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1. In this work the theory of scattering and emission of ligh t
i,y an atom is developed on the basis of Kramers ' method of

quantizing the classical theory of the electron . 1 ' 2 Accordingly, the
calculations are non-relativistic and we shall confine ourselve s
throughout to electric dipole radiation . These restrictions will

allow us to avoid all divergences .
Scattering will be described by means of stationary states of th e

compound system of atom and electromagnetic field, which bea r

a close analogy to the customary classical treatment . To empha-

size' this analogy the properties of each state are interpreted i n
terms of a classical radiation field . Emission is described by super -

posing these stationary states in such a way that initially th e

radiation field vanishes .

The scattering is calculated for incoming light with arbitrary
frequency, either in resonance with an absorption line or not . In

the latter case the result is equivalent to the well-known Kramers -
Heisenberg formula . In the case of resonance-usually calle d
resonance fluorescence not only the usual line shape is found,

but also a small line shift, which in the current treatment is in -
finite and has to be discarded . The behaviour of the Raman scat-
teiing inside the line width and the transition to non-resonanc e
are-also investigated .

2. Kramers' theory starts from the idea that in , the classical

electron theory all physically significant results depend only on

the mass m and the charge e of the electron, and do not contai n

any reference to the structure of the electron . His program was

to construct a structure-independent Hamiltonian that describe s

the actual behaviour with the best obtainable approximation . For
this purpose the transverse electromagnetic field is decomposed

1*



s

4

	

Nr .1 5

into a " proper field" and an "external field ." The former is de-

fined as the non-retarded field, i . e . the field that follows from the

Biot-Savart rule.' It is determined by the instantaneous position

and velocity of the electron (in contrast with the sum of retarde d

and advanced fields used by Dirac4) . The vector potential Å

of the remaining external field is finite for a point-electron, s n

that the average of A ' over the extended electron will be nearl y

independent of the charge distribution. If now the equations of

motion of the electron are expressed in terms of A ', the effect

of the proper field being accounted for by an electromagneti :

mass mel , they contain only the total or "experimental" mas '

nz = mo + mel ; they do not depend on the structure, except fo i

the very small wave lengths in A ' . The equation for the externa l

field A ', however, still contains the proper field in such a way

that the formalism is only approximately structure-independen t

The next step consists of writing these equations in Hami l

tonian form. First' Kramers used a Hamiltonian which ha

practically the same form as the usual one, but with the externa l

field instead of the total field, and with the experimental mass m

instead of the mechanical mass mo . He showed that it describes

the secular effects correctly to the first order of e, whereas certai n

high-frequency vibrations, caused by the interaction, are neg

lected. Later, Opechowski5 found a Hamiltonian which is correc t

in dipole approximation to the first order of e . Finally Kramem '

constructed in dipole approximation a Hamiltonian which is co r

reet also to higher orders of e, and can therefore be applied t o

the scattering of light .

3 . In chapter I we obtain in dipole approximation a Hamol-

tonian which is correct in all powers of e, in the following way

In the ordinary Hamiltonian the field is expanded in mulli -

pole waves and only the electric dipole waves are retained . B

means of a canonical transformation this simplified Hamiltonia n

is cast into a form which only contains the constants m an d

and is practically structure-independent . This new form will l

the starting point of our calculations . We shall call it Kramer ,

Hamiltonian, although it differs slightly from the form he user .

If there is no binding force, this new Hamiltonian appears s

the sum of an infinite number of oscillators, each referring to ar

5

fi ;envibration of the compound system. Hence the canonical
m.nsformation amounts to choosing the solutions for the fre e
rectron as basic elements . If the electron is harmonically bound,
further canonical transformation can be found which again

ransforms the Hamiltonian to normal modes, so that also in thi s
rse the rigorous solutions can be obtained . This is performe d
chapter II, and some results are derived which are of later use .
If the binding force is of a more general character (ch . III),

,ch a further transformation cannot be found, and one has to
sort to perturbation theory . With the aid of the above mentione d
[lution of the free electron, however, the zeroth-order approxima-

on can be chosen in such a way that the interaction of electron
Id radiation field is already partly included, namely as if th e
lectron were free . The perturbation consists of the influence o f
oe binding on the interaction, and will be small for the high -
i equency quanta . Indeed, the shift of the energy levels caused
r the perturbation now turns out to be finite and small . This
s only a restricted physical significance, because the conver -

:nce becomes effective at energies for which relativistic effects
should not be neglected . Mathematically, however, it seems that

It ere are no longer fundamental obstacles in solving the Schrö-
dinger equation by perturbation theory and obtaining physicall y
si inificant results for the scattering of visible light .

4. In order to describe the scattering process we construc t
stationary solution of the Schrödinger equation, satisfyin g

fthe, boundary condition that the ingoing radiation shall consist
a monochromatic wave . This solution will then also contai n

i outgoing wave of the same wave length, and the phase dif-
fcrence between both has to be found from the Schrödinger
equation . This phase shift contains all relevant information abou t

the physical quantities describing the scattering ; indeed it is th e
unterpart for light waves of the phase matrix in Heisenberg' s

[ivory of the S-matrix.

	

-

The above solution may also contain outgoing waves of dif-
ürent wave lengths, namely Raman radiation . The intensities of
ne separate Raman lines follow, of course, from the coefficient s
if [his solution, but these coefficients need not be computed ex-
plicitly. It appears that the Raman radiation is associated with
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imaginary terms in the phase shift mentioned above, so that th e

probability for Raman scattering can be calculated directly fro m

this phase shift .

Non-stationary solutions of the Schrödinger equation can h e

obtained by superposing the stationary solutions . If the super-

position is chosen in such a way that at t = 0 the radiatio n

field vanishes, then the field that appears at t > 0 can only lie

due to emission by the atom . Hence, such a non-stationary stat e

serves to describe spontaneous emission . Again the phase shift

(as a function of the incoming frequency) is sufficient to fin d

all data about the emission process . The scattering by an ato m

in an excited state also requires a non-stationary solution, bu t

this problem is not treated in the present work .

The properties of the ingoing and outgoing electromagneti c

radiation fields have, of course, to be interpreted by computin g

expectation values of certain field operators, for instance th '

square of the field strength . However, it is possible to represent

all relevant features of the quantum-mechanical field by a classica l

analogue. This classical field is constructed in such a way tha t

the (classical) time average of any relevant quantity is equal to

the expectation value of the same quantity in the quantu m

mechanical state .

5. With the method outlined above, the scattering by an atoni

in the ground state is calculated (chs . III and IV) for the case o

non-resonance, i . e . for incoming frequencies that are not near

to an absorption frequency. The result is expressed in terms

the phase shift, but it can be checked to be equivalent to the

Kramers-Heisenberg formula. The expression for the phase shift

contains real terms of order e 2, describing the Rayleigh scattering;

and imaginary terms of order e 4, associated with the Rama n

radiation .
Chapter V is devoted to the case of resonance . Adopting ten e

porarily some simplifying assumptions, the phase shift is calcu l

ated for incoming waves with frequencies in the neighbourhoo d

of an absorption frequency . Just as in the classical treatment

the phase shift strongly increases inside the line width, passed )

through the value n/2 in the centre of the line and finally, o r

the other side of the line, differs from the value v by a snail.

ount of order e 2 . However, the centre of the line does not
ctly coincide with the atomic frequency, but shows a smal l

e shift . With the ordinary Hamiltonian this so-called Lamb-
iherford shift s . could only be computed by means of an ad ho c
scription for the subtraction of infinite terms . '
Inside the line width the Raman lines are very strong and thei r

Lensities are proportional to those of the corresponding emissio n
es . Therefore the scattering process may be visualized as the
sorption of an incoming photon and subsequent spontaneou s
itission . This picture is, however, only partly true, because
eral details are not represented correctly .
In chapter VI the formulae obtained for resonance and non-

sonance are combined into one formula for the phase shift ,
dich holds for all values of the incoming frequency and fo r
v binding force. This equation shows that the transition be -
Ten resonance and non-resonance is rather involved . The simpl e
vice of inserting imaginary damping terms in the resonanc e
nominators of the Kramers-Heisenberg formula has only a
stricted validity .

6 . One feature of the transformation that served to eliminate
electron structure has still to be mentioned . If the electron i s

hosen very small, and a fortiori in the limit of a point-electron,
he new Hamiltonian contains one oscillator with an imaginary
requency. This corresponds to the well-known self-accelerating
elution of the classical electron s. As emphasized by Bhabha 9 ,
its solution of the equations of motion cannot be found by a
icrturbation calculation based on an expansion in e, because it
not analytic in e = O .

As there is no proper way to quantize an oscillator wit h
maginary frequency, the transformed Hamiltonian cannot b e
arried over to quantum mechanics . Of course, even in classical
henry . the self-accelerating motion makes a rigorous solution o f
he equations of motion meaningless . A plausible procedure ,
iowever, consists of discarding the anomalous oscillator from th e

miltonian ; it will be shown that this leads to agreement wit h
perimental results . It is important that no radiation is associate d
th this oscillator .
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Chapter I . Derivation of the Hamiltonian .

7. In this chapter Kramers' Hamiltonian is deduced from th e
usual one in the following way . In the non-relativistic Hamilton-
ian for an extended electron the transverse field is expanded in
electric dipole waves, all other multipole waves being omitte d
By means of a first canonical transformation the proper field o f
the electron is separated from the total field, so that only the ex-
ternal field occurs in the new Hamiltonian . By a second canonical
transformation the remaining A 2 terni is incorporated in the oscil-
lators of the field .

The Hamiltonian thus obtained is, in dipole approximation ..
equivalent to the Hamiltonian given by Kramers . The electron`-'
is characterized only by the charge e and the experimental mas s
ni ; the details of the structure have, for all practical purpose ,
been eliminated. Therefore one may take a simple model, ars

we shall choose a point-electron in order to get manageab l
formulae .

The formalism of the deduction is adapted to both classica l
theory and quantum mechanics .

8. After elimination of the longitudinal field the remainin g
transverse field can be described by a vector potential A wit h
div A = 0 . The Hamiltonian of the system electron + field the n
takes the form 1 0

It and P are the position and the momentum of the electron, e and m p
its charge and mechanical mass . The function e will describe the charg e
distribution, so that Sadr = e . We shall put c = h = 1 throughou t
this work. A and E are the vector potential and the field strength o t
the transverse electromagnetic field, V is the static potential resulting
from the elimination of the longitudinal field . For the sake of simplicit é
we do not consider an external magnetic field, although it will be im -
portant in certain experiments . How it can be taken into account lia
been indicated by Kramers' .

.15
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The symbol - denotes the mean value over the extende d
electron, i . e .

eA = A(r)e(Ir-RI)dr = SA(R+ r)e(I r I) dr .

If the motion of the electron is confined to a region around th e
rigin that is small compared to the wave lengths present in th e

,xternal freld i , then this mean value is practically independent
tf the position R of the electron, so that one may writ e

eA = S A (r) e r 1) dr .

	

(2 )

Phis condition is certainly fulfilled when dealing with the scat -
tering of visible light by atoms . Physically it amounts to neglecting
Ike transport of (canonical) momentum from the transverse field
to the electron ; indeed from (1) and (2) follows

P = -n/ôR = -VV(R) .

