will turn out to be useful m_
obtaining convergence (see 40; cf. also 11).

arbitrarily, but must be such that in (19) ¢ = 0 (and that p, = 0

14. When the electron is very small, the electromagnetic ma
is larger than the experimental mass m, and consequently
is negative. Then (11) is no longer positive definite and not
the eigenvalues can be positive. In fact it is shown in A2 th
for the point-electron there is one negative eigenvalue —
yielding two imaginary solutions ki = ix and k* = — ix of (1,

This anomalous eigenvalue gives rise in the Hamiltonian (1
to a term

affects only the field in the immediate neighbourhood of the elec-
tron, whereas the radiation field can still be chosen freely. The
resulting Hamiltonian can be quantized without difficulty.

The bound electron in classical theory has also a self-acceler-
ating solution, but in this case Dirac’s prescription leads to dif-
ficulties™. Moreover, in order to apply it to quantum theory in
the same way as above, one has to find a canonical transformation
by which this solution is exhibited explicitly in a term like (19).
This is only possible for a free or a harmonically bound electron.
A slightly different way of generalizing Dirac’s prescription to
hound electrons consists of dropping in the Hamiltonian (13)
hoth the term (19) and the term with p. in the argument of V.
The remauung Hamiltonian can be used in quantum mechanics
and may again be expected to give right results for the scattering
v151b1e light by atoms. In the next chapter we shall apply both
e first and the second procedure to the harmonically bound
tlectron, and the results will turn out to be practically identical.

the later chapters the second procedure will be used for the
gctron in a general field of force.

1
5 (P2 —#* %),

and to a term (e/m) ]/4/3'% p, in the argument of V. In the:e
pansion (18) it gives a term

TV3 % q e % r;

this is a field which is appreciable only within a distance of the
order of the classical electron radius, and hence does not cont:
a radiation field. .

If the Hamiltonian (13) is used for the classical treatme
of the free electron, then the term (19) gives rise to two solutio
with time factors e*! and e—*L The former is the “self-accel
ating” or “runaway’ solution, well-known from the classi
theory of the electron®. The latter comes in because, owing ¢
the reflecting sphere, our treatment is symmetric in time. (T
usual boundary condition that there is no ingoing radlatlon
infinity is, of course, not symimnetric.)

The anomalous term (19) is not a structure-independ

15. The Hamiltonian (13) might give rise to “infrared’ diver-
nces of the kind encountered in (16). We shall here show that
ey are only formal and do not prevent a consistent solution of

e Schrédinger equatlon For this purpose we use the canonical
ansformation

3L, kn 3Ln

lectron. The initial field can then no longer be chosen completely

n the analogous expansion of E’). This restrictive condition

A 1 c°S’7"P P=P, R'=R_59, *l/ 4 Coksnn—

2
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where ¥, are arbitrary numbers, bounded for n — oo. The Hamil b P2 e py I cos -
tonian (13) takes the form = 2m+5 “+— 2 3L ) 4= 2(p”2 2q2%).

‘;%‘ThlS is.a sum of three similar ter ms, each referring to one direc-

Alon in space. Therefore the problem can be reduced to a scalar
jone by writing

2
o= ot £z |/t |

(20)
1o _ _ e _
+ A—E(pi_{_ krzlqn)*ﬁe‘ Pzﬁn T‘—Icn coS 1, Un
2 m SLn_ P/ — ePl Rr . R/ " ” " "
with : ? = € L] pn = epn: qn = eqn,

1 4¢® _ 5 co8%un i i i

he . .

1 _+ 3m22 2 98, here e is a unit vector in the x, Yy, or z direction.
n

On introducing new canonical variables P,, O, by

If we now choose 9, =1 for small n, there is no risk of diver-. P = Pymt, R — Qum—} " Y .
gence for k—> 0. If moreover ¥, = 0 for large n, (20) will have o 0 o Prn= Cnkn,  gn = =Pl
the same features as (13) in the region of large k, that means nd putting

(as will be seen later) that there are no divergences for k—oc.
Consequently there is no difficulty in applying perturbation theory
to (20). Any measurable quantity, however, must be independent
of the arbitrary numbers &,, so that one can put afterwards
9, = 0 for all n, without introducing any divergence.

A safe, but cumbersome, way to deal with (13) is to use its,
transform (20). Instead we may use (13) directly, because in the!
final result the divergences for k— 0 will cancel. In intermedia :'
stages any divergent term may be cut off temporarily at some
low value of k. ‘

Even with the choice @, = 1 for all n the results are stll
finite, owing to the factor cos 7, in the last term of (20). This
choice might seem profitable because of the resemblance of the
resulting Hamiltonian with the customary one. However, it
easily seen that then m’ = m/2, so that half of the experimental
mass has to be furnished by the interaction; hence we would
get an unsuitable starting point for the application of perturbation
theory.

ky =10, dy=1, d, =}/2/xL, cosn,,

the Hamiltonian becomes simply

_1 2oy 1
b = 2P+ B+ 5K (Zd, 00", (21)

he subscript » takes the values 0, 1, 2, . . . and also the “value” *
at least in what is called in 14 the first procedure; in the second
rocedure, considered in 18, the anomalous oscillator denoted
y + is discarded at this point).

The Hamiltonian (21) can be transformed to principal axes
)y means of an orthogonal transformation

Oy =ZYwQy, P, = 2 Yy Py,
ith the result (see A 3)

1 s ~7
H = —Z(Pf + s Q). (22)

['he shifted frequencles wy are the roots of the characterlstlc
quation

Chapter 1I. The Harmonic Oscillator. tan Lo — aw—/L _ o (1 - K )
Kz

. 3 12 23
16. In the case of a harmonically bound electron one & K_ ¥ @3
V= l2mK2R2, and the Hamiltonian (13) reduces to a quadratic nd a new phase shift £, can be defined by

form ‘ Loy = 0y +wvr, tan{, = tan Law,. (24)

. Dan.Mat.Fys.Medd. 26,n0.15.
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It is seen from (23), (24), that { ~ 7 for w ) K; that.C is near to
nj2 for w ~ K, and { =~ 7z for  {{ K. Hence there is resonance
at the frequency K. ,

There is again one imaginary root oy & i%, analogous to.Ic
for the free electron. In the first procedure the correspondmg‘
term is discarded in the transformed Hamiltonian (22). The re-
maining part is positive definite and can be quantized. :

18. The second procedure consists of discarding the anomalous
ferms in the untransformed Hamiltonian (21) and transforming the
emaining Hamiltonian into (22). This is carried out in A 3 and, instead
of (23), the characteristic equation

@ K2 .. |
tan {(w) = tan Lo —;{1 +w2~K3—2w2K3/(w2+x3)} 27
'is now found. There is no complex root, because we. started with a
[positive definite form, so that all eigenvalues »® must be positive.

. . Again the situation may be studied, and again
17. In order to investigate the aspect of the eigensolutions,

we express the original variables in terms of P, and Q. The R —ce 2V2" RYmol L, sin 2, Q),
position of the electron is given by (see A 3) y 10w being determined by (27). The expression (26) can also be main-

ained if a term with ¢ *7/r is neglected. The situation therefore. is es-
entially the same as in 17, the only difference being that between the
xpressions (23) and (27) for the phase {(w). This difference between
he two values of ¢ is always relatively small, except in the neighbour-
ood of K. Whereas (23) is infinite for o = K, (27) gives resonance for

R = eZ'd,,Q,,m_‘% = eln_%Zﬂin,u
2

Py % Sy _ 3‘/ 4 Ko
V; N mL;, oy mV 3L, ]/(w%~K2)2+ S [x?

In general this factor is small of order e, but for w =~ K it becomes:

of order 1/e.
The external field is described by

o =K+ KK+ 2% + 0x * ~ K + K sin® n(K).

his shift of the resonance frequency is of order (K /»)* (for visible light
bout 137_6) with respect to K, which is much smaller than the natural

. I/ . _ '(25) @ line width and can therefore always be neglected.
Al = —TeX)3/L, Py St (lenr — 71n) Kt ( Consequently, this second prochure is, %0 all intents and purposes,
. " this b es (see AB) quivalent to the first one: it does not make any appreciable difference
and, with P, = XYy, P, this becom _ hether the problem is first solved rigorously and the new self-acceler-
— . —&) eP ting solution is discarded afterwards, or whether, alternatively, the
A — —fEeZ,’]/i, ;w_g— (26) 4 self-accelerating solution of the free electron is discarded before the
Lv r mr ;

inding is taken into account. In this chapter we adopt the first pro-
edure, because (23) is simpler than (27). As mentioned in 14, we shall
se the second procedure in the later chapters, because the first one
cannot be applied to an electron in a more general field of force.

P is the momentum of the electron and the term with P is jus
the proper field A°, according to (17). Hence tht.é ﬁr.st term - on
the right represents the total field; it is an electric d1p0¥e vs:‘a\.m:
with phase {,, whose dependence on the frequency Wy 18 GLVeD

by (23) and (24).

19. The investigation of the physical aspect of the solutions
an be simplified by the following two remarks.

1°. In order to get a picture of the electromagnetic field in
quantum-mechanical state, it is convenient to construct a
lassical analogue™. Let ¥ = Xc¢,{w,} ¢ '™ be a quantum-
echanical superposition of one-quantum states® {w,,} The ex-
ectation values of quadratic expressions in the P’ and Q' are

It can be understood physically that the total field .reappears i
our formula. Contrary to the free electron, the harmonically 1.)0}111
electron can only perform an oscillatory motion and no translation
Hence the total field must be of the type of a dipol-e wave, and canm
contain a part with 1/r. This essential diﬂerepce with the free elf:ctron
prevents a continuous transition if the binding tends to zero, 1. e

s 3 1 * H ! » 3 : N . _
K — 0. This paradox is caused, of course, by our dipole approx1mathn With {wy} we denote a state in which one quantum is present, with fre

uency ewsy.

2%
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(whose total ingoing energy per unit time is 7 = w?/3) gives rise
0 an oufgoing wave

easily calculated; one finds, for instance, after subtraction of the
vacuum part,

I 1 x . _ . . : - —2i iw(r—1),
PiPuy = 5 ) w; wp {cacﬂ gt | ciepe Ok @p) t}, (28) A Re Tee /r. ,
| The phase factor 6’_ZiC; is connected with the cross-section for

Now consider a classical superposition of eigenvibrations, deter- 8 scattering of a plane wave by a well-known formula2!

mined by#*
6 w*

W (w?— Kz)z / -

' o, —Eil—nsinzé‘(w)—
Py(t) = R} 20506 " = Yo, f2 (cre T ey ). (29) 20

This is identical with the expression found in the classical theory

One finds for P; (%) P,Zt () in this state the same expression (28) of electrons?2.

plus terms with frequency wz + wu. The same agreement hold
for 03Qp and PiQy + QuPj and, consequently, for any quadrati
expression in A’ and E’. Hence the physical results are the sam
in both states, provided that in the classical one the high-frequenc
phenomena are omitted (e. g. by averaging over a time which i
long compared to the period of the waves, but short compare
to the macroscopical changes in the situation).

" 92° In problems of particle scattering the wave function ha
necessarily. an infinite norm. It may be considered as referrin
to an assembly of an infinite number of particles, such that th
particle density is finite®. In the same way we shall choose a
infinite norm in order to get a finite incoming energy current
In our finite sphere this amounts to omitting in all coefficient

21. Emission will be described by a superposition of stationary
states, chosen in such a way that the field vanishes at ¢t = 0.

This is possible because the phase-shifted functions in (26) satisfy
an identical relalion (see A 6)*, viz.

X (2/Lyw}) sin &y sin (wyr— &) = 0.

If now, classically, one takes a superposition of eigenvibrations
(29), the coefficients ¢, being determined by

]/’,_Q—a),,c,, = [/3/L; wy  sin & C,

one finds, according to (26),
the factor L 2, with the result that the ingoing field is independen

of L. However, in the case of a perturbed state consisting of A = —CTex-= 3 smqu, sin (wyr —&y) cos wyt
superposition of the eigenstates in a certain energy interval, th Ly sy r

number of these eigenstates increases proportional to L, and n

as the classical analogue of the radiation field. At { = 0 both
extra power of L needs to be added. . .

) aan E(t) = — A () vanish, so that there is no radiation
resent. Hence the field appearing at later times (¢ 0) has
be interpreted as emission by the oscillator.