	

(3)

Jhen A is expanded in multipole waves, the result of this ap-
i>roximation is that only the electric dipole waves are coupled wit h
he electron : all other multipole waves are zero in the origin an d
hence do not contribute to (2) if e falls off rapidly .

9. As far as electric dipole radiation is concerned the expansio n
of the field inside a large sphere of radius L may be writte n

3

	

sin var

	

n7r
L q" . r

	

L

There are three directions of polarization corresponding to the thre e
components of qn . T means "transverse part of" and maybe defined b y1 2

(In
sinrunt = {q n + v O. v) Q}

smrnP

	

( 5 )

It gives rise to a factor 3 in the mean values over the electron, becaus e
fur small r

	

-

qn (sin v ar)/r = 3 g n o n + Or ;

and also in the normalization, becaus e

qn (sin v ar)/r} 2 dr
= 3 S {qn (sin v ar)/r} 2 4 sz r 2 dr .

_

2 .rn°
(P eA) 2 + V(R) +

8~ S {E 2 + (rot A)2} dr ,

where - E/4 at is the canonical conjugate of A.

A(r) = Z X
n=l

(4)
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The orthogonal functions in the expansion (4) have the norm

	

which can be transformed to principal axes by means of a n

V4 ; consequently, if E is similarly expanded :

then pn is canonically conjugate to qn . From (4) follows further -

more

q n = E'Xnn' gn', pn = ZXnn'Pn' .

	

(12)

['his is carried out in Appendix A, sections 1 and 2, with the
result

where kn are the roots of a certain characteristic equation an d

en = 6n vn v4 e 2 /3 L,

	

'fin and Ln are defined by

an being a convergence factor which depends on the structure e
of the electron and tends to 1 for a point-electron. Substitutiné

	

Ln = L-(cos in) 2/x,

	

1/x = 2 e 2 /3 m .

(4), (6) and (7) in the Hamiltonian (1), one gets

Lkn = 91n-i- nTG ,

	

0 <rin <er/2 ;

The structure of the electron enters into the Hamiltonian (13)
= (1/2 mo) P2 + V (R) - (1 /mo) P E en gn

	

only through the equation for the kn (namely (A 6)) . It may be

2 1

	

2

	

2

	

expected that its influence on the physical phenomena we ar e
+ (1/2 mo) (E'en qn) + 2 E (pn + v n en) •

	

interested in is small . Therefore we may choose a point-electron ,
in which case the characteristic equation become s

10. If now new variables are introduced by means of th e

canonical transformatio n

where
m = 1n0+L• ( en/vn) 2 ,

then the Hamiltonian become s

S) = (1/2 m) P' 2 + V{R' + E( e n/mv2) p n)

2

	

,2

	

2 ,2
+ (1/2 m0) (X En gn) +

	

(Pn + v n qn )

The third term on the right stems from the A 2 term. Togethe r

with the fourth term it constitutes a quadratic form in the fiel d

variables q'n :

{2EAnn' gn gn', = 2

	

nIv

tan Lk = k/x or tan ri = k/x .

	

(15)

11 . For a free electron (V = 0), the Hamiltonian (13) fur-

nishes the correct solution (of course in non-relativistic dipol e

)pproximation) . The momentum P' = P is constant (as a con -
, equence of the dipole approximation, cf . (3)) and R' is linear

n t . The electron at the point R fluctuates around the uniformly

moving point W. If no photons are present, then classically
11 = R', but in quantum theory there is still a fluctuating motion ,

()wing to the zero point fluctuations of the field .* In this case the

square of the distance R - R' has the expectation value

r
(1 /mo) E n £n` ti

r
ngn',

<(R	 R')2 >

	

(2 e2/3 m 2) L' (2 cos 2 rjn/ Lk R) (k ,:/ 2) .

	

(16)

Our factor cos 2 Tin gives convergence for km oo, but it be -
. omes effective at too high values of k, owing to the neglect of

(11)

	

* The influence of this fluctuation in the position of the electron on the
physically measurable quantities has been studied by Welton" .
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recoil and relativistic effects (see also 40) . There is a logarithmic
divergence for k=- 0, but any binding force will cut off the lower
values of k and thus make the expression finite (see ref . 13 )

I t may be added that fluctuations with infinite mean squar e

amplitude are known in probability theory 14 and that the result

for a free electron is not unacceptable, because the mean squar e

amplitude is not an observable quantity . It will be shown in 1 5

that physically measurable quantities do not suffer from this infra -
red divergence .

12 . The physical meaning of the transformation (8) can be seen

from the corresponding decomposition of the field : A A' + A° .
Here A' is of the form (4) with

	

instead of q n , and

A° (r) = ~ ~
3 en P, sin v nr

	

P'
~

i(lr'li dr,

L mvn.

	

r

	

m r- r '

(with the aid of (A 22)) . We shall call A° the proper field of the

electron and A' the external field . If P' fm were the electron

velocity, A° would be identical with the proper field as define d

by Kramers 3 . Now, however, this is only true in first approxima-
tion, because P ' is the canonical momentum

P'/m=R'=R+Oe .

Owing to this difference in the field that has been split off, (13 )
is slightly simpler than the Hamiltonian actually given by Kramers .

At first sight, Bloch and Nordsieck's transformations" seem s

to be rather the same as our transformation (8), but there is a n

essential difference . Since they used the unbound electron as

zeroth approximation, they could replace with sufficient approx -
N

imation (P- e A) 2 /2 m° by v (P - e A) and consider the velocit.

vector v as a constant :

= (P - E en qn) + (Pn + vn qn)

Now the problem is not to transform this Hamiltonian to principa

axes, but to get rid of the linear term in q n . This is achieved b

the canonical transformation

Pn = Pa, gn = qn + (en/2 vn) v, p = P', R = R' .

This transformation is much simpler than (8) since R = R ' .
On the other hand, Bloch and Nordsieck used a less trivial con-
nection between P and P', because they did not confine themselves
to dipole approximation .

Pauli and Fierz 1s supposed the electron to be so large tha t
the electromagnetic mass is small compared to the mechanical
mass . In this case, one can put in (8) m = m ° and the transforma-
tion becomes identical to theirs . It is consistent with this approx-
imation to omit the A 2-term in the Hamiltonian, and accordingly
they obtained the same Hamiltonian (13), but without the phas e
shifts rin . The transition to the point-electron is, of course, ex-
cluded .

Welton" used the same Hamiltonian as Pauli and Fierz, wit h
a rather sketchy justification. Schwinger's elaborate calculatio n
of the self-energy'' is based on the same idea, but meets al l
requirements of relativistic invariance and does not use dipol e
approximation . On the other hand, an expansion in e is used for
the canonical transformation and only the first power is computed .

13. The orthogonal transformation (12) amounts to choosin g
a new set of orthogonal functions for the expansion of A' . It is
shown in A 4 that they are sine functions with wave number kn
and phase shift r1 n :

A'

	

V-3 , sin vn r

L
qn

r

	 = E
L

l/ 3 „ sui (knr - rJn)
• (18 )-

	

V

	

qn

	

r ,

Owing to his slightly different definition of the proper field ,
Kramers found as the external field belonging to a stationar y
,olution of the classical free electron, instead of (18) ,

Al = V3/L,, qR(sin (knr-17n)+ sin?În}/r

For a freely moving electron this field is finite at r = 0, in contrast
with our " external" field (18) . After having obtained these solu -

Lions, Kramers could write the Hamiltonian for the free electro n
imply as a sum of terms :

1I (Pn 2 -}- kn g2) >2

(17)
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each term referring to an oscillator associated with a stationary ;

motion. The Hamiltonian which we obtained by means of tw o

canonical transformations differs . from this one only by the ad-

ditional term P'2 /2 m, associated with the linear motion with

constant velocity .

It is noteworthy that after the first transformation (8) the transitio n
to the point-electron is not yet possible, because the Hamiltonian (10 1

still contains m o . Since the term with m o has usually been omitted ,
the necessity of the second transformation did not appear . The . facto r

cos 2 7y n , however, which arises from it, will turn out to be useful i n

obtaining convergence (see 40 ; cf . also 11) .

2 „

	

q2

	

Nr . 1 5

14. When the electron is very small, the electromagnetic mas s

is larger than the experimental mass m, and consequently m a

is negative. Then (11) is no longer positive definite and not al l

the eigenvalues can be positive. In fact it is shown in A 2 tha t

for the point-electron there is one negative eigenvalue

yielding two imaginary solutions k = ix and k'' = - ix of (151 . '

This anomalous eigenvalue gives rise in the Hamiltonian (13)

to a term

1 (p2

	

;~ )

and to a term (elm) V4/3 x p * in the argument of V. In the ex-

pansion (18) it gives a term

ZV3 x q ,K e-xr /r ;

this is a field which is appreciable only within a distance of the

order of the classical electron radius, and hence does not contai n

a radiation field .

If the Hamiltonian (13) is used for the classical treatment

of the free electron, then the term (19) gives rise to two solutions

with time factors ext and ext . The former is the "self-acceler

ating" or "runaway" solution, well-known from the classica l

theory of the electron $ . The latter comes in because, owing h

the reflecting sphere, our treatment is symmetric in time . (T h

usual boundary condition that there is no ingoing radiatio n

infinity is, of course, not symmetric . )

The anomalous term (19) is not a structure-independci

feature, since it cannot occur if the electron is chosen so big tha t
rno is positive . It may be expected therefore to be immaterial fo r
the phenomena we are interested in, just as in Lorentz' theory ,
provided it is treated in a suitable manner . In his classical theory4
Dirac gave the prescription that the initial situation should be
chosen in such a way that the final velocity is finite . That means
for our free electron that the initial p* and q* must be zero,
because otherwise they will increase exponentially . This amount s
to simply omitting the term (19) from the Hamiltonian of the fre e
electron . The initial field can then no longer be chosen completely
arbitrarily, but must be such that in (19) qy, = 0 (and that p h: = 0
in the analogous expansion of E '). This restrictive conditio n
affects only the field in the . immediate neighbourhood of the elec-
tron, whereas the radiation field can still be chosen freely . The
resulting Hamiltonian can be quantized without difficulty .

The bound electron in classical theory has also a self-acceler-

ating solution, but in this case Dirac's prescription leads to dif-
ficulties 18 . Moreover, in order to apply it to quantum theory i n

he same way as above, one has to find a canonical transformatio n
Iiy which this solution is exhibited explicitly in a term like (19) .
This is only possible for a free or a harmonically bound electron .

A slightly different way of generalizing Dirac's prescription t o
hound electrons consists of dropping in the Hamiltonian (13 )
Loth the term (19) and the term with p a : in the argument of V.
I he remaining Hamiltonian can be used in quantum mechanic s
ad may again be expected to give right results for the scattering
i visible light by atoms . In the next chapter we shall apply both

he first and the second procedure to the harmonically bound
lectron, and the results will turn out to be practically identical .
hi the later chapters the second procedure will be used for th e
electron in a general field of force .

15 . The Hamiltonian (13) might give rise to "infrared " diver -
gences of the kind encountered in (16) . We shall here show tha t
they are only formal and do not prevent a consistent solution o f
the Schrödinger equation. For this purpose we use the canonica l
Transformation

4 cos -
/-Ln

	

Pn ,3

	

k„

(19i
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where Dn are arbitrary numbers, bounded for n -i no . The Hamil-

tonian (13) takes the for m

= 2P2 ,+V{n+ nx(1-71n)
`/ 34

cos

m

	

. k,, Pn }

+ Z(pn +kg2) -m 52'dn V 3Ln
kn cos cÎn g n ,

with
1_ 1

	

4 e 2

	

2 cos' ? „

m' u~ +3m2~9n
Ln

If we now choose On = 1 for small n, there is no risk of diver-

gence for k->- 0 . If moreover Di„ = 0 for large n, (20) will have

the same features as (13) in the region of large k, that means

(as will be seen later) that there are no divergences for k-- oo .

Consequently there is no difficulty in applying perturbation theor y

to (20) . Any measurable quantity, however, must be independent

of the arbitrary numbers 9În , so that one can put afterward

19in = 0 for all n, without introducing any divergence .

A safe, but cumbersome, way to deal with (13) is to use its

transform (20) . Instead we may use (13) directly, because in th e

final result the divergences for k - - 0 will cancel . In intermediat e

stages any divergent term may be cut off temporarily at smil e

low value of k .

Even with the choice Din = 1 for all n the results are stil l

finite, owing to the factor cos vin in the last term of (20) . Thi s

choice might seem profitable because of the resemblance of th e

resulting Hamiltonian with the customary one . However, it i s

easily seen that then m ' = m/2, so that half of the experimenta l

mass has to be furnished by the interaction ; hence we woul d

get an unsuitable starting point for the application of perturbatio n

theory.

Chapter II. The Harmonic Oscillator .

16. In the case of a harmonically bound electron one has

V = 2 mK 2R 2 , and the Hamiltonian (13) reduces to a quadratic

form

=-	

+ K
2 (R'

+

	 	 4	 cos iv,,

	

1

	

„2

	

22 m 2

	

m v3 Ln kn
pn) 2+

2 (pn + kn qn )

P m

	

e

This is a sum of three similar terms, each referring to one direc-
tion in space. Therefore the problem can be reduced to a scala r
one by writin g

P' = e P', R' = e R', pn = epn, qn = e qn ,

where e is a unit vector in the x, g, or z direction .
On introducing new canonical variables P,,, Qv by

P' = Pomi, R' = Qo m-i , pn = Qn kn, qn = -Pnkr, 1 ,
and putting

ko = 0, do = 1, do = V%2/xL n cos din ,

the Hamiltonian becomes simply

= 2 E(P 2
v -{-2Q 2

v )+ 2 K2 (Ed,' Qv) •

	

(21 )

The subscript v takes the values 0, 1, 2, . . . and also the "value" *
at least in what is called in 14 the first procedure ; in the second
procedure, considered in 18, the anomalous oscillator denote d
by * is discarded at this point) .

The Hamiltonian (21) can be transformed to principal axe s
by means of an orthogonal transformatio n

Qv = E Y„v' Qv' , Pv = E Yv,; Pv' ,

ith the result (see A 3)

5~ = 2 E(Pv2 + wv
Qv

2)'.

I he shifted frequencies co, are the roots of the characteristic
{uation

	

tan L co =	
w3/x - w (	 	 K2

	

(23)w 2 K2

	

x 1 + 0,2 _K2

	

ud a new phase shift

	

can be defined by

Lw,, = Cv + vn, tan 4tv = tan Lwv .
Dan .Mat .Fys .Medd .26,no .15.

(22)

(24)

2
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1 9
It is seen from (23), (24), that rl for w » K ; that is near to

n/2 for w K, and N r for w (( K . Hence there is resonanc e

at the frequency K .

There is again one imaginary root w* Re, ix, analogous to k,

for the free electron . In the first procedure the corresponding

term is discarded in the transformed Hamiltonian (22) . The re-
maining part is positive definite and can be quantized .

17 . In order to investigate the aspect of the eigensolutions ,

we express the original variables in terms of Pv' and Q . Th e

position of the electron is given by (see A 3)

R = eEdvQvrn I' = em EßvQv ,

2x K sin _ e
1/
4	 Kwv

mL,,

	

oh,

	

rn V 3 L,, V (Q, - K2) 2 + wv/x2

In general this factor is small of order e, but for w K it becomes

of order lie .
The external field is described b y

A' _

	

e Z I/3 /Ln Pn sin (knit- r7a)Îknr

	

(25 )

and, with Fn. = EYny Pv , this becomes (see A 5 )

3 suz(wvr-'v) ~ eP_
Lÿ Pv

	

r

	

mr

P is the momentum of the electron and the term with P is ju s

the proper field A°, according to (17) . Hence the first term'oti

the right represents the total field ; it is an electric dipole wave

with phase

	

whose dependence on the frequency co, is give n

by (23) and (24) .

It can be understood physically that the total field reappear s
our formula . Contrary to the free electron, the harmonically boue
electron can only perform an oscillatory motion and no translatio n
Hence the total field must be of the type of a dipole wave, and canin

contain a part with 1/r . This essential difference with the free elect s
prevents a continuous transition if the binding tends to zero, i . e .
K -~ O . This paradox is caused, of course, by our dipole approximation ;

18 . The second procedure consists of discarding the anomalous
terms in the untransformed Hamiltonian (21) and transforming th e
remaining Hamiltonian into (22). This is carried out in A3 and, instea d
of (23), the characteristic equation

K2tan (co) = tan L w
= x

1 +	 w2 _
K2 - 2 w2 K2/(w2 + - x2)1

	

(27)

s now found . There is no complex root, because we started with a
.,ositive definite form, so that all eigenvalues w 2 must be positive .

Again the situation may be studied, and agai n

R = e V2 x K 2 /m 4 ,4 sin 4 Qv ,

now being determined by (27) . The expression (26) can also be main-
tained if a term with e ' /r is neglected. The situation therefore . is es-
sentially the same as in 17, the only difference being that between the
expressions (23) and (27) for the phase C (w) . This difference between
the two values of is always relatively small, except in the neighbour -
hood of K. Whereas (23) is infinite for w = K, (27) gives resonance fo r

w = K + K3/(K2 , + x2 ) + Or-4 K + K sin2 n(K )

This shift of the resonance frequency is of order (K/x) 2 (for visible light
about 137-6) with respect to K, which is much smaller than the natural
line width and can therefore always . be neglected .

Consequently, this second procedure is, to all intents and purposes,
equivalent to the first one : it does not make any appreciable differenc e
whether the problem is first solved rigorously and the new self-acceler-
ating solution is discarded afterwards, or whether, alternatively, th e
elf-accelerating solution of the free electron is discarded before th e
binding is taken into account. In this chapter we adopt the first pro-
cedure, because (23) is simpler than (27) . As mentioned in 14, we shal l
use the second procedure in the later chapters, because the first on e
cannot be applied to an electron in a more general field of force .

19 .. The investigation of the physical aspect of the solutions
can be simplified by the. following two remarks .

1° . In order to get a picture of the electromagnetic field in
quantum-mechanical state, it is convenient to construct a

.

	

tclassical analogue12. Let ¶ = E cv {cap) e `° ' be a quantum-
aechanical superposition of one-quantum states* {coy) . The ex-
Eiectation values of quadratic expressions in the P ' and Q ' ar e

* With {wy} we denote a state in which one quantum is present, with fre -
quency coy .

1
ßv

A' = -ZeEl

2*
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easily calculated ; one finds, for instance, after subtraction of th e

vacuum part ,

<PA Pµ, > = 2V 0)A m f,{ c,cl, e1(w-wµ)t+c,14 e 1(w2. wy)t }' (28 )

Now consider a classical superposition of eigenvibrations, deter-

mined by*

Pv(t) = 9i 1/2wvcv é lwv t = i /wv/2 ( Cy e1v~vt+cÿel"'vt) . (29)

One finds for P; (t) P (t) in this state the same expression (28) ,

plus terms with frequency wA + coy . The same agreement holds

for Q '2Q y' and P'Qy+Qy' På, and, consequently, for any quadratic

expression in A' and E' . Hence the physical results are the same

in both states, provided that in the classical one the high-frequency.

phenomena are omitted (e . g. by averaging over a time which i s

long compared to the period of the waves, but short compare d

to the macroscopical changes in the situation) .

2°. In problems of particle scattering the wave function ha

necessarily, an infinite norm. It may be considered as referrin _

to an assembly of an infinite number of particles, such that th e

particle density is finite 20 . In the same way we shall choose al l

infinite norm in order to get a finite incoming energy current .

In our finite sphere this amounts to omitting in all coefficien t

the factor L 1 , with the result that the ingoing field is independer i

of L . However, in the case of a perturbed state consisting of

superposition of the eigenstates in a certain energy interval, th ,

number of these eigenstates increases proportional to L, and n

extra power of L needs to be added .

20. We are now in a position to investigate the physical aspee i

of the solutions . Any eigensolution, with frequency wv = w sa, .

contains an ingoing and an outgoing wave and hence represe n

a stationary scattering process . According to (26) and (29), tle

incident electric dipole wav e

A_(t) _ R,eé- iø(r+t)
l r

*

	

denotes the real part .

Nr:15

(whose total ingoing energy per unit time is I = w 2/3) gives ris e
to an outgoing wave

A+(t) = -~Jle 21 Zee1w(r-tl /r .

The phase factor

	

21
is connected with the cross-section . for

scattering of a plane wave by a well-known formula 2 1

3 4 r
_ 5 -2 -w2

sine C(w)

This is identical with the expression found in the classical theory
of electrons" .

21 . Emission will be described by a superposition of stationar y
states, chosen in such a way that the field vanishes at t = 0 .
This is possible because the phase-shifted functions in (26) satisfy
an identical relation (see A 6)*, viz .

X(2/L;,wv) sin Cv sin (wvr-Cr) = 0 .

If now, classically, one takes a superposition of eigenvibration s
29), the coefficients cv being determined by

, -2
y' 2 co, ev = V/3/Lv wv sin Cv C ,

one finds, according to (26) ,

A(t) _ -C .̀ e2 3 sin'
sin(wvr-cv )

,;o,	 	
r

is the classical analogue of the radiation field . At t = 0 both

t(t) and E(t) = - A (t) vanish, so that there is no radiatio n
present . Hence the field appearing at later times (t > 0) has
to be interpreted as emission by the oscillator .

For the outgoing energy per unit time with frequency betwee n
ü) and co + dw one find s

1(w) dw_
3 C 2 sin 2 (co )~ d w-

3 C2

	

w4

4 L acw2

	

4 L (w2 - K2)2 +

* Whether the anomalous term is included in the sum or not is immaterial,
since it decreases exponentially ase7tr .

2 1

6n

	

w4
x2 (w2- K2)2 +I 0) 6 11x 2

Cos wv t

dw
. (30)s/x2 ;~x 2
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If L tends to infinity (with constant C), this expression vanishes . In-
deed, the field describes only one act of emission between t = - co

and t = + 00, so that the outgoing intensity, averaged in time, must
be zero . If L is finite, however, the emitted radiation is reflected by th e
sphere and after a time 2 L the initial situation is restored. Thus, our
non-stationary state then describes a sequence of emissions, one pe r
time interval 2 L . The emitted energy with frequency between w an d
w + dw for each emission is equal to (30), multiplied by 2 L ; for the
total energy per emission one finds 3 C 2 /4 x . This value can be used to
determine C, but, for convenience, we shall put C = 1 in the following .