For the outgoing energy per unit time with frequency between
and @ + dw one finds

20. We are now in a position to investigate the physical aspe
of the solutions. Any eigensolution, with frequency w, = @ say
contains an ingoing and an outgoing wave and hence represent
a stationary scattering process. According to (26) and (29), th
incident electric dipole wave

3 C?sin? I (w) 3¢? w? dw
Ho)dw = —— Ahad =2 _ @ @° 49
. t (CO) @ 4L T dw 417, (wz_K2)2+ _ws/%zvmz * (30)
A_(f) = RTee 20T

* Whether the anomalous term is included in the sum or not is immaterial,

* 9t denotes the real part. nce it decreases exponentially as ¢ 7T,
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If L tends to infinity (with constant C), this expression vanishes. In-
deed, the field describes only one act of emission hetween t = — oo

and { = + oo, s0 that the outgoing intensity, averaged in time, must

 frequencies K; and oscillator strengths f; = »/x;.
be zero. If L is finite, owever, the emitted radiation is reflected by the 3 To each zero £2; of @ corresponds an identical relation (A 21)
sphere and after a time 2 L the initial situation is restored. Thus, our E :

' tor 4 and hence a state in which there is no radiation at ¢ = 0. At any
non-stationary state then describes a sequence of emissions, one per

_:}'.t.et there i T . ;
time interval 2 L. The emitted energy with frequency between w and Hn > 0 there Is a radiation ﬁeld? but it ‘will be seen that 1t

@+ do for each emission is equal to (30), multiplied by 2 L; for the contains all frequencies K;, so that the initial situation is one
total energy per emission one finds 3 C?/4 x. This value can be used to § in which all oscillators are excﬂed Indeed, choosing in (29)
determine C, but, for convenience, we shall put C == 1 in the following. 3

;This is the phase shift caused by a number of oscillators with

V 2 wyey = )/3/Lysin 5,/(0F — wb), (33)
The field for t > 0 can be calculated when the summation g? :
over » is replaced by an integration over w: _ fone finds from (26) the field

e v 3 Siflé',,

A(t) = —ZT(e/r g 3/mow?)sin (w)sin{or—f{(w);cos wtdw g —
() (e/ )to( / ), () { ( )} AH %r : L Q2 5 sin (wvr*g“,,) cos wyt‘
‘ @+ o C 2‘5 N (34)
3e {1"“6_21 i (r—1) 1—e! i +t)} e - . .
_ iom(r A £ dow. e Il_e‘21§' . 1*—82“: . 1
3 7 € 2 _ iw(r—1) —iw@+0l do.
Rl A @ ' @ 8ar l 27—t € +Q?‘—wze ‘ ®

In the last expression outgoing and ingoing fields appear sepa-‘ a

rately. After substituting from (23), (24) The integr atlon can again be performed in the complex plane

From (32) follows
1 — ex2i(® :F2i w
> x w2 —K2Fiw?/x’

1—e*2  F2ie/x @
27 —w? 1 F (iw/») Q2 —o?

one can carry out the integration in the complex plane. The poles
» &~ + 1% give contributions e=*" and must be neglected. The two.
other poles are (omitting higher orders of 1/x) K 4 iK?*/2x and
—K + iK?/2%. One thus finds that the ingoing field is zero, of
course, and so is the outgoing field for r > t. For r < f the latter
is, omitting terms of relative .order e?,

nd the only singularities are the zeros of 1 F ({w/x)®. Those
| With @ = -+ 7% must be neglected and the others are K; 4 {K; f]/2 %
and — K; + 1K; f,/2 %®. »Thus one finds an outgomg ﬂeld for
< t, viz.

. o ' A = z g K;(r— —
A, =T (3 e/2 xr) cos K (r — t) exp (K¥2 %) (r — ). (31) ® 92~ K2 cos K; (r — 1) exp (K fi[2 ) (r — O).
This is the well-known expression for a damped wave with

This field corresponds to simultaneous emission by all the oscil-
frequency K and half-value breadth K%/x = 2 e2K?*/3 m.

ators. :

In order to describe emission by only one of the oscillators,
(one has to choose a suitable linear combination of these states.
. For this purpose we use the theory of A1 and substitute s = w?
and F(s) = (15((») The poles ¢, of F(s) are now K and the resi-
dues are o} = K; if;- The roots of the equation F(s) = 0 are
0} and the normahzatlon constants are

22. It is useful to consider a more general formula for th
phase shift, viz.

< 3 /s. 2F :
) = O et @ NI 00 @y
Z_ i w K]. w K]. »

H
]
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14 ’ 1 " 9 ”
B = Pj2m+ V (R) +5Z (02 + ke

so that (A 5) becomes _
ﬁ? — 6111'
ZI Q=KD (Q]—K  KEf'

Now let the states given by (33) be added, each being multiplie
by B7/(2; —K3). In other words, we consider a new state given
by new coefficients ¢, determined by

Following the program outlined in 14, the anomalous term is
omitted in the sum, so that n takes the values 1, 2, ---. This
Hamiltonian $° describes a motion of R’ as if there were no
coupling, whereas the electron at R fluctuates around R’ in the
same way as the unbound electron. The higher terms in e describe
the effect of the binding force on the fluctuation. Since for high-
“frequency vibrations this effect will be small, the convergence
may be expected to be better than in the usual treatment, where
- the whole interaction with the transverse electromagnetic field is
- treated as a perturbation.

V2 wycy = [/3/Lysin &y Zy p7 /(2] — Kp) (9 — 3).
Then the field follows from (26) and (29):

A(t) = T (3 €2 xr) cos Ky (r — 1) exp (Knfu/2 ) (r — ). (85

%4. Each of the field quanta corresponds not only to a certain
oscillation of the field, but contains a vibratory motion of the
electron as well*, They are labelled by n and their polarization
v(v = x, y, z for the three components of ¢, and p,,). Instead of
the pair n,v we shall often use n. Creation and annihilation
operators are introduced by

This is exactly the field (31) of an oscillator with frequency K,
whose probability for emission is reduced by a factor f;.

It should be emphasized that these results follow from the equation
(32) for the phase shift, and that it is immaterial whether this phase
shift is caused by oscillators or by any other scattering centre. In fac
in this section we have derived the existence and properties of decayin
excited states from the behaviour of the S-matrix, in our case defined b y — » R —
. ‘ Py = an/2 (anu + a;rw)’ Qo = 1 (anv - aIw)/V 2 kn'

S(w) = —e—21l(w) = titanl

1+itan¢

The connection with the usual treatment? follows from the remark
that the poles which contribute to (34) are the zeros of 1 + (iw/%)®
== 14 i{tan ¢, and hence also the poles of S(w).

The Hamiltonian (13) then becomes, to the second order,**

b= P22m+ V(R + Tk, aly any + 2 Ty (O + aly)d,V

It is noteworthy that tan ¢, rather than the multiple valued fun 1 " t (36)
tion { itself, describes the properties of the scattering centre in a simp + §Z TnTo (G + @) (G + Giy) 8,04V, »
way?2s,

where ‘
| e (= 09) (37)
. - . ~ - o 1. 7 COS Y% = e).
Chapter III. Arbitrary Binding Force. " my 3k,L, in

23. In this chapter the Hamiltonian (13) is employed
compute the scattering of light by an electron in a gener
field of force with potential V(R). As V is no longer a quadrati
function in R, the Schrédinger equation cannot be solved by
linear canonical transformation of the variables, and perturb
tion theory becomes necessary. Accordingly, the term V in (1.
must be expanded in powers of e and the zero-order Hamiltonian

Let Ey be the eigenvalues of the operator P'2/2m + V (R").
The eigenfunctions will be labelled by N and an additional sub-
seript g to cover the case of degeneracy. Writing N for N,u we
shall denote the eigenfunctions by ¢n(R"). The eigenstates of the
peratorZIcnaLaL will be denoted by { }, {n} {n, n'} = {n',n},- -,

* This is the reason why we prefer not to call them photons.
** J» denotes derivation in the direction v.




(Exy—W)ex + <ND'N'> e + i—(Nn’n"N’) R ;— (ND'I'NDeyy = 0 (38

(En

(Ey — W + ky + k) 6™ + (NN ¢ + (NmN’> ¢y +

26 Nr.15 2§ Nr.15 27
. The first term represents the zero-point energy of the harmonic oscil-
lator, and the second term is an additional fluctuation energy. It has
the same form as the Lamb-Retherford shift, but in this particular
tase it does not give rise to a frequency shift, because it is the same for
all levels. In the present case of a non-harmonically bound electron, an
analogous term must result from the perturbation calculation; as it is
no longer the same for all levels, a frequency shift does arise.

It should also be noted that in the right-hand side of (36) a term
occurs with am)azu. Here the operatars cannot be reordered with the
creation operators on the left, because this would amount to discarding
a term in the Hamiltonian which is not a constant. In fact, this term
will turn out in 89 to be essential for the cancellation of the infra-red
divergence.

according as there are 0, 1, 2, - -+ quanta present. A state vector
¥ of the whole system can be expanded as follows:

¥ = %cthN{}+NchN¢N{n}+(1/2z)NZ,cgp’ on{nn’y e,

with A — %P, etc.?S Finally, for the matrix elements of V.
we use the abbreviations

7, (N|8,V| N> = (NnwN’y = (NnN)> (= Oe),
TnTw N | 8,0, V| N> = (Nnn'N") (= Oe?).
Then the Schriodinger equation ( — W) ¥ = 0 takes the form*

25. In the same wdy as in ch. II we shall describe the scat-
tering process by means of a stationary scattering state. For this
purpose an eigenfunction ¥ will be constructed, satisfying the
boundary condition that the ingoing field at large distance shall
consist of a monochromatic wave with given frequency w and
given polarization w. The outgoing field then consists of waves
with frequenciés w, w;, Wy, ~++, describing the Rayleigh scat-
tering and the various Raman linés. '

This method of stationary scattering states has the physical
advantage that it is a direct translation of the customary classical
treatment. Mathematically it is simpler than the time-dependent
method, because the latter is unduly complicated by irrelévant
terms arising from the initial conditions for the intermediate
states?®. Moreover, it deseribes the time-dependence in greater
etail than required for the actual experiments (cf. 50). On the
‘other harid, the.interpretation of a stationary scattering state is
ather subtle. It should be emphasized in particular that it must
ot be visualized as a steady stream of photons, scattered by one
tom, but as an assembly of identical systems, each containing
ne scattering center and one incoming photon?°.

In the theory of particle collisions, the eigenfunction ¥ is
‘constructed by starting fromi an unperturbed wave function ¥°
»which has the Tequired ingoing waves. In order to satisfy the
erturbed Schridinger equation one adds a perturbation term ¥’
ontaining outgoing waves only. This means that the k-represen-
ative of this term must have a factor

W+ k) ey + (NnN"> ¢y + (N0'N"> ¢+ (Non'N"> ¢, +

- 38
+ 15 (Nn'n'N"> o + ;— (Nn'n’'N’y ™ — ¢ @

1 y oy
+ NonmN'> e + {N0'ND> o™ + 5 Nn'n"'N" e +

. ’ . 1
+ (Non'N'> g™ + Nmn'N") e + 3 (Nn'n'N"> ¢t = 0.

It should be noted that an infinite constant (3/2) £k, has been ;
dropped in (36). This is the zero-point energy of the shifted oscillators:
and differs from the usually subtracted term (3/2) v, by an infinite
amount (cf. ref. %),

(3/2) Z (ky —wn) = (3/2 L) Ty = (3/2 z) { (k) dk,

which represents the non-relativistic fluctuation energy of the free elec-
tron. In the usual treatment this infinite energy shift has to be furnished *
by the perturbation calculation and causes divergence. In the exac
treatment of the harmonic oscillator in ch. I1 the subtracted zero-point
energy (3/2) Z wy differs from that for the free electron by a finite -
amount ’

(3/2) Z (wn —kn) = (3/2 m) §{& () — n(k)} dk } ('3

9
— 3 K/2 + (3 K?/2 nix) log (x/K).

* Summation over all primed letters is implied. Similarly in the following,
summation over primed letters is not indicated explicitly, when no confusio
can arise. :

270, (k — 0) = (k— o)y + imd (k— @). (40)
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This method, however, will not be suitable when the scattering » ;
is very large, for instance when o is in resonance with an absorp- " approximation represents a state with the electron in the ground

tion frequency of the atom. To cover the case of resonance as well, Y state N =0 (which for simplicity we suppose to be non-degen-

we shall here use a different line of approach, which can be out- § erate), and with one quantum present of frequency w and polanza«
lined as follows.