The field for t > 0 can be calculated when the summatio n

over v is replaced by an integration over w :

	

A (t)t= -Z (e/r) (3 /aw2) sin w sin {

	

Ow r-~ w} cos w t d co~

. + ~
3e~J1-é 	

2i'etw(r-t)
+l -e2i'e-iw(r+ 1 dw .

s 7LT l

	

w 2

	

w 2

In the last expression outgoing and ingoing fields appear sepa-

rately. After substituting from (23), (24)

-e=2iC(w)

	

2i

	

w
w2

	

+
x w2 - K 2 Æ t w 3 /x '

one can carry out the integration in the complex plane. The poles

w ± ix give contributions exr and must be neglected. The two

other poles are (omitting higher orders of 1/x) K ± iK 2 /2x and

-K + iK2 /2 . One thus finds that the ingoing field is zero, o f

course, and so is the outgoing field for r > t . For r < t the latter

is, omitting terms of relative order e 2 ,

A+ = Z (3 e/2 xr) cos K (r	 t) exp (K2 /2 x) (r - t) . (31 )

This is the well-known expression for a damped wave wit h

frequency K and half-value breadth K 2/x = 2 e 2 K 2 /3 m .

22 . It is useful to consider a more general formula for the

phase shift, viz .

w
2

2

I

K2
= x Ø (w) . (32)

This is the phase shift caused by a number of oscillators wit h
frequencies Ki and oscillator strengths f = x/xi .

To each zero Q t of Ø corresponds an identical relation (A 21)
and hence a state in which there is no radiation at t = O . At any

time t > 0 there is a radiation field, but it will be seen that i t
contains all frequencies K1 , so that the initial situation is on e
in which all oscillators are excited . Indeed, choosing in (29)

1/ 2 co, c, _ j/3/L;, sin'v/(Q	 wv),

	

(33)

one finds from (26) the fiel d

A (t) _ - r

	

-v
~rn,~co

v2 sin. (wvr	 ~v) cos wv t

2 i
iw(r-t)+ 1 - e	 e-tw(r +t) do.

The integration can again be performed in the complex plane .
From (32) follows

_	 +2iw/x
Shi - w 2

	

1 + (iw/x) Ø Q - w 2

and the only singularities are the zeros of 1 + (iw/x) Ø . Those

with w + ix must be neglected and the others are Ki iKi2f /2 x
and - Ki + iKJf /2 x . Thus one finds an outgoing field for
r< t, viz .

2

A(t)

	

2
3

x

e

r

	

01
Ki fi

K?
cos K

t
• (r - t) exp (Ki fi /2 x) (r - t) .

This field corresponds to simultaneous emission by all the oscil-
lators .

In order to describe emission by only one of the oscillators ,
one has to choose a suitable linear combination of these states .
For this purpose we use the theory of A I. and substitute s = w 2
and F(s) = Ø (co) . The poles t o of F(s) are now Kl and the resi -
dues are ec = K1fi . The roots of the equation F(s) = 0 are
ni and the normalization constants ar e

tan (co)
-7 w3 /x i

	

w

~.~ w2- K 2.
_

r

_ 8 scr l S~i - w2
e

	

S2i - w2

.+ ø
3e ~1 -e-2i C

1 - o f 2 i C



	

ß1 2 =	 F ' (Q i) = E Kf f1/(4i - Ki
so that (A 5) become s

	i

	

2

	

f'I

	

å hi

(S~i-K ,) (Qi -KJ)
_

KJ' f1

Now let the states given by (33) be added, each being multiplie d
by ß/(Q-K) . In other words, we consider a new state given

by new coefficients c, determined b y

V2 cw cv = V3/L ' sin Cv Ei N/0-2z''' - Kh) (Q 1 - wv) .

Then the field follows from (26) and (29) :

A(t) = Z (3 e/2 xr) cos Kh (r	 t) exp (K11/2 x) (r - t) . (35j

This is exactly the field (31) of an oscillator with frequency Kr
whose probability for emission is reduced by a factor fh .

It should be emphasized that these results follow from the equation
(32) for the phase shift, and that it is immaterial whether this phas e
shift is caused by oscillators or by any other scattering centre . In fact ,
in this section we have derived the existence and properties of decaying ;
excited states from the behaviour of the S-matrix, in our case defined b y

S(w) _ - e-2 i C(w) =

	

-itan C
1+itanC .

The connection with the usual treatment 23 follows from the remain;
that the poles which contribute to (34) are the zeros of 1 + (i w/x)rt,
= 1 + i tan C, and hence also the poles of S(w) .

It is noteworthy that tan 4, rather than the multiple valued fun k
tion C itself, describes the properties of the scattering centre in a situp ;
way24.

Chapter III . Arbitrary Binding Force .

23 . In this chapter the Hamiltonian (13) is employed t

compute the scattering of light by an electron in a generid

field of force with potential V(R) . As V is no longer a quadrat i

function in R, the Schrödinger equation cannot be solved b 3

linear canonical transformation of the variables, and perturl :, -

tion theory becomes necessary . Accordingly, the term V in (1 : '

must be expanded in powers of e and the zero-order Hamiltonian i<

= P'2 /2m + V (R' ) +E (p n 2 + kn g2) •

Following the program outlined in 14, the anomalous term i s

omitted in the sum, so that n takes the values 1, 2, • • • . This
Hamiltonian , ° describes a motion of R ' as if there were no

coupling, whereas the electron at R fluctuates around R' in the

same way as the unbound electron . The higher terms in e describe
the effect of the binding force on the fluctuation . Since for high -

frequency vibrations this effect will be small, the convergenc e

may be expected to be better than in the usual treatment, wher e

the whole interaction with the transverse electromagnetic field is
treated as a perturbation .

24. Each of the field quanta corresponds not only to a certai n

oscillation of the field, but contains a vibratory motion of th e

electron as well* . They are labelled by n and their polarization

u (v = x, y, z for the three components of qn and pn) . Instead of

the pair n, v we shall often use n . Creation and annihilatio n

operators are introduced b y

pnu = Vkn /2 (a nv + anv), qnv = 1 (anv - ano)lV 2 kn. . .

The Hamiltonian (13) then becomes, to the second order,* *

= P ' 2/2 m + V (R ' ) + E kn an„ ano + E rn (a nr, + an„)a „ V

1

	

(

	

(36)
+ 2 E tn~n (anv + anv) \ (In,d + an•v) Ci v Bv,V ,

= e

	

2
nm 3 knL

cos ri n (= Oe) .

	

(37 )

Let EN be the eigenvalues- of the operator P' 2 /2 m + V(R') .

The eigenfunctions will be labelled by N and an additional sub-

script it to cover the case of degeneracy. Writing N for N, ca we

shall denote the eigenfunctions by g9 N (R') . The eigenstates of th e

operator Ekaa will be denoted by { }, {n}, {n, n '} = {n ' ,n},• • . ,

* This is the reason why we prefer not to call them photons .
** 8o denotes derivation in the direction v .
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according as there are 0, 1, 2, • • quanta present . A state vector

P of the whole system can be expanded as follows :

w =

	

(NTN+ cl:T

	

+(1 1 21)2'

	

TN{n,n'1 .+
N

	

Nn

	

Nun

with cN = CN n , etc . 25 Finally, for the matrix elements of V

we use the abbreviation s

rn <N l 301I N '> = <N nv N ' > _ <NnN> (= 0e) ,

<N I av a~ V I N'> = <Nnn'N'>

	

(= Oe 2 ) .

Then the Schrödinger equation (S~ -W) I' = 0 takes the form *

(EN-W)cN+<Nn'N'>cN'+- <Nn'n"N'>cNn'+2 <Nn'n'N'>cN, = 0

(EN - W + k,) cN + <NnN'> CN' + <Nn'N'> cN' + <Nnn'N') cN, +

1 <Nn'n'N ' > cl;,, + 1+

	

<Nn'n"N'> cn° = 0
2

	

2

	

N

(EN - IV + kn + km) cN + <NnN'> cN + <NmN'> cN, +

+ <NnmN'> cN , + <Nn'N'> cÎJmn + 2
<Nn'n"N ' > c n" +

+ <Nnn'N ' > c N m + <Nmn'N ' > cNn +
2

<Nn 'n 'N '> cN = O .

It should be noted that an infinite constant (3/2) E kn has bee n
dropped in (36) . This is the zero-point energy of the shifted oscillators
and differs from the usually subtracted term (3/2) E vn by an infinit e
amount (cf . ref. 2 ) ,

( 3 / 2 ) E ( k n - vn) = (3 /2 L ) E nn = (3/2 Fr) (k ) dk ,

which represents the non-relativistic fluctuation energy of the free elec-
tron. In the usual treatment this infinite energy shift has to be furnished
by the perturbation calculation and causes divergence . In the exact
treatment of the harmonic oscillator in ch. II the subtracted zero-point
energy (3/2) E Wv differs from that for the free electron by a finite
amount

(3/2) E (wn- k n.) . = (3/2 n) S {~ (k) - n (k)} dk

= 3 K/2 + (3 K 2 /2 nu) log (4K) .

* Summation over all primed letters is implied . Similarly in the following .
summation over primed letters is not indicated explicitly, when no confusion
can arise .
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The first term represents the zero-point energy of the harmonic oscil-
lator, and the second term is an additional fluctuation energy . It has
the same form as the Lamb-Retherford shift, but in this particular
case it does not give rise to a frequency shift, because it is the same for
all levels . In the present case of a non-harmonically hound electron, a n
analogous term must result from the perturbation calculation ; as it i s
no longer the same for all levels, a frequency shift does arise .

It should also be noted that in the right-hand side of (36) a term
occurs with a at . Here the operators cannot be reordered with th enu nu
creation operators on the left, because this would amount to discarding
a term in the Hamiltonian which is not a constant . In fact, this term
will turn out in 39 to be essential for the cancellation of the infra-re d
divergence .

25. In the same way as in ch . II we shall describe the 'scat-
tering process by means of a stationary scattering state . For thi s
purpose an eigenfunction W will be constructed, satisfying th e

boundary condition that the ingoing field at large distance shal l
consist of a monochromatic wave with given frequency w an d
given polarization w . The outgoing field then consists of wave s
with frequencies w, ci l , w2, , describing the Rayleigh scat -

tering and the various Raman lines .
This method of stationary scattering states has the physical

advantage that it is a direct translation of the customary classical

treatment. Mathematically it is simpler than the time-dependent
method, because the latter is unduly complicated by irrelevan t

terms arising from the initial conditions for th.e intermediate

states 26. Moreover, it describes the time-dependence in greater
detail than required for the actual experiments (cf . 50) . On the
other hand, the interpretation of a stationary scattering state i s
rather subtle: It should be emphasized in particular that it must

not be visualized as a steady stream of photons, scattered by on e

atom, but as an assembly of identical systems, each containin g

one scattering center and one incoming photon "

In' the theory of particle collisions, the eigenfunction W is

constructed by starting from an unperturbed wave function ¶°
which has the 'required ingoing waves . In order to satisfy th e
perturbed Schrödinger equation one adds a perturbation term W'
containing outgoing waves only . This means that the k-represen-

tative of this term must have a facto r

22tiå+ (k-w) = (k-w)-1 +igzb(k -w) .

	

(40)

(3,8

i
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This method, however, will not be suitable when the scatterin g
is very large, for instance when w is in resonance with an absorp-
tion frequency of the atom. To cover the case of resonance as well ,
we shall here use a different line of approach, which can be out-
lined as follows .

Since the above mentioned unperturbed wave function contain s
a factor 6 (k - w), the total wave function is of the for m

= Pc' + 1F' = C {(k - (0-1 + A8 (k - w)) .

	

(41 )

(In general C and A will be functions of the direction in space ;
but in our dipole approximation they only depend on the polariza-
tion of the incoming radiation .) Our method consists of finding
a stationary solution of the Schrödinger equation which has thi s
form (41) . The total energy W can then be considered as a pre -
scribed quantity, determined by the given incoming frequency co .
The parameter A, however, has to be found from a characteristic
equation. The coefficients c in (38) can then easily be computed .
It turns out that A is directly connected with the phase differenc e

between the ingoing and outgoing waves, and hence with th e
physical quantities we are interested in . In the same way as in
ch . II, it will be convenient sometimes to choose the normalizatio n
constant C such that P - corresponds to a given ingoing energy
current .

On solving the Schrödinger equation other singular terms will
appear, of the type (k - wl )-1, (k - w 2 )-1, . . . , where ch i w 2 ,
are frequencies lower than w . They represent Raman lines, and ,
in order to obtain a state in which there is no ingoing radiatio n
with these frequencies, they have to be supplemented with term s
m ô (k

	

w 1 ) , iacd (k - w 2 )w , ) , .

	

similar to (40) .
The 8-functions, of course, refer to continuous variables . I L

is shown in A 7 that our procedure follows directly from th e
discontinuous treatment, when the enclosing sphere goes to in-
finity . Discrete spectra in connection with stationary eigenfunc-
tions have been used in similar problems by Rice 27 and more
recently by Hamilton 28 . They constitute a reliable basis, but th e
actual calculations are much simplified by the use of 6-functions .
Nevertheless, we shall sometimes for convenience in writing us e
discrete spectra .
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26. We try to find a solution of (38) whose zeroth order
approximation represents a state with the electron in the groun d
state N = 0 (which for simplicity we suppose to be non-degen-

erate), and with one quantum present of frequency w and polariza -
tion w . Accordingly we put

W_ co' To+Oe, W=E0 +w+Oe 2 .

	

(42 )

It may also be expected that cô is of the first (or higher) order
in e, except for those n for which v = w , kn w . In this chapter ,
we shall show that this "Ansatz" leads indeed to a solution, if
the energy is too small for excitation

E0 <W<E1 or w<El -E0 = K10

	

(43 )

and outside the level width (which may be expected, from th e
particular case in 21, to be of order Ki0 /x)

(44)

cN - Wco,

Kw -w ii Kio/x .

One then finds to the first order from (38 a) and (38c)

Lnm _ - <Nn 0> cô -F-<Nm0 >	 c0 ,N

	

EN-W -f- kn + km

	

(45)

all other coefficients being of higher order . Substituting this in
(38 b) and omitting orders higher than the second, one get s

w+
kn cn

	

<NnN'i <N'n ' 0 >	 <Nn'N'>	
<N,n

0>n

	

41'

	

EN,-W +EN,-W+kn+k

	

<Nnn
o> }

<Nn'N'> <N 'n ' 0> 1 <Nn 'n ' 0>1 c'1{EN,-W+kn +kn, 2

Phis shows that all cN are Oe 2 , except perhaps when En-E + kn
s small . Owing to (43) and (44) this can only occur if N = 0 ,

ti w, and in that case (46) become s

) n

	

<0 nN'> <N 'n ' w 0> <0 n' wN'> <N'n 0>

	

ô.,,o
c0= {

	

EN,

	

+ EN W 2 co
-<OnnOlc (47 )

Here the value kn = w is used in the factor { } ; and also kn. = w ,
because in the sum over n ' only terms with kn. w are of order

<Nn'O >__
-EN
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e 2 . Moreover, only the coefficients co w referring to the polariz . i

fion of the incoming radiation are retained, since the other coef -

ficients are 0e 2 . The second term in (46) has been omitted ; i i

would yield a contribution

2

E I
	 ,	 EN'>

lkn,-
1

<O n'n' 0> co ,

which can be absorbed in the term with Eo on the left . Thus it :

would give rise to a shift of order e 2 in the atomic energy levels ,

analogous to the last term in (39) . Outside the resonance region ,

however, it is a term of relative order e 2 and may be neglected .

Taking v = uv in (47) one gets the equation

(Ifn - w)co w = Zn 0(w)Et n cp w ,

	

(48 )

where (see App . C) *

0(w) -
<016,0 11N '>+~<0IrlwVIN >

-<o AV' o>
EN, - Eo -cu E~,,-E o + w

2w2

	

KNol<
O

1 PwI Ni12

N

	

Krro -w 2

27. (48) is a set of homogeneous equations for the unknow n

ca w, which has the form (A 1) except for the factor 0 dependin g

on the eigenvalue w . It can be treated in the same way, but it i s

convenient to perform now the transition to the limit L ->- coo i n

order to use the formalism for continuous spectra. Introducin g

continuous functions r(k) and c(k) by

(k )

	

+In

	

e

	

2
Cos 7? n , c (kn) =n = l ~ n mv3~kn

one can write for (48)

	

(k - w) c: (k) = r (k) 0(w) S0k'c'' .

	

(50)

Now, as is shown in A 7, the solution of this equation is

c(k) = r(k) {(k	 w)-1 + Äå(k -w)} C,

	

(51 )

* Pa, is the component of the momentum in the direction w .

where C is an arbitrary constant and the eigenvalue A is determine d
bq the equation

	 1	 _ \)dk+Ar(w)2
0(w),

	

(52)

o

obtained by substituting (51) in (50) .
In the integral the principal value has to be taken at k = w .

it is, however, of order e 2 and is negligible compared to the left -
hand side, which is of order 1 . It does not matter that the integral
is logarithmically divergent at k = 0, because other terms of th e
same order have already been neglected and from 15 we kno w

(hat they will cancel the divergence (see 39) . The solution for A
can then be written with the aid of a new quantit y

A = - rc cot , tan $ = - rcr(w) 2 0(co) .

	

(53)

Clearly = Oe 2, A = Oe-2 , and C will be of order e .
At this point the problem . .of determining T has been solved

in principle . For a given w one can find A from (53) and then
c(k) from (51). All other coefficients then follow in successiv e
approximations, the first step being written explicitly in (45) .
By means of the conditions (43) and (44) it can easily be verifie d
that they are small of the order anticipated in (42) .

It might seem from (38) that co° for v � w can also become large
when kn w . These coefficients correspond to scattering with the in -
coming frequency but different polarization, which can be treated i n
the same way as the Raman scattering (see 35) . In the next chapter i t
will be shown that our solution is not invalidated by such. singularitie s
in the coefficients.

28. In order to investigate the physical aspect of the stationar y
state, it is again (cf . 19) convenient to construct a classical ana-
logue . Let a classical field be defined by *

(49 )

Ln conu,
,

~

(1) = (ew/r)EV3/2Lnkn sin(knr-lÎn )•
i{côwe-iwt- err* etwc}

; (54)

then it can easily be checked by direct calculation that the time

average of A(t) 2 is equal to the expectation value of the operato r
A'2 in the state Wo = En

cow {n, w}, provided the vacuum ex-

* ew is a unit vector in the direction w .
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pectation value is subtracted. Owing to the singularity of cr at

kn = w, (54) satisfies the wave equation for large r ; consequently,

E(t) need not be introduced separately, but can be replaced b y

	 A(t) . The expectation value of any quadratic expression in A '

and A ' is equal to the time average of the same quantity for the

classical field (54) . The non-singular terms in do not give an y

radiation at large distance, nor does the proper field A°. Thu s

A(t) may be used to find the ingoing and outgoing radiation .

In order to compute the field, we write (54) as an integra l

and substitute (51 )

A(t) = (e w/r) S V3/2 nlc sin {kr

	

'y7(k)} c(k)dk . 2 sin w t

= (e i °/r)(2e/inco)cos77(w) [cos {wr-e7(w)} -cot $ sin{wr-17(co) }] Csinw

-Z
e' m~ cos n(w) sin (coin

r
	 	 -,) C sin wt .

An elementary calculation now gives for the total incoming energy

per unit time I the valu e

I = (2 xm)-1 {cos 77(w)/sin , ) 2 C 2 ,

and the normalization constant can be expressed in I :

C = {sin /cos rl (co)} V2 xmI.

	

(56 )

The field now becomes

A(t) = -V12I ' (e"'/wr) sin (car- i- ) sin w t

and $ appears as a new phase shift to be added to the phase shift

17 of the free electron .

29. For this phase shift follows from (53) and (49) the valu e

w

	

' NOfNO

	

2
tan =

	

w2 .-K2 cos 17(w) ,
N

	

N O

where the oscillator strength fivo has been introduced by 29

Since both 77 (the phase shift of the free electron) and (the shif t
caused by the binding) are of the order e 2 , the total phase shift

_ + becomes, omitting terms Oe 4 ,

tan C a, =-c')3	 	 fivo 	

N co t -K
N
2 O

The subscript w has been added to remind that this is the shift for
the radiation with polarization in the direction w . For a central field
f force one has fivo = tNo = fzNo so that the phase shift is independen t
the polarization . In that case (57) is identical to the expression (32)

for the phase shift caused by a set of independent oscillators . By usin g
nisotropic oscillators, one can also construct a model with the mor e
general phase shift (57). Hence, in this respect the atom in the groun d
state can be represented by a set of oscillators ; but (57) is only approx -
imate (see ch . IV), whereas (32) is true to all orders of e .

30. It is convenient to define the region of resonance for each
tomic frequency KNO as those values of w, for which in the

sum (57) the term with KNO predominates, so that the terms with
different K may be neglected . In general it is sufficient that
rn - KNO I <( KNO, but if the line is very weak, or very near t o
nother line, the resonance region may be narrower .

The natural line width is the region where tan ç is not small ,
i . e . where co -KNO ee KN O /x . Outside the line width the omissio n
of the principal-value integral in (52) is justified . For visible
inht the line width is of the order 137-3KN0 ; this is in general
nuch narrower than the resonance region30 . Hence it is alway s
possible to apply either the simplification for the resonance region ,
rir the simplification for outside the line width, except if the distance
between two lines is comparable to their widths .

Now (57) has been derived under the restriction (44), tha t
paeans outside the line width . In this approximation there is no

Cason to write tan C rather than C. or sin C . In ch . V, however ,
he region of resonance will be studied, with the result that owin g

the choice tan C, (57) also holds inside the line width (apart
from a small frequency shift) . It is noteworthy that our derivatio n
should yield -a more precise formula than is warranted by th e
calculation .