4 tion w. Accordingly we put
Since the above mentioned unperturbed wave function contains
a factor ¢ (k — w), the total wave function is of the form

R6. We try to find a solution of (38) whose zeroth order

¥ =Xc g{n}+ 0e, W= E;+ o | Oe. (42)

It may also be expected that cf is of the first (or higher) order
.in e, except for those n for which v = w, k, ~ ®. In this chapter,
| we shall show that this ‘‘Ansatz” leads indeed to a solution, if
’the energy is too small for excitation

V=L ¥ = C{k—w) "+ 16 (k— o). (41)

(In general C and 4 will be functions of the direction in space,
but in our dipole approximation they only depend on the polariza-
tion of the incoming radiation.) Our method consists of finding
a stationary solution of the Schrédinger equation which has this
form (41). The total energy W can then be considered as a pre-
scribed quantity, determined by the given incoming frequency o.
The parameter A, however, has to be found from a characteristic
equation. The coefficients ¢ in (38) can then easily be computed.
It turns out that 1 is directly connected with the phase difference
between the ingoing and outgoing waves, and hence with the
physical quantities we are interested in. In the same way as in
ch.Il, it will be convenient sometimes o choose the normalization
constant C such that ¥ corresponds to a given ingoing energy
current.

On solving the Schrédinger equation other singular terms will
appear, of the type (k — w,) ™!, (k— wy) %, . . ., where o, w,, -
are frequencies lower than w. They represent Raman lines, and,
in order to obtain a state in which there is no ingoing radiation
with these frequencies, they have to be supplemented with terms’
70 (k — o;), ind (k— wy), ..., similar to (40).

The dé-functions, of course, refer to continuous variables. It
is shown in A 7 that our procedure follows directly from the'
discontinuous treatment, when the enclosing sphere goes to in-
finity. Discrete spectra in connection with stationary eigenfun
tions have been used in similar problems by Rice?” and more,
recently by Hamilton?. They constitute a reliable basis, but th
actual calculations are much simplified by the use of é-function
Nevertheless, we shall sometimes for convenience m writing use
discrete spectra.

E,<W<E, or o<E —E, =Ky (43)

“and outside the level width (which may be expected, from the
particular case in 21, to be of order Kiy/x)

Kig— o ) Kiof. (44)
One then finds to the first order from (38a) and (38c)

{Nn'0> & om _ _ ANn0) g4 (Nm0) c§

NTTE,—wo N Ey—WHk, +k, ° (45)

all other coefficients being of higher order. Substituting this in
(38 b) and ormttmg orders higher than the second, one gets

5 {NnN'y {N'n’ 0> (Nn'N’> (N'n 0>
W—ch) N_{ —W Ey— Wk |k,

<NnN><”'0> 1 PN S
_I_{EN’ Wk Tk, 2<Nnn O>}c0

— {Nnn' O)} &
(46)

This shows that all ¢ are Oe?, except perhaps when E, —E -k,
is small. Owing to (43) and (44) this can only occur if N = 0,
kb, ~ w, and in that case (46) becomes :

-}

<O nN’ ><N'n’w 0 OrwN>NnO
G = W Ey—Wi2o

—<{0n'n' 0> } Pk . (47)

because in the sum over n’ only terms with k, ~ o are of order
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. Moreover, only the coefficients ¢f” referring to the polariz
tlon of the incoming radiation are retained, since the other coe
ficients are Oe?. The second term in (46) has been omltted

where C is an arbitrary constant and the eigenvalue A is determined
by the -equation

1 T(k) '
would yield a contribution ‘ O (w) = d]" +Ar(w)?, (52)
: 0
| <O II’N/> I2 1 ot 1 . .
{E_N' Bk, 20nmo . obtained by substituting (51) in (50).

In the integral the principal value has to be taken at k =

It is, however, of order e? and is negligible compared to the left-
hand side, which is of order 1. It does not matter that the integral
is logarithmically divergent at k = 0, because other terms of the
same order have already been neglected and from 15 we know
that they will cancel the divergence (see 39). The solution for 1
can- then be written with the aid of a new quantity &

which can be absorbed in the term with E; on the left. Thus it

would give rise to a shift of order e® in the atomic energy levels,

analogous to the last term in (39). Outside the resonance region,

however, it is a term of relative order e? and may be neglected
Taking v = w in (47) one gets the equation

(y— ) ¥ = 1,0(w) S, &, (48 |
A=—mcoté, tané = — ar(w)?0(w). (53)

Clearly & = Qe?, 4 — Oe™ %, and C will be of order e.

At this point the problem.of determining ¥ has been solved
in principle. For a given @ one can find A from (53) and then
¢(k) from (51). All other coefficients then follow in successive
approximations, the first step being written explicitly in (45).
By means of the conditions (43) and (44) it can easily be verified
that they are small of the order anticipated in (42).

where (see App. O)*
[<OL8,VINDE , €018, VINP
EN,—E —w Ey—E,to

" Ko [0 P NO[F
KNO w®

O(w) =

—<0|d5V]0>

(49):
= 20°

27. (48) is a set of homogeneous equations for the unknown
¢g”, which has the form (A1) except for the factor @ depending
on the eigenvalue . It can be treated in the same way, but it is
convenient to perform now the transition to the limit L — o0 in
order to use the formalism for continuous spectra. Introducing

continuous functions 7(k) and c(k) by

Ln T2 La o
T(ky) = l/%r I/ ——c08 7y, c(ky) = ;co s

: It might seem from (38) that cy’ for v=2w can also become large
- when k, ~v . These coefficients correspond to scattering with the in-
coming frequency but different polarization, which can be treated in
the same way as the Raman scattering (see 35). In the next chapter it

will be shown that our solution is not invalidated by such singularities
in the coefficients.

28. In order to investigate the physical aspect of the stationary
state, it is again (cf. 19) convenient to construct a classical ana-

one can write for (48) : logue. Let a classical field be defined by*
(k — ) c(k) = v(k)O(w) Sor(k')c(k’)dk’. (50) % W) = T(e”/r) T}/ 3/2 Lok, sin (kpr — 7). 1{ci e @l — "'l (54)
. . . . .. { then it can easily be checked by direct calculation that the time
i s 1 t h t i . . . R
Now, as is shown in A 7, the solution of this equation is ~q average of A(#)? is equal to the expectation value of the operator
(k) = 'r(k){(k‘#co)_l+l(3(1c——w)}C, (51) A'Z in the state ¥, = Z’ncg”’{n,w}, provided the vacuum ex-

. . . . . 3 * w > = Y » s i
* P is the component of the momentum in the direction w. e is a unit vector in the direction w




=Z(e’/r)(2e/mw)cosn(w) lcos{wr—n(w)}—coté sin{wr—n(w)}] Csinwt:
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pectation value is subtracted. Owing to the singularity of ¢f* at
k, = w, (54) satisfies the wave equation for large r; consequently,.
E(#) need not be introduced separately, but can be replaced by:

Since both 7 (the phase shift of the free electron) and & (the shift
itaused by the binding) are of the order e?, the total phase shift
= £ + 7 becomes, omitting terms Qe?,

tanf, = — ) 2fNOT. (57
o N w %KNO

' The subscript w has been added to remind that this is the shift for
{he radiation with polarization in the direction w. For a central field
N0 = %o = Fio» 50 that the phase shift is independent
of the polarization. In that case (57) is identical to the expression (32)
or the phase shift caused by a set of independent oscillators. By using
nisotropic oscillaters, one can also construct a model with the more
eneral phase shift (57). Hence, in this respect the atom in the ground
tate can be represented by a set of oscillators; but (57) is only approx-
mate (see ch. IV), whereas (32) is true to all orders of e.

—_A(f). The expectation value of any quadratic expression in A"

and A’ is equal to the time average of the same quantity for the:
classical field (54). The non-singular terms in ¥ do not give any:
radiation at large distance, nor does the proper field A°. Thus
A(f) may be used to find the ingoing and outgoing radiation.

In order to compute the field, we write (54) as an integral
and substitute (51)

At = T (°fr) [/3/2 ak sin {kr — 5(k)} c(k)dk. 2 sin ot

sin (wr—n—2£&)

Csinwt.
sin &

" :
T ?1—-31_21008 7n{w) - 30. It is convenient to define the region of resonance for each
atomic frequency Ky as those values of w, for which in the
sum (57) the term with Ky, predominates, so that the terms with
lifferent K may be neglected. In general it is sufficient that
vw——KNOI« Kyo, but if the line is very weak, or very near to
mother line, the resonance region may be narrower.

The natural line width is the region where tan ¢ is not small,
i.e. where o — Ky o~ Kxo/#. Outside the line width the omission
of the principal-value integral in (52) is justified. For visible
ht the line width is of the order 137 2Ky,; this is in general
much narrower than the resonance region®®. Hence it is always
ssible to apply either the simplification for the resonance region,
the simplification for outside the line width, exceptif the distance
tween two lines is comparable to their widths.

Now (57) has been derived under the restriction (44), that
eans outside the line width. In this approximation there is no
reason to write tan £ rather than ¢ or sin . In ch. V, however,
e region of resonance will be studied, with the result that owing
g0 the choice tan {, (57) also holds inside the line width (apart
@ rom a small frequency shift). It is noteworthy that our derivation
ould yield -a more precise formula than is warranted by the
Iculation.

Granted this validity of (57) inside the line width, it is possible

derive the formulae for emission from this expression for the
Dan. Mat, Fys. Medd, 26, no. 15. 3

An elementary calculation now gives for the total incoming energy
per unit time I the value o

I = (2 =m)~* {cos n(w)/sin £}* C2,
and the normalization constant can be expressed in [: |
C = {sin &/cos n(w)} 1/5;1?1 (56)
The field now becomes
A(D) = — V12 1% (¢®)or) sin (wr — 7 — &) sin ot

and & appears as a new phase shift to be added to the phase shift
7 of the free electron. :

29. For this phase shift & follows from (53) and (49) the value

w K?vof%o

t = — cos? n(w),
an & x5 o' —Kxo (

where the oscillator strehgth f%o has been introduced by??

1 pLU
KOIPL NP = GmBno for 2 fi0 = os 2 TR0 = 1.
12
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phase shift, as has been shown in 22. The probability per unit
time of transition from the state N to the ground state 0, unde
emission of radiation with polarization w, was there (eq. (35)
found to be KXo fuo/#, in agreement with the usual result®.

EM<W<EM+1 or KM0<w<KM+1,O

gand we shall use the subscript L for the states that can be excited
A (L =1,2,..., M). The region of the line width is still excluded:
. 2 -
31. The influence of the presence of the atom on the field ca 0 —Epo0) Kypol#s  Kapp1,0— 00> K10/ (59)
be described by a polarizability tensor ", expressing the electri

] . : In this s > _ i
moment M of the atom in terms of the incoming field strength B is case, some of the energy factors on the left-hand side of

(38) may vanish and the solution found in ch. III seems to break
down. It will be shown, however, that the order of magnitude of
the coefficients is not altered by this singularity, so that actually
the solution is not invalidated.

First take the expression (45) for ™. As only the first order
is required, and ¢f = Oe” except if k, ~ ®, it may be replaced by

.M',) = aquw.
ww

The diagonal elements «”” are related to the phase shifts -, ac
cording to (B 12). Thus we find outside the line width

P

m N KNO_w

1nm L O m 0
e, =— Ln @ ot — (Lm0 g+ O™

in agreement with the Kramers-Heisenberg formula®'. The phas
shift is also connected with a cross-section for coherent scatterin
(with the same polarization), viz.

8met J X7 fao z
= w o | .
MRy 24 o®— K3,

ow

‘Hence the vanishing denominators do not occur in the first order
4 expression of ¢/, which has been used in deriving (57). Therefore
g the formulae of the preceding chapter can be maintained, provided
| that it is shown that the higher order terms may still be considered
fo be small. That this is indeed justified, in spite of such vanishing
- denominators, is due to the fact that wherever these dengminators
ccur in the Schrédinger equation (38), one has to sum over k,.
he resulting sum will turn out to be of the same order as it was
upposed to be. in ch. III.