Granted this validity of (57) inside the line width, it is possibl e
a_ derive the formulae for emission from this expression for th e

Dan . Mat .Fys.Medd, 26, no . 15 .
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phase shift, . as has been shown in 22. The probability per unit

time of transition from the state N to the ground state 0, unde r

emission of radiation with polarization w, was there (eq. (35))

found to be Kro No/x , in agreement with the usual result 23 .

31 . The influence of the presence of the atom on the field eau

be described by a polarizability tensor avw , expressing the electri (

moment M of the atom in terms of the incoming field strength E

~lI„ = a
uw Ew

.

The diagonal elements aww are related to the phase shifts ' ,
cording to (B 12) . Thus we find outside the line width

7

	

w
cu	 	 fIV Q

n1

	

' K
NO

- co tN

in agreement with the Kramers-Heisenberg formula 31 . The phase

shift is also connected with a cross-section for coherent scatterin g

(with the same polarization), viz .

87r e 4
as

= 3m2
w

For the non-diagonal elements aow the coefficients co° fo i

v ~ 0 have to be solved from (47) . This will be done in the nex t

chapter, because the calculation is the same as for the Rama n

radiation . For a central potential field V they are, of course, zero .

Otherwise some of the energy of the ingoing radiation is lost i n

radiation with different polarization . This energy loss can be de -

scribed by an "absorption" cross-section on; which, according t o

App . B, is associated with an imaginary term in the phase shill .

This term, however, will turn out to be of higher order (see 35 )

Chapter IV. The Raman Effect .

32. We shall now consider the case where the-frequency

the incident light is higher than one or more of the absorpti i

frequencies of the atom. Thus we suppose, instead of (43),

EM <W<EM+1 or KMO< co < KM+1, o

and we shall use the subscript L for the states that can be excited
(L = 1, 2, . . ., M) . The region of the line width is still excluded :

w-Kmo»nro/x ,

	

KM +1,o- u> ii Kÿr+l,of x .

la this case, some of the energy factors on the left-hand side of
(38) may vanish and the solution found in cli . III seems to break
down. It will be shown, however, that the order of magnitude o f
the coefficients is not altered by this singularity, so that actually
the solution is not invalidated .

First take the expression (45) for cL . As only the first order
is required, and c'a = Oe2 except if kn N co, it may be replaced by

_ Ln0

	

>

	

_	 <Lm 0>
cL

	

EL-E° 1-- kn c0 EL-E° 1 km
co F Oe 2 .

Hence the vanishing denominators do not occur in the first orde r
expression of cï, which has been used in deriving (57) . Therefor e
the formulae of the preceding chapter can be maintained, provide d
that it is shown that the higher order terms may still be considere d
to be small. That this is indeed justified, in spite of such vanishin g
denominators, is due to the fact that wherever these denominator s
'ccur in the Schrödinger equation (38), one has to sum over kn .
The resulting sum will turn out to be of the same order as it wa s
supposed to be in ch . III .

Take, for example, the expression (46) for et . As we are
interested in the behaviour for those values of kn for which

-W + kn is small, it is possible to insert in the right-hand
member the value kn = W EL 0L . Omitting terms Oe 4 one
;ets

nu

	

uw

	

n' w
(kn- wL) c L . = Zn ~L ° Zn, c °

where (App. C)

LIaUVIN'>< N 'I awv lo > + <L IawV Ilv'><N' Ia~V I O> -<L laU aw V lo>
EN, -E° -w

	

EN , -Eo -{- w L

<L I PUI N'><N'lPwlO> + <LIPwIN'><N'IPUIO> .
KN, o - w

	

KN, L ~- co

	

!

`w

	

2
fvo~

wJ
_no/

(59)

(60)

3*
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Going to the limit of a continuous spectrum and substituting (51) ,

one finds

radiation :

4,(k) = - r(k) OLO `L(k - coL)-1 ~- i rrS (k - coL)} V2 I/x m w 2 cos

(with the use of (56) and (37)) .
It is now clear that in any summation over k, such as occur s

in (38), cr , (k) can be considered as a quantity of order e 2 (on e

factor e from r(k) and one from x 1 ), in spite of the singularity.

The same holds for the other higher order coefficients : each tim e

a denominator vanishes it gives rise to a radiation field ; as in

going radiation of any frequency other than w is precluded bti

the boundary condition, the singular term must be supplemente d

by an inrS-term, and the order of magnitude after integration ove r

k is not increased . But if there were also ingoing radiation of th e

same frequency, then instead of ire an arbitrary parameter woul d

appear, which might take large values .

33. The radiation field belonging to the frequency w L ma }

again be represented by a classical field, which can be foun d

from (54) by replacing co `° by cL° and w by wL : *

AL(t) = -` (e° /r)V3 /trek sin(kr-a))ci(k)e
ZwLt

dk

e°

	

2=	 	 j/ 7
r c ncWL eô

wLcr-t)- rcos e

	

ei

	

n(w ' )

This shows explicitly that there is no ingoing radiation . For th e

total outgoing energy per unit time one finds by an elementar "

calculation

IL = 4(xmw)-2 IOLôI 2 Icos2 (w) .

This formula has been derived only outside the line width and 1 1

that case cos 2 is indistinguishable from 1 . It is interesting, howeve

*

	

denotes the imaginary part (without the factor i) .

that (63) can be extrapolated to the region of a line width (w KM o
say), because OLM cos remains finite. One would thus find for the in -
tensity of the Raman lines in resonance

K3 °
11 `

4 K

ML fML sin2 1 .
MOIM 0

flere fM L is the total oscillator strength for the transition from the level
EM to the state L for the polarization v :

'ML = ( 2 /mKML)<L I13 ° IMu>12 .

In 42 it will be shown that this expression for el, in resonance is nearly
correct . On substituting for L the value M, it gives Iju = 0, so that thi s
Raman line disappears without discontinuity when w drops below KMO •

In order to compare (63) with well-known results, a connec-
ion has to be established between the energy flow J of a plan e
wave and the ingoing energy per unit time in its dipole component .
kccording to App . B this relation is I = (3 42 w 2 ) J. Hence, the

energy in the Raman line with polarizarion v is found to b e

This is the radiated energy for a given final state L . The total
cnergy with frequency wL is obtained by summing over the dif-
sent states with the same energy EL and over the polarization v .
he result agrees with the usual expression 32, apart from the

factor cos 2 e .

34 . The question may be asked how this energy loss is take n
into account in the Rayleigh radiation . It is true that, owing t o
the phase shift the intensity in the forward direction is de-

reased, but the corresponding amount of energy is found in th e
scattered Rayleigh light . However, in the next section we shal l
show that each Raman line gives rise to an imaginary term i n
Such an imaginary phase shift causes a decrease in the intensit y
a the forward direction without a corresponding increase in the

Rayleigh scattering, and is therefore connected with an "absorp-
nn" cross-section ca . This imaginary term in ç will turn out to

(k-wL) cL(k) = r(k)OÎ,or(w) 2 ~.C .

Hence cL (k) has a singularity for k = wL , which will give ris e

to a radiation field that extends to infinity . On dividing by k - wL

a term inå (k wL) must be added in order to get only outgoing
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be of the order e 4 and has therefore consistently been neglected '

in the foregoing . The absorption cross-section cra ' is linear in thi s
term and consequently also of the order e 4 . On the other hand, the

real part of has been found to be of the order e 2 , but as the

scattering cross-section as is quadratic in this term, it is also of th e

order e 4 . Thus the energy decrease due to Raman scattering is o f

the same order of magnitude as that due to Rayleigh scatterin g

Of an incoming plane wave with. energy flow J the energy

a s J is lost in Rayleigh scattering . The energy aaJ is lost due t h

Raman scattering, but only part of it is found in the radiation ,

the remaining part being used to excite. the atom . If aaL is the '

cross-section for the Raman line WL , then clearly

IL = asL J (wL/w) or IL/wL = 0.aL JIw .

	

(64 1

This equation can also be interpreted as the conservation of -Lid

number of photons . We shall now check that it is indeed satisfied .

35. For this purpose we calculate the higher order correctio n

in (57) due to the imaginary term in (61), but still omit real terni s

of higher order. Repeating the calculation in 26 one finds neww

terms in (46), which result in an additional term in (47), viz : '

(<OnN'><N'n'L'>

	

<0 n' N'>	
<0 nn

,

	

cIn
~lSl	 	 Jr

EN , - W

	

+ EN, - W+ Ic n + IcR -

	

L'

	

, .

On substituting from (61) this become s

Tn
Ouv x2 Oo

wiTC~ (kn'- wL') Zn'

Cn„ .w =
i7Ltn Z(wL')2 00U O° w('

T (1,-) ea ~0 L' n' L'D

	

0

	

0 L' L'0 S

With this addition (50) becomes

(k-w)c(k) = T(k)O(w)ST(k')c(k')dk'~-i rr (k ) z'(w L,)2 l Oôi.'l 2 ST( k

Solving as before by means of the "Ansatz" (51) one finds

o -E i mx(wL.)2 ew I2 - ;,-r (w)2

	

-n-r(

tan

)2

	

IbJ I

(summed over L' and d) .

Writing = ' - i s" one finds for the imaginary part

= r2 'r(w)2T(.WL')2 10OL' 1 2 .

The corresponding cross-section for one final state L is (App . B )

a =

	

= 8 ' ( e l'

	 1	 ~w~ s
iL

	

2w 2

	

3w2(nl) wwLI oL l

Comparison with (63) shows that indeed (64) holds .
The scattered radiation with the original frequency w but wit h

different polarization can be treated on equal footing with th e
Raman radiation. Its intensity is given by (63) when L = 0 ,

w . It also contributes to aa . The radiation with the origina l
frequency and the original polarization, however, contributes t o
he real part of and hence to a s .

It is noteworthy that the damping by the Raman radiation is re -
presented by imaginary terms added to O, and not by damping term s
in the denominators of O . This is due to the fact that the Raman effec t
does not damp the excited states of the atom, but only the state wit h
the primary radiation. (Actually there are terms in the Schrödinge r
.tuation (38) connecting the e N with the cN other than c ij, but they are

higher order and have been neglected in (45) .) In case of resonance ,
'nwever, both damping effects cannot be separated and we shall fin d
a imaginary energy shift caused by the Raman effect .

36 . For a complete description of the situation the higher
coefficients, describing the probability of finding more than on e
radiation quantum, must also be computed. We shall here briefl y
consider the two-quantum coefficients cr . They consist of a
series in odd powers of e, and the first-power terms were show n

1 32 to be free from singularities . The singularities in the third -
'ower terms describe the radiation field after the atom, left i n
n excited state by Raman scattering, has emitted a subsequen t
uantum. Accordingly, it may be expected that they will furnis h
he breadth of the Raman lines, due to the broadening of th e
ual level by the possibility of emission .