Take, for example, the expression (46) for . As we are

For the non-diagonal elements «”” the coefficients ¢;” fo
v # 0 have lo be solved from (47). This will be done in the ne
chapter, because the calculation is the same as for the Rama
radiation. For a central potential field V they are, of course, zer
Otherwise some of the energy of the ingoing radiation is lost | ) . _
radiation with different polarization. This energy loss can be d terested in j[he beha\{ml.lr for .those Yalues of k, for which
scribed by an “‘absorption’ cross-section o,, which, according to | L — W + k, is small, it is possible to insert in the right-hand
App- B, is associated with an imaginary term in the phase shi § member the value k, = W-—E; = ;. Omitting terms Oe* one
This term, however, will turn out to be of higher order (see 35 Pgets : )
(kn - wL) Cg” = Tn vL"f) T Cg Y,

there (App. C)

i

Chapter IV. The Raman Effect. L5, VN (N[0, V[0> (L6, V|N><N 18, V[0>

» —E —<L|8,6,V|0>
32. We shall now consider the case where the frequency Ey—Ey—o — Byt : v (60
the incident light is higher than one or more of the absorptio (L|P,| NN’ [Pw]0> <L|P [N >{N'| P, |0>
frequencies of the atom. Thus we suppose, instead of (43), “L Kypy— o Lt

3%
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Going to the limit of a continuous spectrum and substituting (51),

that '(63) can be extrapolated to the region of a line width (w0 &~ Kpz¢
one finds

say), because 677 cos & remains finite, One would thus find for the in-
tensity of the Raman lines in resonance

(k— o) (k) = (k)01 t(0)*AC.

Hence ¢, (k) has a singularity for k = oy, wh.icp 'will give ris oo K3 forn it &
to a radiation field that extends to infinity. On dividing by k—wo L= K210 oo .

a term i7d (k — o) must be added in order to get only outgoin _
radiation: ' Here farr, is the total oscillator strength for the transition from the level

Ey to the state L for the polarization v:
(k) = — 1 (k)@Y {(k—wr )+ ind (k—wp)} /2 IJx mw® cos £

(with the use of (56) and (37)).
It is now clear that in any summation over k, such as occu
in (38), ¢, (k) can be considered as a quantity of order e* (or

b = mEam) STCL| Py Mu) 2.
I3

‘ln 42 it will be shown that this expression for_Ii in resonance is nearly
wrrect. On substituting for 1. the value M, it gives I3 = 0, so that this
factor e from (k) and one from %—%)’ in spite of the singularity. § aman line disappears without discontinuity when e drops below Kazg.
The same holds for the other higher order coefficients: each tim
a denominator vanishes it gives rise to a radiation fleld; as in
going radiation of any frequency other than o is precluded b
the boundary condition, the singular term must be supplemente:
by an imd-term, and the order of magnitude after integration ov
k is not increased. But if there were also ingoing radiation of t
same frequency, then instead of iz an arbitrary parameter wou
appear, which might take large values.

In order to compare (63) with well-known results, a connec-
ion has to be established between the energy flow J of a plane
wave and the ingoing energy per unit time in its dipole component.
According to App. B this relation is I = (37/2 ?) J. Hence, the
nergy in the Raman line with polarizarion v is found to be

bz e\ (oL’
3 \m/ | w

his is the radiated energy for a given final state L.. The total
nergy with frequency wy, is obtained by summing over the dif-

rent states with the same energy E; and over the polarization v.

he result agrees with the usual expression®?, apart from the
actor cos? .

2
Jcos?é&.

i

Z{<L|PU|N><Nle|0>+<Lle[N><N|P,,|0>]

N Ey,—w KNL"“?

33. The radiation field belonging to the frequency oy m
again be represented by a classical field, which can be fou
from (54) by replacing ¢§” by ¢r’ and o by wp:*

Ar(t) = —2(eir) {)/3/2 mhesin (kr—m) S & (k) e 1 dk ]

— . . (6
Pe” 2 . vw Iy (—H—in(wy) | .

= wm oy, V?)I cos £3@pe it J 34. The question may be asked how this energy loss is taken
nto account in the Rayleigh radiation. It is true that, owing to
he phase shift {, the intensity in the forward direction is de-
reased, but the corresponding amount of energy is found in the
cattered Rayleigh light. However, in the next section we shall
show that each Raman line gives rise to an imaginary term in £.
Such an imaginargr phase shift causes a decrease in the intensity
1 the forward direction without a corresponding increase in the
Rayleigh scattering, and is therefore connected with an ‘“‘absorp-
ion’’ cross-section o,. This imaginary term in ¢ will turn out to

This shows explicitly that there is no ingoing radiation. For t
total outgoing energy per unit time one finds by an elementary
calculation '

IP = 4 (xmw) ?| OV |2 Icos? £(w). (6

This formula has been derived only outside the line width and
that case cos? £ is indistinguishable from 1. It is interesting, however

* & denotes the imaginary part (without the factor i).
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be of the order e¢* and has therefore consistently been neglected
in the foregoing. The absorption cross-section o, is linear in this
term and consequently also of the order e*. On the other hand, the
real part of { has been found to be of the order e%, but as the
scattering cross-section oy is quadratic in this term, it is also ‘of the
order e*. Thus the energy decrease due to Raman scattering is of
the same order of magnitude as that due to Rayleigh scattering:

Of an incoming plane wave with energy flow J the energy
a.J is lost in Rayleigh scattering. The energy o,J is lost due to
Raman scattering, but only part of it is found in the radiation,
the remaining part being used to excite the atom. If ¢, is thé
cross-section for the Raman line w;, then clearly

The corresponding cross-section for one ﬁnal state L is (App. B)
. 375 _4{:” 8.’/’5 e 2
szL_«zwz(l_e ) 30) ( ) |@ I (66)

lomparison with (63) shews that indeed (64) holds.

The scattered radiation with the original frequency w but with
fferent polarization can be treated on equal footing with the
aman radiation. Its intensity is given by (63) when L = 0,
v w. It also contributes to ¢,. The radiation with the original
£:frequen(_:y and the original polarization, however, contributes to
e real part of £ and hence to o,.

: It is noteworthy that the damping by the‘Raman radiation is re-

.fresented by imaginary terms added to @, and not by damping terms
Iy = 0. J (wgfw) or  Ipfop = op/fw. (64? in the denominators of @. This is due to the fact that irhe RaI;nai effect
[loes not damp the excited states of the atom, but only the state with
the primary radiation. (Actually there are terms in the Schrédinger
uation (38) connecting the ¢y with the cN other than ¢, but they are
higher order and have been neglected in (45).) In case of resonance,
owever, both damping effects cannot be separated and we shall find
n imaginary energy shift caused by the Raman effect.

This equation can also be interpreted as the conservation of the
number of photons. We shall now check that it is indeed satisfi

3b. For this purpose we calculate the higher order correction
in (57) due to the imaginary term in (61), but still omit real ter :
of higher order. Repeating the calculation in 26 one finds new

(. . 36. F lete descripti f th ituati the high
terms in (46), which result in an additional term in (47), viz or a complete gescrplion o ¢ stuation the higher

oefﬁclents, describing the probability of finding more than one

OnNYN'n'L>  {0n'N>{N'nL"> ., . iradiation quantum, must also be computed. We shall here briefly
: —<{0nn"L"> ¥, m
Ey—W Ey—W+k +k, 8 ‘consider the two-quantum coefficients ™. They consist of a
eries in odd powers of ¢, and the first-power terms were shown
On substituting from (61) this becomes n 32 to be free from singularities. The singularities in the third-
R Wy ower terms describe the radiation field after the atom, left in
Tn O T2 O 170 (ky— ) Tpcl ¥ = int, t(wp)? Q5L OLS v (k)¢ :

n excited state by Raman scattering, has emitted a subsequent
uantum. Accordingly, it may be expected that they will furnish
he breadth of the Raman lines, due to the broadening of the
nal level by the possibility of emission.

Instead of doing the complete calculation we shall retam onlv
he most important terms, namely those connectmg g™ with ¢},
'hey can be visualized as the emission of a quantum by the atom
n the state L., whereas the other terms are just mathematical
details. One thus obtains, just as in (45),

& () = —{z (k) 0| 3,V| L% el (&) +
()0 ]0, VL o, (1)} {Ck + K — o)1 4 ind (k + k' — o).

With this addition (50) becomes
(k—w)c(k) = v(k) O (w) {t(kyc(k)dk' + inv (k)7 (wy)?| O8L [P v (X
Solving as before by means of the “Ansatz’” (51) one finds

. o |2 1 tan &
o +””(C°L')2‘@0LT T Ta(ey T ar(w)?

(summed over L’ and v’).

Writing & = &' —1i£" one finds for the imaginary part

(67)

& = nv(w)it(wg) |@OL,| )
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Again an ind-term has been added in order to obtain outgoingb'
radiation only®, Inserting this in the equation (38 b) for ¢y one
finds the following additional terms in the right-hand member
of (46)

By inserting this into (67) one obtains the probability of
~finding two quanta with frequencies k and k'. It is seen from the
resulting expression that one of the quanta has a frequency in a
- neighbourhood of the order I'{ around w;, and that the frequency
of the other is such that the sum of both is exactly . By taking
into account still higher coefficients, one can find in the same

way situations with more than two quanta; it then turns out that
- all but one of the frequencies have certain probability distribu-
tions around atomic frequencies, while the sum of all is exactly
equal to the incoming frequency.

(k) (N |8, V|05 <0 |8,V L §o (k) e, (k) {(k 4 & — )™t +
4 ind (k4 k' —w))dk +
+ (N[0, V] 00| 8, VILY o (B S (k) {(k + k' — @) " +

(68)_.
+ ind (k+ K —w)} di'. 1

As we are only interested in imaginary terms of order e%, we may’
write for the second term

i (N|TV]0> 0| VV|LD 2(w—k)2 ], (k)

(summed over 0 < L'< M).

Chapter V. Resonance.

37. In the region of the line width, (44) and (59) no longer
hold - and @ can become very large. In that case the principal-
value integral in (52) is no longer small compared to 1/@ and
cannot be neglected. Thus we are faced with the divergence of
this integral for small values of k, and according to 15 we have
: . 74 to look for other terms which cancel this divergence.
(k—op,—iT7)d, (k). (69) On the other hand, if only the region of regsonance is con-
idered, it is possible to neglect in @ all terms referring to other
catomic frequencies, so that one may write (for w ~~ Kp;p)

It is found that the non-diagonal elements (N = L) give rise to
real terms Oe* in the solution and hence may be neglected. The
diagonal elements can be brought to the left-hand side of (46)
vielding (for N = L, L < M)

where I'? = a7 (K )2 $ <L ] VV| 0> {2 is the well-known expression
for the transition probability from the state L to the ground state 0
From (69) it is clear that ¢f (k) is no longer a smgular func’uon,,

, K3 K 2
but that one has to put @(w) = mw® mo faro mEro farol

.= : (70)

IMO—CO KMO—CU

1o} . _ —
(k) = () (k— oy — i)™ his is the usual approximation for resonance (cf. 30); we have

 to resort to it in 38, but it will be possible afterwards to correct
the result.

To avoid irrelevant complications, we suppose all levels to be
3 non-degenerate and consider only one direction of polarization.
i More precisely, we assume

where 31 (%) is slowly varying for k in the neighbourhood of wg.:
Hence the first term in (68) vanishes, because

(O oo — i T8 (4 & — ) 4 i (k + K — o)) d’ =

Since I'? is small, the sum {7(k)c} (k)dk remains the same
before. Consequently one finds now instead of (61) the solutio V(R) = V(R + V,(R) + V.(R) (71)
with the result that the Hamiltonian (36) is separable. In the
same way as for the harmonic oscillator we only consider one
of the three parts, omitting superfluous indexes. The same Schré-

& (k) = — (k) O (k— o, —i T )/2 [/xma?cos &,

which shows indeed that the Raman radiation has a width I’
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dinger equation- (38) holds, but instead of N,n may now be
written N, n. :

Thus we suppose that the incoming frequency is near to the:
atomic frequency Kpr, namely

2°, Thé terms with B, can also be neglected for N3=N',
‘but the effect of BY cannot be seen so easily. Provisionally we
omit that term too, and it will be shown in 43 that this amounts
to the approximation (70) for the resonance region.

| 3°. To the first order, ALY = —<(NnM}; and the higher orders
-(viz. Oe®) may be neglected. (It can be checked that this is also
true for N = M, although in that case the first-order term van-
: ishes.) :

. With these simplifications, arid writing

w — Kpo~ Ko/, or W — Ep~ Kipolx.

If again ¢ is asswmed to be of the order 1 for k, ~ w it now fol-
lows from (38 a) that ¢y, may be large. A closer inspection of the
example of the harmonic oscillator suggests c3; = Oe ! and then
follows from (38 b) ¢}, = 01 (except perhaps for N = M). We
further put ¢ = Oe for N # M and also c?vm = QOe, and proceed:
to construct a solution satisfying these assumptions.

Ex—CSY = Ey+dy = Ey,

-equations (73) and (72) become

38. Instead of (45) one now finds from (38 a) and (38 ¢), to (En—W 4+ k) en(k) = —v(k)<N| 8V|M> Cp (75a)
the first order, 1
~NT T E, W T3 g, W '

(NnN’)c 4 (NmN' ¢+ (NamM> ¢, 39. Solving (754a) for cy(k) one obtains

‘N Ey—WHk, |k, o = — (k) (N|OV| M) (Exy—W + 1) ey (N> M) (76 2)
(Epy— W) ey = — Mn/N'"> cﬁ——%(]&[ﬂ’n’M) Car - (72) — () <L]aV|a {(ELWWJr kY™ imd (B — W + k) ea (76 1)
‘ (M>L>0)

Inserting the first two expressions into (38 b) one gets an equation;
for ¢ of the form

(En— Wk ey = Al ey + BYG o 4 CO ¢ (78)

) = — 7(k)<0| aV|M> {(Eg— W+ B + 20 (Eg—W+ k)}ey.  (76¢)

After substituting this in (75b) the common factor ¢y, can be
cancelled and we are left with a characteristic equation for A:

(73) and (72) together are a set of homogeneous linear equatio
with eigenvalue parameter W. They can be simplified in several
respects.

1°. Since C{y = Oe? the non-diagonal elements (N 3 N')
may be neglected, because they would give rise to terms Qe* in
the solution. The diagonal terms (with C{) may also be neglected:
in the presence of the term with Exy — W -+ k,, except when the

(k) dk
En—W+ k v (77)

0

[]
EM—W—|—%<Mn’n’M> — |<M|ov|N|? S

+iw|<M|OV|L) P r(op)? + 4| <M|8V] 032 T (@)?

(summatjon over all N’ and over 0 < L’ < M).

In order to compare this with (52) we simplify the latter by

lJatter is small. Hence the value k, = W — Ey = w, may be used ‘using (70), and write it in the form
-in the expression for ca, yielding : :
@y _ |[NONDPE 1 —W) = |<a|ovioy | ﬂﬁlk_+z[<M|aV|o>121(w)2. (78)
Oy =5 5 T g (NRR'Ny=—dy. M E,—W+k
NTENT Sy 2 0
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1°. Whereas (78) contains one integral, (77) contains an
integral for each level Ey. For each singularity in these integrals
a term with iz is added, except for the singularity in the integral
with N = 0, as that is already accounted for by the term with 4.
All these terms with N == 0 do not occur in (78), because in ch. I1I
the coefficients ¢ (NN #= 0) have been neglected, since they are
small if there is no resonance.

2°. In the denominators in (77) occur the shifted energy values °
Elyinstead of the Eyin (78). The difference, however, is of the order
e? and may certainly be neglected in a principal-value integral.
(Actually it has already been neglected in the other terms by
writing w;, for W — Ez.) Also the W in the denominator may be
replaced by Ej; inside the resonance region.

3°. The new term on the left-hand side of (77)

This can be justified by relativislic considerations?®, and a cut-
off of the same order can also be found by taking into account
the recoil of the electron?®. Since both effects have been neglected
in the present treatment, it is not astonishing that our result is
wrong. On the other hand, we have not used any subtraction
preseription ad hoe, but Bethe's subtraction of the free electron
self-energy is here automatically performed by the elimination of
the proper field A®; that means that it is implied in the subtraction
of the self-action of the electron. Moreover, the convergence factor
cos®# is obtained by using in the zeroth approximation the field
quanta that are adapted to the unbound electron.

The line belween two levels Ey, and Ej suffers a frequency
shift Ap;— An. This shift was shown by Oppenheimer?® to be
¥ divergent on the usual theory. In fact, it exhibits the same diver-
gence as the shifts / themselves, since in general the divergent
l<Mn'n'ﬂ/1)> = 1<M|02V‘M>Sr(k)2dk terms do not cancel. Serpe®® showed that it is finite on Kramer’s
2 ‘ 2 theory in the special case of a harmonically bound electron.
cancels the divergence in the integrals on the right®. Indeed, the

Unfortunately his proof has no general value, because for the har-
coefficient of 1/k for small Lk is now

monic oscillator the shift is actually-zero, as was shown in ch. II. (It
- can, of course, also be deduced from Bethe’s expression.) In fact, in the
' general case he should have found a logarithmic divergence, because of
the omission of the A2%-term. It may be added that he only found the
first term in (74) and cut off the divergence at k =— 0.

|[<M|8V|N">|?

1 sorl -
:3<M]8 V| My — Fr— B

which can easily be seen to vanish (see, e. g., App. C). Both terms
together give a small shift of the level E;, which turns out to be

41. For the phase shift £ one finds from (77)
just Ay, defined in (74).

K3 2
tan £ — ‘1\/IOfMO/ * (30)
40. According to App. C one can write for Ay, W—Ey— Ay + 11y
o _ where
2 e? ‘ cos*n(k) . 9 o2 M1 S
Aa = IW%KNMKMlPlN”z KNM‘f‘)ICd]‘. (79), Iy = 3 m? LZI KMLI<M!P(L> ®cos® 7 (Kprr)
. 0 =.

This is nearly Bethe's expression for the electromagnetic shift,:
but owing to the factor cos®# it is convergent. The effect of this
factor. can roughly be represented by a cut-off at k = ». From
Bethe's work, however, it is known that the right numerical result

= ZKilL fan/2 .

This “imaginary level shift”” is caused by the damping of the
tate M due to transition to lower levels L, the ground state ex-
clnded. The transition to the ground state does not give Tise to
an imaginary damping term, because in our stationary state it is

2 -
is obtained by cutting off at the Compton frequency m = 3 %/137.
h balanced by transitions from the ground state. It does give rise,

* This is the term mentioned in the last paragraph of 24, which arises from:

- T .
the term with a, a . in (36).
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though, to a widening of the level in the same way as the width

Kirofao/2% = I'y
resulted from (57).
The imaginary term in the phase shift is again associated with
a cross-section for absorption (App. B)
6z Iyl

G, == —

o (0 —Kyo)* + (I + I'n)*’

where Ko = KMO + Ay — Ay, =W —E;— A,. In this expres-
sion the total line width

M—1

Iy = = Zo Kz fanf2
L=

M+ T
appears. Adding the cross-section for Rayleigh scattering one ob-

tains the total cross-section

6 Iy Iy
w? (0 — Kppo)® + Iy

Oy —

This is the Breit-Wigner formula. Indeed, in our case the Raman
radiation plays the same part as the y-ray emission in the case
of neutron scattering. Thus, the Breit-Wigner formula is contained
in the above expression for the phase shifi:

tan § = Iy/(0w— Kpzo + i1y

Clearly I'y; is just the sum of the residues of the integrand in (79),

multiplied by — =. Iy is obtained by omitting the residue at Kprg.

Hence the “‘complex level shift’” Ay -~— i Iy in (80) can be found from
(79) by taking the principal value at Kpjo and avoiding the other poles
by shifting the integration path into the lower half plane. If the denom-
inator in o, and o¢ is written as |W — Ep— Ay + i Iy |% the total
complex shift Ap; — iI'ar of the level Ejq appears; it can be found
from (79) by shifting the whole integration path into the lower half plane.

42. Once A is found, the solution is immediately given by
(76). cy; may be used as an arbitrary factor, and on writing

—0|aV|Myey = C,
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(76 ¢) takes the form (51). The radiation field associated with
the singularity in these coefficients can again be described by a
classical analogue (54), which instead of (55) now becomes*

AH) —Ee 2e  sin(wr—n—§&) Coiot
mo sin & .

From this follows for the ingoing energy per unit time
I=(2xm) !sine[~228|CP.

From (76 b) one finds the coefficients ¢, (k), which determine
the Raman radiation. The outgoing radiation with frequency o,
can be described by a classical field (comp. (62))

e 2e
AL =

x iwL(r—i)—H’]((oL) LA M
T 3¢ LIOV|M ey

The outgoing energy perunit time is found to be

= (2fxm) KL{OV| M) ey [*
K3 _oen 81
MLfMLl 'nflz,e 2& I. ( )

Karo faro
A nearly identical expression was found in 33 by extrapolating
the formula obtained for non-resonance. However, the influence

of the damping of the level E,;, exhibited bjy the imaginary phase

&, could not be found in that way.

Let again (see 34) o, be the partial cross-sections and J the
intensity of the  plane wave whose electric-dipole part has an
ingoing energy I. Then (81) can simply be written

IL/KI\/IL = OaL J/KMO >

. showing that for each emitted Raman photon an incoming photon

is absorbed. (81) has only been derived for 0 << L << M, but for
L = 0 it takes the form

=_4|sin £J° e 2 = o, J,

‘which is obviously true if I, is interpreted as the outgoing energy

of the Rayleigh scattering.
" * The difference with (55) is that £ is now complex.
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49
In the customary picture®® the scattering in resonance is the omission of the term BNy ¢y in (73) is justified, provided the
visualized as the absorption of an incoming photon—after which { unknowns ¢y are replaced by the transformed ones cp.
the atom is in the state M—and a subsequent spontaneous emis- Consequently the equation (77) for 4 is still valid, because
sion of a photon, either with the same frequency Kp;q or with a

it does not contain the ¢’s. However, the connection of i with
lower frequency Ky, Now, an atom in the state M would spon- { the phase shift between ingoing and outgoing radiation is altered.
taneously emit waves with frequencies Kj;;, whose intensities are, Indeed, since BYY, varies slowly with -n and n’, the theory of A1
according to 30, K3 farr/#. The fact that this is just proportional can again be applied, and for Z3%y is then found a matrix of the
to the Raman intensities I in (81) is the justification for the 4 type (A 3). Hence, according to A 4, (82) is a transformation to
customary picture. For the probability of the atom being in the § new quanta whose phase is shifted with respect to the old ones.
excited state M one then has to take With the method of A% it is found that this additional phase
. e o] shift &y is given by
lsm£| e I =

3 _— .
{ZVIO MO 2‘K-MOI'M

tan &y = —a By (0y, o).
Since oyJ/Kyy, is the number of photons absorbed per unit time,
1/2 I'y; has to be interpreted as the average time during which the
atom remains in the excited state M.

However, this picture fails to make clear that the sum of the
frequencies which the atom emits on its way back to the ground
state is exactly equal to the incoming frequency, as shown in
364, Neither does it represent the interference phenomena cor-
rectly; but we shall not discuss that here (cf. 51)2%.

Since the Rayleigh radiation is described by the c}, the total
phase shift for the coherent scattering now becomes { = 5+ &+ &

(n for the unbound electron, £ given by (80)). Using the explicit
value of By (w,®) one finds

tan & — & KXofno 1 Kirofuo
0 _— —_ " 1]
N*sz_KJZVO 2% w+KMO

These are just the terms that are omitted in @(w) by using the
approximation (70). ‘
Combining the results one obtains for the total phase shift

43. In this section it is shown that the omission of the terms

M Cy in (73) is equivalent to using the approximation (70)
for the resonance region.

For each particular N let Z(\{j be the orthogonal matrix that

3
transforms the matrix k,d,,— BN to principal axes:

tan{ = i E fwo .
_ % o — (Kyo— 1I'n)?

. This expression is correct to the order e? for all values of w. As men-
ioned in 34, however, the imaginary terms of the order et are also
. needed for the correct value of the total cross-section. They cannot
be found so simply by a combination of the formula for non-
esonance and those for resonance with the different levels. The
ight expression is found in the next chapter.

ke ZT — BN ZNY = kn Z35.

Here k, denotes the new eigenvalues. Clearly Z{Ny = Opm + Ot
Now if the ¢y are transformed by

A (82)

then (73) becomes, omitting terms Oe?,
(Ey—W+ B e = Al epr + CEN T

(72) remains the same equation: with ¢ instead of cf;. Hemnce

Dan. Mat. Fys.Medd, 26, no.15.
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Chapter VI. General Result. and ¢y (k) for N> 0

44. In chs. III and IV we have considered the case where the
incoming frequency o does not coincide (within the line width)
with one of the atomic frequencies; whereas in ch.V the region of
resonance was considered. Both cases had to be treated separately, -
because for an explicit solution of the Schrédinger equation either
of the simplifications mentioned in 30 had to be employed."
Fortunately the regions where these approximations are valid
overlap, so that for each value of ® a scattering formula could
be obtained.