Instead of doing the complete calculation we shall retain onl y
lie most important terms, namely those connecting com with cL .
Ihey can be visualized as the emission of a quantum by the ato m

1in the state L, whereas the other terms are just mathematical
details . One thus-obtains, just as in (45) ,

côU (k,k') = -{T(k) <0 0,17 1 L'> ci (k' ) +
~(67 )

;(k') <0 I â,, V I L'> cL. (k)) ((k + k' - w)-1 + i n8 (k + k' - w)) JJJ

(66)



Again an inå-terrn has been added in order to obtain outgoing

radiation only33 . Inserting this in the equation (38 b) for cN on e
finds the following additional terms in the right-hand member

of (46)

-c (k) <N I a ,JV 1 0 > <0 I a„V I L')

	

{(lc + k' - w)-1 +
+irå(k+k'-w)}dk'+

)-1+ (68)
I <N I a„,V I 0><0 0,„,V I L'> ci (k)Sr(k')2{(k+k'- w

+i7cd(k+k'-w)}dk' .

As we are only interested in imaginary terms of order e4, we may

write for the second term

in<NIOVIO> <0IVVIL'>x(w-k) 2 (k)
(summed over 0 < L' < M) .

It is found that the non-diagonal elements (N ~ L ') give rise t o

real terms Oe4 in the solution and hence may be neglected. The

diagonal elements can be brought to the left-hand side of (46) ,
yielding (for N = L, L < M )

(k - wL- ill) el; (k) ,

	

(69)

where rL = ncr(KLO) 2 1<L I O V 10> S 2 is the well-known expression

for the transition probability from the state L to the ground state 0

From (69) it is clear that cÎ , (k) is no longer a singular function ,

but that one has to pu t

c' 1',(k) = A (k) (k - wL - i rn-1,

where yL(k) is slowly varying for k in the neighbourhood of cot, .

Hence the first term in (68) vanishes, because

(k ' wL -irL)-1 {(k+k'-w)-1+isid(k+k'-w)}dk' = O .

Since rL is small, the sum S r(k)cL(k)dk remains the same a

before . Consequently one finds now instead of (61) the solutio n

cL (k) -r(k)OLå(k-wL -irL)-1 V2l/xmco 2 cos

which shows indeed that the Raman radiation has a width I .

By inserting this into (67) one obtains the probability o f
finding two quanta with frequencies k and k' . It is seen from th e
resulting expression that one of the quanta has a frequency in a
neighbourhood of the order rL around co L , and that the frequency
of the other is such that the sum of both is exactly co . By takin g

into account still higher coefficients, one can find in the same
way situations with more than two quanta ; it then turns out that
all but one of the frequencies have certain probability distribu-

tions around atomic frequencies, while the sum of all is exactl y
equal to the incoming frequency .

Chapter V. Resonance .

37 . In the region of the line width, (44) and (59) no longer
hold and O can become very large . In that case the principal-
value integral in (52) is no longer small compared to 1/0 an d

cannot be neglected . Thus we are faced with the divergence of

this integral for small values of k, and according to 15 we have
to look for other terms which cancel this divergence .

On the other hand, if only the region of resonance is con -

sidered, it is possible to neglect in O all terms referring to other
atomic frequencies, so that one may write (for w ti KMO)

O(w) = m w2	
KNrofMO_ mKLo fMO/2

2

	

2hMO -w

	

KM 0 - w

This is the usual approximation for resonance (cf. 30) ; we have
to resort to it in 38, but it will be possible afterwards to correc t

the result .

To avoid irrelevant complications, we suppose all levels to b e
non-degenerate and consider only one direction of polarization .

More precisely, we assum e

V(R) = V (Rs) + Vy(Ry ) + Vz(Rx)

	

(71)

with the result that the Hamiltonian (36) is separable. In the

same way as for the harmonic oscillator we only consider on e
af the three parts, omitting superfluous indexes . The same Schrö-

(70)
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dinger equation (38) holds, but instead of N,n may now b e
written N, n .

Thus we suppose that the incoming frequency is near to th e

atomic frequency KMO , namely

co - KMO KLo/x , or W - Em KL ofx

If again cô is assumed to be of the order 1 for kn co it now fol -
lows from (38 a) that cm may be large. A closer inspection of th e

example of the harmonic oscillator suggests cm = 0e-1 and then

follows from (38 b) cr = 01 (except perhaps for N = M). We

further put cN = Oe for N ~ M and also cN = 0e, and procee d

to construct a solution satisfying these assumptions .

38. Instead of (45) one now finds from (38 a) and (38 c), to

the first order ,

c = - <NnN'> cn, - 1 <NnnM)c

	

NA M
N

	

EN-W 1`'" 2 EM-W M

	

(

	

)

Cnrrt

	

<NnN'> + <NInN'> + <NnmM> cm

N

	

EN-W+ kn+ krn

(EM- W) cm = - <Mn'N'> cr . -
2
<Mn 'n 'M> cm .

	

(72')

Inserting the first two expressions into (38 b) one gets an equation

for cR, of the form

(EN- W + kn) crr = An, cm + BzvN, cr,, + CNN, •

	

(73 )

(73) and (72) together are a set of homogeneous linear equation s

with eigenvalue parameter W. They can be simplified in severa l

respects .

1 ° . Since CM. = Oe 2 , the non-diagonal elements (N � N')
may be neglected, because they would give rise to terms Oe 4 il l

the solution. The diagonal terms (with CM) may also be neglecte d

in the presence of the term with EN-W + k,,, except when th e
latter is small. Hence the value kn = W - EN = CON may be use d

in the expression for CM, yielding

C (

NN

W N )

	

<Nn'N'> 12
-1 <Nn'n N>

	

!1- -EN, - EN + 1c71

	

N .
2
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2°. The' terms with BNN. can also be neglected for NON',
but the effect of BNB, cannot be seen so easily . Provisionally w e
omit that term too, and it will be shown in 43 that this amounts

to the approximation (70) for the resonance region .

3° . To the first order, Ar, - -<NnM> ; and the higher order s
(viz . Oe 3) may be neglected . (It can be checked that this is also

true for N = M, although in that case the first-order term van-

ishes . )

With these simplifications, and writing

EN - CZ)) = EN + AN = EIS' ,

equations (73) and (72) becom e

(EA+k)CN (k) _ -r(k)<NI0VIM>cM

	

(75a)

EM -W+ <Mn'n 'M>) cm = -<MI aVI N'> r(k)cN,(k)dk . (75b )

39 . Solving (75 a) for cN (k) one obtain s

r(k) <NI aV I M) (EN' W + k)-1 CM

	

(N > M)

	

(76 a )

a(k)<LIaVIM>{(EL -W+k)--1 +inå(EL-W+ k)}cm
(76 b)

(M> L > 0) }

=

	

(k)<01dVlM>{(Eo'-W+k)-1+-W+ k)) cm . (76 c)

After substituting this in (75 b) the common factor cm can be

cancelled and we are left with a characteristic equation fo r

( 2
-W+ 2 <Mn'n'M> = <MI ô V I N'> 12

Er k W-I k
0

+inn <11II aVI L'>I2 x(wL,)2+RI<1VII aV I
0>I2 r (w) 2

(summation over all N' and over 0 < L ' < M) .

In order to compare this with (52) we simplify the latter by

using (70), and write it in the form

-W) = I<MIaVIO>I2	 "t (k) 24
EO-W+k

	

I+1I<MIâVIO%I2 z(w) 2 .

o
(74 )

(77)

(78)



1°. Whereas (78) contains one integral, (77) côntains a n

integral for each level EN . For each singularity in these integrals

a term with i7i is added, except for the singularity in the integral

with N = 0, as that is already accounted for by the term with A .

All these terms with N ~ 0 do not occur in (78), because in ch . II I

the coefficients cn, (N ~ 0) have been neglected, since they ar e

small if there is no resonance .

2°. In the denominators in (77) occur the shifted energy values

EN instead of the E° in (78). The difference, however, is of the orde r

e 2 and may certainly be neglected in a principal-value integral .

(Actually it has already been neglected in the other terms b y

writing coL for W- EL .) Also the W in the denominator may b e

replaced by EM inside the resonance region .

3°. The new term on the left-hand side of (77 )

2<Mn 'n ' M)> =
2

~M i å 2 V M> 5 z(k)a dk

cancels the divergence in the integrals on the right'' . Indeed, the

coefficient of 1/k for small k is no w

~<iVrja2vIM>

	

<ÉIaVN'>I2 ,
1v'-EM

which can easily be seen to vanish (see, e . g ., App. G) . Both term s

together give a small shift of the level EM , which turns out to be

just AM , defined in (74) .

40. According to App. G one can write for AM

r

AM
3 n

2 ea
lna N

KN,vrI (i1I I P I
N> 1 2

K

cos a 77(k )

Nm+kdk
.

	

(79)
o

This is nearly Bethe's expression for the electromagnetic shift a4

but owing to the factor cos 2 77 it is convergent. . The effect of this

factor can roughly be represented by a cut-off at k = x . From

Bethe's work, however, it is known that the right numerical result

is obtained by cutting off at the Compton frequency m = 3 x/137 .

* This is the term mentioned in the last paragraph of 24, which arises fro m

the term with anaana in (36) .

This can be justified by relativistic considerations 35 , and a cut-
off of the same order can also be found by taking into accoun t
the recoil of the electron36 . Since both effects have been neglecte d
in the present treatment, it is not astonishing that our result is
wrong. On the other hand, we have not used any subtractio n
prescription ad hoc, but Bethe's subtraction of the free electro n
self-energy is here automatically performed by the elimination o f
the proper field A° ; that means that it is implied in the subtractio n
of the self-action of the electron . Moreover, the convergence factor
cos 2 7? is obtained by using in the zeroth approximation the fiel d
quanta that are adapted to the unbound electron .

The line between two levels EM and EN suffers a frequency
shift AM -AN . This shift was shown by Oppenheimer 37 to be
divergent on the usual theory . In fact, it exhibits the same diver-
gence as the shifts A themselves, since in general the divergen t
terms do not cancel . Serpe 38 showed that it is finite on Kramer's
theory in the special case of a harmonically bound electron .

Unfortunately his proof has no general value, because for the har -
monic oscillator the shift is actually . zero, as was shown in ch . II . (I t
can, of course, also be deduced from Bethe's expression .) In fact, in th e
general case he should have found a logarithmic divergence, because of
the omission of the A 2-term. It may be added that he only found th e
first term in (74) and cut off the divergence at k = 0 .

41 . For the phase shift e one finds from (77 )

tan = -	
KM0fmo/ 2 x

W-EM -AM -~- ZPM "

KML~<M~P~L>12 cos' 77(KML)

= zKMLfML/2 x .

This "imaginary level shift" is caused by the damping of th e
state M due to transition to lower levels L, the ground state ex-
cluded. The transition to the ground state does not give rise t o
an imaginary damping term, because in our stationary state it is
balanced by transitions from the ground state . It does give rise,

(80)

2 e2
M -

r'M -
3m2 L _
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though, to a widening of the level in the same way as the width

KMO fmo/ 2 x = rM

resulted from (57) .

The imaginary term in the phase shift is again associated wit h

a cross-section for absorption (App . B)

6n

	

rMI-,
M

w2 (co _Km' 0 )2 +

	

rm' )2 '

where KMo = KMO+AM-Ao, w -= TV-Eo-A0 . In this expres-

sion the total line width

M-t

r1Yl - III + rtl~l - ~ KML fML/ 2
L= o

appears . Adding the cross-section for Rayleigh scattering one ob-

tains the total cross-section

	 1141	
at = w 2 (w - KMO) 2 + rm

This is the BreitWigner formula. Indeed, in our case the Raman

radiation plays the same part as the y-ray emission in the case

of neutron scattering . Thus, the Breit-Wigner formula is contained

in the above expression for the phase. shift :

tang = r /(w-KM 0 +ir ) .