Nevertheless there are some difficulties in linking up these
expressions. It is not clear how the imaginary damping in the .
denominator of the resonance formula (80) merges into the imag
inary term in the non-resonance formula (65). Moreover, the latte
has different values on both sides of the resonance region, cor

en (k) = pn () {(k— on) " 4 ind (k— oy}, (83)

Whenever in the Schrédinger equation ¢y (k) is integrated over k,
the term with (k — wy) ™! gives rise to a principal-value integral.
Since we have seen in the previous chapter that these integrals
-are of importance only for the level shifts, they will be omitted
here. The d-term vanishes for N > M, so that in the summations
ey(k) may be neglected altogether for N > M.

. Thus, writing for brevity

yn(on) = vN, T(on) = TN, =14, Iy =izx (N>0),

me obtains from (38 a) and (38 ¢), analogous to (45),

; . ) . . _ _SN|OVINT

responding to the disappearing of one Raman line when the in T T T E—w W™ Ane Yo (84 a)
coming frequency drops below an absorption frequency. There N

fore it is of interest to find one formula for all values of w—whic , (N|8V|N"y ,

is the purpose of this chapter. en(k, k) = CE,—WHk+ wN,T(k) Ay Ok —wn). (84 b)

In the choice of the approximations to be used we shall be!
guided by the calculations in the previous chapters. All thos
terms which were shown to contribute only to the small level shif
will be omitted, since we are not interested in them now#. The
it is possible to write a general equation (96) for the phase shifl
which comprises the previous results, and in addition describ
the transition between them.

-4

The last term in (46) contributed only to the level shift and there-
fore the corresponding term in the expression for cy(k,k") has

been omitied here. Inserting (84) into (38 b) one gets an equation
of the form

(Exy —W k) ey (k) = v (k) Fyn () tn Ay yve
. ’ (summed over N’ from 0 to M).
45. We take again the simple case of the previous chapte

namely a separable potential field (71). Furthermore we suppose’ The complete expression for Fyu- (k) is not required, because we

now substitute (83) on the left and take k — wy. It turns out that
Fyn () is the compound matrix element @y, which oceurred
in the Raman effect (see 32 and App. C), and we find

Ey<W<Epy,y and Ep ., —W)) K?VI+1,0/2 *,

but we do not exclude the width of the level E,,. The subscri
L will again be used for levels between E, and Ejy,.
Again ¢,(k) will be of the form

co(k) = yo(B) {(k — )™ ' + 28 (k — w)}

* Consequently, from a formal point of view the calculations of this chapter |
could also be based on the usual Hamiltonian.

YN = TN Onnr AN’?N" (85)

Now (85) is a set of horhogeneous equations for the yp
(N=0,1,---, M) with one adjustable parameter i, = 1. The
condition for solubility is, writing =5 Onn- T = T

: "
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1-— ATy, —inTy — Ty —ixTy { This, together with the first line, makes two homogeneous equa-
— ATy 1 —inTyy — inTyy — il y 1. tions for y, and (uy), which yield for the parameter A
—}\Tzo —iTET21 1 —iﬂT22 e . — Z.TCTZM = 0. (86) ! ” n]u0|2
........................................ tang :_I :m (89)
— AT 0 o 1 —iaTly oy . M :
‘ This equation is identical with (80), but for the level shift, which
This is a linear equation for 4, or for tan § = — sfA. We shall

- has been neglected in the present chapter.
now show that it contains the formulae (65) and (80) as special “§

cases. 47. The equation (86) for 1 is still not general, because it

only holds between the levels Ey, and Ep; . When W drops
- below E, one row and one column have to be obliterated in the
| determinant, and when W increases beyond Ep;,4, a row and
a column have to be added.

46. First, consider the case that  is not inside the line width,
so that all Ty, are small, namely Oe?. The evaluation of the.
determinant (86) with omission of the terms Oe® is trivial and
yields

0 =1—2ATp = 1 — A7(w)? Oy, This discontinuity is related to Stokes’ phenomenon for asymptotic
[ expansions??. Indeed, our boundary condition that the radiation with
frequency wys should contain only outgoing waves, refers to the asym-
. ptotic behaviour of the radiation field at large distance. The decomposi-
tion of the field in ingoing and outgoing waves is practically unique
only in the wave zone. When wps tends to zero, the wave zone recedes
" to larger and larger distances, When it is beyond the observing apparatus,
the boundary condition is no longer an appropriate expression of the
experimental conditions. In that case the scattering centre and the
observing apparatus cannot be treated as separate systems. (In actual
experiments, of course, these long waves would not be detected by the
spectroscope.) Consequently, there is a ‘region of discontinuity’’:

which is identical to (53). Retaining also terms of relative order e
one finds

14 = Too+1im(Tos Tyo+ Toa Tao+ -+ + Tonr Tago),  (87)

which is" identical to (65). :

Secondly, let W be so near to Ej; that in the sums over M
the terms with W — E,; = wj, in the denominator are large and
the other terms negligible. Then, according to App. C, one has.

: o (di : . =1 ~ 10—6
Tyn = — uguipjoy With uy = 7y <N|8V‘ M. (88 wpy ~ (distance scattering centre—observer) 10—=° Kpro  (90)

where our formulae are physically insignificant.

It seems that there are also mathematical difficulties, because the
neglected principal-value integral '

Instead of evaluating the determinant (86) it is more convenient
to solve (85) direclly. These equations are now

o]

. _ 2 i uE g —1
War Vo = |to|2Ayy - uor T uf yp SOyM(k) (k— w, )" dk

— wpyr = g u§Ay, +upiwoug v
might become large for small o, .- However, it is clear from (83) in con-

_nection with (61) and (37) that v, (k) contains. a factor k—%, and can
be expanded for small k in the form

From the second line:

— oy (uy) = (uw) uf iy, + i) (uy),
with the abbreviations Py (R) = L3 (g + gk A ).
~Now we have :

M M o
. - . — —1
(uu) = n> ujuy,, (uy) = 7> uf yr. Sk §k— o) dk = 0,
L=1 L=1

0
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and the higher terms are certainly finite for o M= 0; hence the jlltegral
is always a small quantity, even when w,, 18 small.

The above considerations are only valid if the level E
i. e. if the state M is metastable. If it has a finite width I", , then the
expression for cM(k) contains a factor (k— o, — iFM)'.—1
§-function (see 86), and no discontinuity arises.

Accordingly, (86) can be written in a more geneéral form by
introducing a function p(w) deﬁned outside the region of dis-
continuity (90) by

p(w) = (w>0), plw)=0 (0<0);
inside this region it is necessarily indeterminate. On replacing
Ay in (85) by p(wy) one finds instead of (86)

1 —ATy —ipiTw
— ATy 1—1ip Ty

— ipyTos - - -

where py = p(wy). It is clear that for En < W< Epp, 4 this

reduces to (86).

For the phase shift in resonance one now finds from (91)‘

the same formula (89), but with

() = > p(wr) ufuy,.
=1

Owing to uy, = 0, this result amounts to exactly the same as’

before.

48. Although (91) completely determines A as a function o :

@, it is not yet fully satisfactory. It is unduly complicated b
higher order terms, which are meaningless since terms of th
same order have already been neglected in obtaining (91) from
the Schrodinger equation. As a consequence the results of th
previous chapters could only be derived from (91) by rathe
lengthy manipulations. Therefore we shall now transform (91
into a form that resembles more closely the formulae of th
previous chapters.

a1 sharp,

instead of the

- iP2T12 - =0, (91)
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For Tyx we use an expression similar to (88), but more
complete:

u IlJ"
Trn :ZLN—, Wy = oyt NPT, (92)

—wy

Here the first summand in (C 1) is taken into account, but the
second one has siill been omitted. It can easily be added after-

- wards, since it does not give rise to resonance. (85) now becomes

N = — Z; (UX/0s) En uleF Ay

from which, writing Xy uf. vy = wyy, we get

ro T I o
wyyy = — ZnpunFivunyy.

" This is a set of homogeneous equations for the yJ, whose charac-

teristic equation determines 1 (= 4):

Det. || w8, + Auj*ul + i (uub) | = 0.

Here (u’'u?) is defined by

(u'a) = > p(or) uf*u .

| The determinant can be expanded in powers of A and it is

easily seen that only the zeroth and the first power survive. With

'the abbreviation w; + i(w’u’) = o, one finds

Wy i(u'ut) i(u'u?)
0 — 1 | i(uta®) w) i(ulu?)
| i(uu®) i(u?ut) wy T
up*uy  i(uut) o, ug® uy i(uu®)
ué* ug ) i u®) wruy i(utu?)
wFu)  1(u?ut) + i(@?u®) By wy +

he determinants can easily be worked out if real terms of

'telative order e? and imaginary terms of relative order et are

mitted. After dividing by wywjw, . . . one thus gets
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Here the prime means that all denom1nat01s wy are to be re-

Rl S o 3
/e Z +l plo) ’ 4 placed by

N#N ey (93)

oy = ox+ 12 plo) ud*al.

w}\, = oy + 12 p(op) 1(w)? wi I< (94)

and the bar means that all terms with denominators w7 are to
be discarded:

In the approximation for resonance (with the level E,;) this-
equation reduces to

MMy 2
uy uy _ Kro farol 22
Wt oyt iy

% 0,610 = G010 — Iy (0?0} jod) [0 P|NY[|<N|P|LyJ2. (95)

2°. The assumption (71) of the potential being separable can
be dropped if also radiation with different polarization direction
] is taken into account. From (65) it is clear where polarization
superscripts have to be added.

3°. Degeneracy can be accounted for by writing L instead of
| L, following the example of (65). The result is an expression for
- the phase shift £, of the radiation with frequency w and polariza-
‘tion w, caused by an atom in the state N = 0,u = g, viz.

tané, = —at(w)? {@0/"'0 0M0+iZLP(wL)?(wL)ZZ@%, O o)+ (96)

It should be noted that the imaginary term in wy, is equal to Iy, ]
only inside this resonance region. E

Outside the line width the denominator in the second term:
of (93) can be replaced by wp wy: in the first term it ean be
expanded, yielding

NN,R N
Uy Uy " U™ U
—S +§p<wL>°°LL-

This imaginary term just furnishes the terms with N = N’ that
are missing in the double sum in (93). With the aid of (92) our
general equation (91) thus reduces to (65) outside the line width.
When Kramers and Heisenberg (ref. 3') constructed their
scattering formula, they considered resonance fluorescence as ;
partly due to spontaneous emission by the excited atom (cf. 42). ‘§
This gave rise to the question how this radiation combines with
the Rayleigh scattering that is also present outside the line width.
The present treatment shows that, basically, there is only one g
kind of scattering process, which in resonance has some features 3
in common with spontaneous’ emission. ‘

The sum over L = (L,y) includes L = 0, pu 5= o, but not the
initial state L = 0, u = p, (cf. 35). In (94) one should now
write w}v, w = wy to exhibit the dependence on u, and P rather
than P to account for the three directions of polarization. Then

w

‘ (€0 o | Py | N> (N’ |P,I N 0 uo
—mwNz{wi [N N [P ND  <0p

— O o+ Ky n

r. (97)

N

4°. From ch.V it seems that also the level shift can be embodied
- in (96) by a slight alteration of the definition of wy. However,
- the interaction with the electromagnetic field constitutes a per-
* turbation which splits up each degenerate level into a number
'~ of components with distances of the order of the electromagnetic
- level shift. The matrix elements of this perturbation follow from
(73) and (79); they are for the level Ey (see App. C)

49. The equation (93) has been derived under certain simpli-
fying assumptions, but it can be generalized, without performing
any new calculations, by following up the analogy with the results
of the previous chapters.

1°. The terms that have been dropped when writing (92) can-
be supplemented by comparing (93) with (65). Both equations
can be combined into (@) 9 ¢?
NpsNu' —

3am?

, cos®y(k
- 2 Knoy N | P[N"D(N |P|N ) KN/N—WJ(rIzdk' (98)
tan & = — 77 (w)2{Oy + i X p(wr) 7(0r)? 05,070} N 0
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Let us suppose that for each level this perturbation is cast
into a diagonal form, with diagonal elements A,  Say®. Then
each state N,u has the shifted energy value EN—I—AN’M = E;v
and these shifts can be taken into account by putting

N (AN,LL — AOI_I,O) + iZLp(wL) T(C'JL)ZCO%

= w

(99)

The formula (96), together with (97), (99) and (95), describes
the scallering by an electron in an arbitrary field of force, for all
values of » except the region of discontinuity (90). The imaginary
terms are given to the order e*, so that it yields the correct values
for the cross-sections oy, 0,, 0;.

N

50. The formula (96) will now be compared with the results
obtained by previous authors. Outside the line width (96) was
shown to reduce to (65), which according to 33 is equivalent to

the Kramers-Heisenberg formula. Actually our result is more

restricted, since it has only been derived for scattering by an

atom in the ground state. The Rayleigh scattering is described
by the phase shift (57) and the Raman scattering by (65). The 4§

corresponding cross-sections are (58) and (66).
The dispersion in the case of resonance has been treated by
Weisskopf*? and by Breit*4, using time-dependent perturbation
theory. This method consists of taking an initial situation with
the atom in the ground state and some radiation present. Since
that is not a stationary state, other states are built up in the course
of time and from the rate of increase of their coefficients follows
the probability for scattering of the radiation present in the initial
situation. Because of the difficulty of solving the resulting set of
first-order differential equations, they had to resort to a simplified
model with only two possible states for the atom. Hence the Raman
‘radiation does not enter into the picture. Of course, also the line
shift had to be neglected, because it would be infinite.
Weisskopf*® first calculated the Rayleigh scattering in re-
sonance and found a line width 7™ (in the notation we used in
41), corresponding to the transition from the excited state to the
ground level. Our additional line width I” is due to the transition
* In case of a central force, when there is no other degeneracy than with

respect to the direction in space, this is automatically fulfilled if x is the magnetic
quantum number.
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probability to other excited states, which he had omitted. Con-
sequently his result is equivalent to (80), if in the latter A, and
Ty are dropped.

It should be noted that in Weisslkkopf’s formulae the frequencies
of the incoming and the scattered photons may differ by an
amount y* (his notation). The reason is that he considers a
state of the whole system which is not Stationary, but whose
energy has an uncertainty y* . Thatin our stationary state treatment
such a quantity does not occur, may be considered -as an advan-

tage, because it has no bearing on actual observations.

Breit, in his review on dispersion®4, gives the same calcula-
tion of the scattering in resonance. In addition he analyzes.the
behaviour in time of atom and radiation field after the moment
when the interaction is switched on. Again this is immaterial for
actual scattering experiments: at most the decay of an excited
state can he observed by specially designed experiments?s, but
not the decay of the initial state of the whole system.

Weisskopf??® also "gives—without calculation—a formula for
the resonance scattering in the case where more levels are present.
This result is practically identical with ours; only the width of
the initial level does not appear in our formula, because we sup-
posed it to be the ground level. He also omits the width of the

 final level, just as we did (except in 36).

In a later paper*® Weisskopf obtained a general founula by

. writing the Kramers-Heisenberg formula for the induced dipole
* moment, and adding terms i/ in the resonance denominators.
* This formula is correct when terms of relative order e? are dis-

regarded. However, since the imaginary terms Qe* in this formula

- are not correct, it cannot be used to compute the total cross-section
- for instance, from the polarizability by means of the relation
. (B 12)*. Therefore it was impossible for us to generalize the
i expression (67) for the phase shift in this simple way.

Hamilton?®® derived the usual results for emission and for

. scattering outside the line width by solving the time independent

Schrédinger equation. For the physical interpretation, however,
he made use of time dependent states, which he obtained by

* Of course the total cross-section can be found by computing the partial
cross-sections for Rayleigh scattering and for all Raman lines:

6, = o -+ X1 o.p.-
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superposition of the stationary solutions. In his calculations again
only one higher level is taken into account and, of course, the
usual divergences occur.

following way. First one has to find the stationary states describing
the scattering of two photons, one with the frequency @ of the
incoming radiation and one with a frequency k in the neighbour-
hood of the absorption frequency, Kj;, say. These states—for dif-
ferent values of k—have to be superposed in such a way that at
{ = 0 the radiation with frequency in the neighbourhood of Ky,
vanishes. Since o has a fixed value for these states, they have
different energies w + &k -+ I, with a peak in the neighbourhood
of -+ Ejy. Consequently the superposition will describe a non-
stationary state with ingoing radiation of frequency o, in which
initially the atom has the energy Ej;.

4°. The classical analogue of the quantized electromagnetic field
has only been used for one-quantum states. It is desirable that
for the many-photon states a similar classical picture will be
developed. The solution of this problem is not obvious, but pre-
sumably it is possible to describe every state of the photon field
by an appropriate mixture of partially coherent classical waves.

5°. Interference phenomena in the current time-dependent
theory require special calculations?®. In the present theory, owing
to the close resemblance with the classical picture, they can be
analyzed immediately. Indeed, the Rayleigh scattered waves of
two scattering atoms are both coherent with the incoming light
and therefore also with each other. However, if the ground level
_is degenerate, incoherent scattering is also possible (see 35) and
the two scattered waves will only be partially coherent’®. The
. interference of Raman light can be studied in the same way, but

. a complete account is only possible after the problem 4° has been
solved.

51. The problem of finding the states of steady scattering by
arbitrary atoms, which Kramers? raised in 1948, has now been
solved. Nevertheless the present theory of emission and scattering
is incomplete on several points, even within the limits of non-
relativistic dipole approximation. We here list these points in the 1
order in which they seem to be logically connected. ]

1°. Second order emission can be described by a superposition "
of stationary states, chosen in such a way that at ¢ = 0 the whole
radiation field vanishes. Hence one has to find linear dependence
relations of the kind (A 21) for quantum states whose phase shift
is given by (96). Since this is just a matter of algebra, there does “§
not seem to be any fundamental difficulty in describing in this
way the two-photon emission studied by M. Gdppert-Mayer?.
For the emission of three of more photons, one has first to find
the expression for the phase shift in which the singularities in
the coefficients ¢y (&, k', k") etc. arve taken into account.

2°. Higher order scattering processes, in which the incoming
photon is broken up into three or more photons, can be calculated
along the lines of 36. The result may be expected to be identical
with that of Giiltinger*® and Weisskopf*%, except that the line shift
is included. However, processes in which several photons are
simultaneously absorbed and one or more photons emitted, can-
not be treated readily, owing to the incoherence of the incoming
photons. It is true that by putting in (85) Ay = — 7 cot &y (instead
of taking all 2’s but one equal to ix) one obtains stationary states
containing several ingoing waves with different frequencies. But
these waves have definite frequencies wy and even deflinite phase
relations, and therefore do not correspond to an incoherent mix-
ture of incoming photons. Hence it is necessary to use the many-
photon states for the description of the incoming field and, ac-
cordingly, to introduce adjustable parameters 4 into the singul-
arities of the coefficients cy(k, k"), ep(k, K, kT),---.

3°. Scattering by an excited atom has not been treated, be-
cause it cannot be described by a stationary state. It seems pos-
sible, however, to construct an appropriate decaying state in the

Appendix A,

A 1. The purpose of this section is to find the principal axes
- of the quadratic form

ZAnn’ xnxn_’ : 2 (tn 51111’ + %n an’) Ty s

where for definiteness ¢, and e, are supposed to be real. The
equation for the eigenvectors is

sy = D Appxy = by, +ap Xapx, . - (A 1)
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From this follows

x, = a,ff(s —1;) with g =ZLayxy,

and by substituting the former in the latter one finds the charac- |

teristic equation for the eigenvalues

.-
n
_ 1

(A2)

L s—t,

There is one real root between each pair of successive t,. If §
thelc is only a finite number of #,, there is one root larger than
all ¢,, and there are no other roots. If there is an infinite number

of 1,, other roots may occur, e. g. complex roots.
To each root s, corresponds an eigenvector X, :

A“er = anﬁi‘/(sv*tn);
which may be normalized by a suitable choice of g:

1 on {d SV on }
ﬁ;z,l - (Sv—tn) ds—-f S_‘tn_ s=sv.

From the orthogonality of the matrix Xn, follow

2

P -
In

(sv — tn) (S/L —tn) 13»_ '

(sp—ta) (sy — tm) ®n
The transformation to principal axes takes the form
o = EXnpyy,  EAmrnzy = Zspyy;
and in particular one has
X Xpvotn = By, Xantn = X

It is useful for the calculations in 22 to associate with this
transformation an analytic function of s

with the following properties. It has poles #, with residues a:

@3 |

vy

N £ _ Sy
< T ol

8Ny R Csh Lxw~
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The characteristic equation can be written F(s) = 0, and the
normalization conslants are given by f,2 = — F'(s,).

A 2. For the ﬁansfmmation of (11) one has to take ¢, = »:
(nzm/L)? and e, = e,my*. If for s we now write k2, the charac-
teristic equation becomes (using (9))

2 1 e &2
n 2 n
my = P ama— m =k E S LSS
2 22 3 .
k — V- "’n(kzﬁ"’i)

The latter form of the equations has been chosen so that it is
possible to put 4, = 1 (transition to the point-electron). Subse-
quently, the series can be summed:

4e? § 2 e? 1
== __kZ == - —_——
jE. (nn/L)z 3 k(cotk kL)

and for large L this reduces to (15).

With the abbreviations L, and #, according to (14) one finds
from (A 4)

(A 6)

mg d 82' Hﬁ'ﬁz/ e L
m_ [4(S7 A SR b,
Bn A\ s—vy S vpfliapd 3 sin’
The transformation (12) is according to (A 3)
- 2 v, sin 7, 2 v k,cos .
= e ST (4)
l/ LLn' (kn’ - 'V;l) % I//LLn' (ki‘ - 'V?l)

§ Finally, using (A 3), (A 6) and (A7) one finds

CcOS 7717.

— . 2
Ty y &n Bnpn
n— = —— =
e 2

n Y ]/mo k2 —

which completes the proof of (13).

With k = ik’ the characteristic equation (15) becomes Tnh
Lk' = k'[x, and this equation has one positive root very near to
#. This eigenvalue ik’ ~v i» will be denoted by k¢ and the cor-
responding 7, is defined by 7. = Lk; ~ iLx. Hence

n’-'
I
'’

1Lx

€7 Lu = L—cos?r/x ~ — T4y

(A9)
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In all summations over n this anomalous term must be included,

2xK? sinq,sing, 1
1. e. n also takes the value =.

Yy, o=
"V VInL, ky 0y 02—k

4 n

, (n£0)

(A 13)

A 3. For the transformation of (21) one has to replace ¢,
and e, by k2 and Kd,, the subscript » being used to remind that
the value ¥ = 0 is included. Writing for the eigenvalue para-
meter ®?, one finds the characteristic equation

,1/2xsing, 1/ 2 K’
Yo, = K l/ 3 l/ ’ 2 N 6 2
L, % Ly, )/ (w0l —K*)? 4+ whfx

Again, putting w = i@’ in (23) one finds an imaginary root
wy A 13, which is not quite the same as the root k, for the free
electron. The values of Y,, and Y, can be found from (A 13)
by taking, like in (A 9),

oo

1 N 1 792 cosiy
7:2 21,2:”2”]"2 _“2_';' (A10)
K = —k o < xlL, o —k;,

p= —1

Ly = iLx, L, — —e""/in.

In order to evaluate this sum we now construct an analytic
function of @ with the same poles and residues.
First we define the function % (k) by

The values of Y, are found by means of (A9). ,
When the second procedure is applied (in 18), the sum in
(A 10) does not contain the term with n = #. The corresponding
terms in (A 11) have to be subtracted on the right and the result
4 is that the sign of the last term in (A 11) is reversed. One then
4 finds (27) instead of (23), and both (A 12) and (A 13) hold,
d provided L’ is replaced by

" 2K* \* dg
i gra) ()]
Here the derivative has to be computed from (27), but its explicit
expression is rather complicated.

¢ ) k k
COSW(k)Zm, Sln??(k)=m, taﬂ’?(k)=;,

so that n(k,) = 7,. Then the equation (15) for the k, is equivalent
to tan {Lk~n(k)} = 0 and one can easily verify

+ o0

N’ cos'n, cos’n(w)  xw
L, (w—k,) tan {Lcu — n(w)} %+ @

(A11)

The second term is required for subtracting the additional poles
due to cos®7(w). After some calculations one finds from (A 10) -
and (A 11) the equation (23).

Furthermore, from (A 4) with the aid of (A 11) is found after
laborious calculations ‘

A 4. In this section it will be shown that the transformation
(12) is indeed a transformation to phase-shifted light quanta, as

- stated in 13. For this purpose consider the boundary problem
| given by

v (r)+kw(r) =0, v(l) =0, v'(0) +»v(0) = 0.

B, = | /m (Klw,) sin? Z,, (A12) ‘ \‘ The solution is trivial and furni§hes the norma_lized eigenfunctions
where () = [/2/Ly sin (kor — 1), (A 14)

L, = L—sin {y cos {ofwy + 2 x K2 sin? &)y = L—(d&/dw)e,. - where k,, 1,, L, are again given by (15) and (14). In particular,
: ' for » = 0o one finds the orthogonal functions

Substituting all this in (A 3) one finds the transformation matrix —

(now denoted by Y) : u,(ry = |/2/L sin v, r.

Dan,Mat, Fys. Medd. 26, no.15. 5
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Both orthogonal sets are connected by an orthogonal transfor-
mation

Un(r) = ZBnn’un’(r)’ Bnn’ = Svn(r)un’(r)dri'
0

The integration can readily be performed, and B,, turns out to
be equal to X, given by (A 8). This proves (18).

A 5. When the equation for the phase is more complicated, .
as e. g. in (23), there is no corresponding boundary problem.
Nevertheless, if a phase function {(w) is given by

tan {(w) = (o/x) D(w),

we may consider the set of functions

w, (r) = )/2/L;, sin (0,1 — &),

where {, = {(w,), and w, is determined by the condition -
w,(L) = 0. For convenience, a factor with

Ly, = L—(dZ/d®)e, (A 15) .

has been added, but that does not mean that the functions are -
normalized. They can be expressed in the complete orthogonal -
set v, (r):

L ,
(D) = S Con v (1), Coe = v e, (a16)
: N ;

and one finds readily
1
1— .
{ @(wn)}

For the harmonic oscillator @(0) = w?/(w?— K?) and

2%  sin{, sinn,

Cppo = o
" VLiLy oK

Con = (knfow) Yoy = (k) { Yny — |/2 %L (sin 1/ k) Yoo}, (A17)

according to (A 13)* . ,
In order to prove (26) we deduce from (25), using successively
(A 14), (A17) and (A 16), '

*) The same equation holds in the second procedure, where @ is determined :
by (27), provided the derivative in (A 15) is accordingly computed from (27).

‘
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—Te)/3/2 Zny {0a(t)/knr} Yur P,
= —%6)/3/2 Zny {0n(r)wrr) Con Py—
—T € Zuy |/ 3 /L {0a(r) sin nafkir) Yo, P,
= —Te|/3/2 Z,{w,(r)jw,r) Py —
—FeZy /3 %/La{oa(r) sin gu/kir} Zy Yoo P;.

(A 18)

On the other hand
P =P = ePym’ = ¢)/mZYo, P,
and with the aid of the relation

Z l/2/Ln {Un(r) sin 7711/1"121} = 1/,
which will be proved presently, (A 18) reduces to (26).

(A 19)

A 6. In-this section an identical relation between the w,(r)
will be derived, which proves that they are not independent. Let
@(z) be a one-valued analytic function in the complex z-plane,
whose-only singularities are simple poles and which tends to a
limit different from zero when ’z| tends to infinity. Then

sin{Lz—¢(z)} _ #sinLz

6@ =—"5"% 23 (2)

—cos Lz

is also one-valued analytic and its only singularities are the zeros
0, of @. The zeros of G(z) are the characteristic values w, and
the values of the derivative in these points are

G'(w,) = Ly/sin Lo,

L, being defined by (A 15). :
If J is a closed path of integration that does not pass through
any point w,, then

sin zx dz sin wx

1
Ta’cigJG(z.) (z—w) - G (w) +

sin w, Lsin w,a
L (0, —w)

the sum being extended over all w, inside J. The integral on the
left vanishes for J— o, [oc|<L. Hence, with = L—r,
5*
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) too | . 0 . 4 For a justification we consider (A 2) for our nearly continuous
sin wx _ N’ sin C'L)n L sin Wp X PN 77 81N Cn,SIH gwn 1'2“ én) , (A 21 spectrum.
G (w) 2/ Ly (0 —y) Z L, (0° —ap)

The (real) roots s are, from a macroscopical point of view,
continuously distributed, but microscopically the position of each
root between two successive I's is determined by the equation
(A 2). Let s be the root between £, and ¢,, 1, and put s = ¢, + &,
0<o<e. Then

the last member being valid if @ is an even function, so that
w_, = — w,. Substituting w = £,

SR RV e s w0
1~ s—u ~—-’l‘+8/2—t fm+0_t :

n Int 8/2 — it
In this way one finds a relation between the w,(r) for each
zero of &. :
Incidentally the relation (A 19) can be proved on choosing
@ = 1 (so that w, = ky, i = 7,, L, = L,) and taking in (A 20)
o = 0 and L very large. Moreover, if in this relation » goes to
infinity, it becomes

It is readily seen that the first sum on the 1'ight tends to a principal-
value integral

Zj’ o a(t)? dt R a(f)*dt
_— e\ — > ,
tnt+e/2—t, bt e/2—1¢

n ./.S—‘f

Z(2sinv,r)/Ly, = 1, (422) which does not depend on the microscopical position of s.

The second sum is convergent, so that the higher terms, with
|n-mi>N say, may be neglected. The other terms cover an
interval 2 Ne, which is small for small &, so that o) may be
taken constant in it. Hence this sum can be written

+ o
1 1 7T 7T 7
i § - = o2, —cot—0 = ma(s)’cot—o.
c—ng &2-—ne € P

&

which proves (17).

A 7. In this section the work of A 1 is reformulated for the
case of a continuous spectrum. First suppose that the ¢, are very
dense on the real axis; introducing functions &£(t) and «(f) by

e e(fy), &p = Le(tn)a(tn)’

we suppose that they vary slowly:

Since the cotangent can assume all values from — oo to + oo,
one can use instead of ¢ the parameter

de/di {1, de/dt { afe.
Then, with x, = x(f,) Ve(in) equation (A1) can be written

G—0x() = «(@®){e(@)a(t)dt’ = a(t)-B.

The formal solution, given in 27, is

1l = —ncotmole.

The characteristic equation (A 2) for s then takes the form (A 24)
with A as eigenvalue parameter to be determined.
The solution (A 23) can now easily be justified in the same way.

() = a(OH{—O""—(s—D}B, (A 23)

A being determined by Appendix B.

Since we employ an expansion in multipole waves rather than
Sa(t)z dt — Aee (5)* = 1. (A24) | in the customary plane waves, the mathematical connection be-
s—1 4 ‘tween both pictures has to be established. We shall first derive
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the relation between the intensity J of the plane wave and the
oulgoing energy [ associated with its electric dipole component.
Next we express the cross-sections in terms of the polarizability
« and, subsequently, we derive the relation between « and the
phase shift {. Finally we shall apply the resulting formulae to the
classical damped harmonic oscillator.

1°. Let a monochromatic plane wave in the z-direction be
represented by the vector potential

A(H) = Reelwe—D, (B 1)
The expansion in multipole waves can be written
eel®r = ZlubluAlu (I‘,’&,(p),

where the subscript [ refers to the order of the multipole and u

distinguishes the different waves of the same order. Since the

multipole waves are orthogonal on the surface of a sphere with
large radius r, one finds the coefficients b, from

b, S Ay (r,9,9)? df = S eA,(r,0.¢) elwrcsdqQ, (B 2)

We are only interested in the electric dipole wave: [ =1,
i = x,y,z; in this case we have

A (r,9,¢) = Te"sin orfr. (B 3)

Performing the elementary integrations in (B 2) one finds
bin = (3/2 w) (e"e) so that the expansion takes the form

Ree @G0 = SfFe— ¢ 10l oo, (B 4)

Now the plane wave (B 1) has the intensity J = w?/8 =,
whereas the outgoing (and also the ingoing) energy per unit time

in (B 3) is w?12. Thus from (B 4) follows

J=(2w¥3m)I.

2°. Suppose there is a scattering centre at the origin which &
has an induced dipole moment M proportional to the field strength

E of the incident plane wave:

Nr. 15 : : 71
E = REBe o,  E, = iwe;
. (B 5)
M — RM,e—i0f, M, — «B, — iwae.
The work done by the field force per unit time is
—— 1. ® ® 1 2
EM = i (BM; —EgMy) = co | B |2 S (B 6)

On the other hand, the dipole emits, according to a well-known
calculation®!, per unit time the energy

I = (0/3) [ M, |2 = (0¥3) | e [? | B> B7)

‘Since J = |E0|2/8 7, (B 6) and (B 7) give respectively

oy = 4w, o, = (8 ﬁw4/3) | o |2. (B-8)

As the field is now singular in the origin, its dipole component
will not only contain the regular dipole term sin wr/r, but also
cos wr/r. Therefore it can be written '
sin{wr—y¢) .

A(H = RTC (B 9)

The singularity caused by the dipole moment M has, according

to classical formulae, the form

A =0T — ioMye i®Yr + finite terms,

. so that one finds

—Csin¢ = —ioM,. (B 10)

On the other hand, the constants € and ¢ have to be adjusted
so that (B 9) contains the same ingoing dipole wave as (B 4):

Cell = 3¢/2 . (B 11)
Combining .(B 5), (B 10), and (B 11) one' finds
\ 5 > .
@= (¢ 210y, (B 12) |

From this, together with (B 8) follow®?

3
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37 aig 6n itan¢ In the first term on the right one can write
= or RO = = R e e . : . : :
\ ) e p,P,—P,P, = P,P,— P, P,—|P,, P,)
— i __ 210 o bz *ﬂl__ D P ]
0, =g 11— P =Sl anzl P,P,—P,P,—1d,0,V.
3= (1_16_21-”2) 3= 1_'5_’”@9,5 2 Hence, the eigenstates being labelled by N,M,J,
% 92 T 2?2 14+itanl| /)’

; . N\ <N (@ <0,V
: . | . S| By(H— 0y By = S S VID A5, V]
3°. For a damped harmonic oscillator the equation of motion is - E;,—0
R+ yR+ K2R = (e/m) RE e~ 101 (B13) q is found to be equal to
The damping term yp is the sum of the radiation damping and

the damping due to energy dissipation by other processes’? 1 (E;—Ey) {<1\ IPUIJ> KJ {pwl M>— <N lelD <JIP”|'M>} —I—%(Nlau 6le MD

y=9"4+9, =203 m= olfx. .
2

From (B 13) follows in the ordinary way for the polarizability

N O DW= B+ Bu= D Ey—Ex) (1153 5 .
J

E;—0
a = (e}/m) (K? — w* —iyw) }, .
This identity will now be specialized in various ways.

1°. On taking N=M =0, v = w, and 2 = E, 4 o and
Q = E, — w respectively, one obtains two identities, which added
together yield the equality used in (49). A

2°. On taking M = N, v = w, and Q = Ey — k one finds
the equivalence of (74) and (79). If all three directions in space

are taken into account, one has to sum over v, which amounts

~ to writing in (79) the vector P.

3°..In the same way, by writing N = N,u and M = N, u/,
taking £ = Ey— k and summing over » = w, one finds (98).

4°. Finally write the identity with ©Q = E,; } wy;, and also
with 2 = Ey— oy, and v and w interchanged; the sum of both
equalities thus obtained is

and the phase shift can then be found from (B 12):

w33

Ry RN S

This formula takes the form (80) in the neighbourhood of the
resonance frequency. The expressions one obtains for the cross-
sections are also similar to those in 41.

Appendix C.

Here we shall derive a general relalion between matrix ele-
ments of the unperturbed atom, which has been used several
times to prove the equivalence of the results obtained by Kramers’
Hamiltonian with the usual results. If H is the Hamiltonian
P2/2 m+ V(R) and 2 an arbitrary constant, one finds successively

{<N|6DV‘J><J|6H,V‘M>+<N|6wV]J><J|8,,V|M>
~

‘ . —(N|8,8, V|M>
B(H— 1P, = i{P,P,— Py (H— Q) " P, (H—Q)} Ey—Ey—wy Ej—En+oyp }

= i{(H—Q)P,(H—Q) "' P,—P,P, _ LN Eym— o) Ky —on Koy (N|P,| D> Py M>
5 {(By Py PyBy) + (H—Q) P, (H— Q) ' P, (H—Q T e

=51 PvP)_ -+ - v - a w —
2 " vt v 1 g K pr + (Kyyw + 0p) Ky

(N[ P, | T <T| P, M.

~%{Pqu(Hﬁ.Q) 4 (H—Q)P,P,). 2 <5 KN+ oum
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Adding to this the identity

0= <N|PUP,,,—PwP,,1M> = > _{N|P| 3> T Py| My —<N| P, | I T | P,

after multiplying with ———(2 wyr + Kpyn), one gets on the right-
hand side

o (@ar+ Kngn)

X Ky —on Kyn 4 opm

This includes (60)—and also (49)—as special cases.
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