Clearly is just the sum of the residues of the integrand in (79) ,
multiplied by - x . I'M is obtained by omitting the residue at KMo .
Hence the "complex level shift" AM - i flyl in (80) can be found from
(79) by taking the principal value at Klylo and avoiding the other poles
by shifting the integration path into the lower half plane . If the denom -
inator in as and at is written as 1W- EM AM + i TM I 2, the tota l
complex shift AM	 i I'M of the level EM appears ; it can be found
from (79) by shifting the whole integration path into the lower half plane .

42 . Once A is found, the solution is immediately given b y

(76) . cm may be used as an arbitrary factor, and on writing

-<010VIM>cM = C,

(76 c) takes the form (51) . The radiation field associated with
the singularity in these coefficients can again be described by a
classical analogue (54), which instead of (55) now becomes *

A(t) =
e 2e sin(wr-Y-E) Ce- tw t
rmw

	

sin e

From this follows for the ingoing energy per unit tim e

I = (2xm)-1 IsineI-2 e
2f„

IC1 2

From (76 b) one finds the coefficients cL (k), which determine
the Raman radiation . The outgoing radiation with frequency
can be described by a classical field (comp . (62))

AL(t) = -e
2e eicu~(T 0-4'7(00 <LI aVI1tiI>c M .

r in L

The outgoing- energy per unit time is found to b e

IL = (2/xm)I<LIèVIM>cM I2
4KML[MLsin l 2 e 2rr 1 .3KMo fM o

A nearly identical expression was found in 33 by extrapolating
the formula obtained for non-resonance . However, the influenc e
of the damping of the level EM , exhibited by the imaginary phas e
e " , could not be found in that way.

Let again (see 34) aaL be the partial cross-sections and J th e
intensity of the plane wave whose electric-dipole part has a n
ingoing energy I. Then (81) can simply be writte n

IL/KiviL = aaL JIKMO ,

showing that for each emitted Raman photon an incoming photo n
is absorbed. (81) has only been derived for 0 < L < M, but for
L = 0 it takes the form

Io =_.4 l sin 12 é-2rl = as J ,

which is obviously true if lo is interpreted as the outgoing energy
of the Rayleigh scattering .

• The difference with (55) is that f is now complex .

wL



In the customary picture 39 the scattering in resonance i s
visualized as the absorption of an incoming photon-after whic h
the atom is in the state M-and a subsequent spontaneous emis-

sion of a photon, either with the same frequency KMO or with a
lower frequency KML . Now, an atom in the state M would spon -
taneously emit waves with frequencies KML, whose intensities are ,
according to 30, KMLfMLIx • The fact that this is just proportional
to the Raman intensities IL in (81) is the justification for th e
customary picture . For the probability of the atom being in th e
excited state M one then has to tak e

34 ~	 IsinEI2~2
I =

	

at J

IiM 0 fM 0

	

2KMO rM

Since otJ/KM o is the number of photons absorbed per unit time ,
1/2 TM has to be interpreted as the average time during which th e
atom remains in the excited state M .

However, this picture fails to make clear that the sum of th e
frequencies which the atom emits on its way back to the groun d
state is exactly equal to the incoming frequency, as shown i n
3640 . Neither does it represent the interference phenomena cor-
rectly; but we shall not discuss that here (cf . 51)4 1

43 . In this section it is shown that the omission of the term s
BNN cN in (73) is equivalent to using the approximation (70 )
for the resonance region .

For each particular N let ZEN) be the orthogonal matrix that
transforms the matrix M.-BM to principal axes :

ICn Z(N -BNN ZEN) = km ZEN)

Here k,n denotes the new eigenvalues . Clearly ZEN) = 8n,,,_ + 0e2 .
Now if the cnr are transformed by

n

	

nn '
=

	

- CN
n'

CN

	

Z(N) ,

then (73) becomes, omitting terms Oe 3 ,

Nr .15
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he omission of the term BNN cr, in (73) is justified, provided th e
unknowns elk are replaced by the transformed ones qv .

Consequently the equation (77) for 2 is still valid, becaus e
it does not contain the c's . However, the connection of A with
the phase shift between ingoing and outgoing radiation is altered .
Indeed, since BNN varies slowly with n and n ' , the theory of A l
can again be applied, and for ZEN) is then found a matrix of the
type (A 3) . Hence, according to A 4, (82) is a transformation to
new quanta whose phase is shifted with respect to the old ones .
With the :method of A 7 it is found that this additional phase
shift EN is given by

tan EN = -TCBNN (WN,WN) .

Since the Rayleigh radiation is described by the c'o', the total
phase shift for the coherent scattering now becomes = -{- E -{-- E°
(n for the unbound electron, E given by (80)) . Using the explicit
value of B00 (w, co) one finds

tan E° = w

	

'	 K1vofNo+ 1 K erofM o

N
$ w 2- KN

O 2

	

x w -{-KM O

These are just the terms that are omitted in 0(w) by using th e
approximation (70) .

Combining the results one obtains for the total phase shift

w 3tan= -
x

	

w2- (KNO-
IrN)2 .

This expression is correct to the order e 2 for all values of w . As men-
tioned in 34, however, the imaginary terms of the order e 4 are als o
needed for the correct value of the total cross-section . They cannot
be found so simply by a combination of the formula for non -
resonance and those for resonance with the different levels . The
right expression is found in the next chapter .

fN 0

(EN -W kn ) CNn AN
n

CM + CNN
(n)

•

(72) remains the same equation with

	

instead of cr, . Hence

Dan.Mat .Fys .Medd . 26, no .15.
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Chapter VI . General Result .

44. In chs . III and IV we have considered the case where th e
incoming frequency w does not coincide (within the line width )
with one of the atomic frequencies ; whereas in ch.V the region o f
resonance was considered . Both cases had to be treated separately,
because for an explicit solution of the Schrödinger equation either
of the simplifications mentioned in 30 had to be employed.
Fortunately the regions where these approximations are vali d
overlap, so that for each value of w a scattering formula coul d
be obtained .

Nevertheless there are some difficulties in linking up thes e
expressions. It is not clear how the imaginary damping in th e
denominator of the resonance formula (80) merges into the imag -
inary term in the non-resonance formula (65) . Moreover, the latter

has different values on both sides of the resonance region, cor -
responding to the disappearing of one Raman line when the in -
coming frequency drops below an absorption frequency. There -
fore it, is of interest to find one formula for all values of w -which
is the purpose of this chapter .

In the choice of the approximations to be used we shall b e

guided by the calculations in the previous chapters . All those
terms which were shown to contribute only to the small level shift s
will be omitted, since we are not interested in them now'' . Then
it is possible to write a general equation (96) for the phase shift ,
which comprises the previous results, and in addition describe s
the transition between them .

45. We take again the simple case of the previous chapte r
namely a separable potential field (71) . Furthermore we suppos e

EM < W< EM+1 and EM+1 W» KM+l,o/2

but we do not exclude the width of the level EM . The subscrip t
L will again be used for levels between E0 and EM .

Again co(k) will be of the form

co(k) = yo(k) ((k w)-1 + AS (k - w)}
* Consequently, from a formal point of view the calculations of this chapt r

could also be based on the usual Hamiltonian.

Nr . 1 5

and cN (k) for N> 0

5 1

cN(k) = YN(k) {(k - wN)--1
+ ig8 (k - wN)} . (83)

Whenever in the Schrödinger equation cN (k) is integrated over k ,
the term with (k - WN)-1 gives rise to a principal-value integral .
Since we have seen in the previous chapter that these integral s
are of importance only for the level shifts, they will be omitted
here . The 6-term vanishes for N > M, so that in the summation s
cN(k) may be neglected altogether for N> M.

Thus, writing for brevity

YN( wN) = YN, T(CON) _ TN,

	

Ao = A, AN = zJ4 (N> 0

one obtains from (38 a) and (38 c), analogous to (45) ,

<NIavi N'>
eN

	

EN
-W -

T'N'
A N, YN '

cr (k k') =

	

<N
aV 	

I
	 N '>

W

	

Z(k) AN , YN' b (k' - wN,) .(84 b)
EN- --~ k-}- wN,

The last term in (46) contributed only to the level shift and there -

fore the corresponding term in the expression for cN(k,k') has
been omitted here. Inserting (84) into (38 b) one gets an equatio n
of the form

(EN -W + k) cN (k) = -r (k) FNN' (Ic) t
(summed over N' from 0 to M) .

The complete expression for FNN. (k) is not required, because we
now substitute (83) on the left and take k = wN . It turns out that
FNN' (UN) is the compound matrix element ONN', which occurred
in the Raman effect (see 32 and App . C), and we find

YN = ~N ONN' AN' YN' •

Now (85) is a set of homogeneous equations for the yN
(N = 0, 1, • • •, M) with one adjustable parameter Ao = A . The

condition for solubility is, writing rN ONN' TN, = TNN, ,

(84 a)

' AN' N'

(85 )

4 *



This, together with the first line, makes two homogeneous equa-
tions for yo and (u y), which yield for the parameter A

tangy=-
-

= ,ru0
2

%,

	

wM + Î (uu)
'

This is a linear equation for R, or for tan = - n/2 . We shal l

now show that it contains the formulae (65) and (80) as specia l

cases .

4& First, consider the case that w is not inside the line width ,

so that all TNN, are small, namely 0e 2. The evaluation of the

determinant (86) with omission of the terms Oe 2 is trivial and

yields

which is identical to (53) . Retaining also terms of relative order e2

one finds

which is' identical to (65) .

Secondly, let W be so near to EM that in the sums over M

the terms with W - EM = WM in the denominator are large an d

the other terms negligible . Then, according to App . C, one ha s

TNN, _ - UNiek,/wM with uN = rN <NI BV I IVI) .

	

(88 )

Instead of evaluating the determinant (86) it is more convenient

to solve (85) directly. These equations are now

- (uM Yo = uo 12 2yo + U0• in • UL, yL . ,

- W MYL = uLu0AYO+uL'I .

From the second line :

wM ( u Y) _ u) u0.y O + i (uu) (uy),

This equation is identical with (80), but for the level shift, which
has been neglected in the present chapter .

47 . The equation (86) for A is still not general, because it

only holds between the levels EM and EM+ 1 . When W drops

below E, one row and one column have to be obliterated in th e

determinant, and when W increases beyond EM+1, a row and
a column have to be added .

This discontinuity is related to Stokes' phenomenon for asymptoti c
expansions 42 . Indeed, our boundary condition that the radiation wit h
frequency coM should contain only outgoing waves, refers to the asym-
ptotic behaviour, of the radiation field at large distance . The decomposi-
tion of the field in ingoing and outgoing waves is practically unique
only in the wave zone . When wM tends to zero, the wave zone recede s
to larger and larger distances . When it is beyond the observing apparatus ,
the boundary condition is no longer an appropriate expression of th e
experimental conditions . In that case the scattering centre and th e
observing apparatus cannot be treated as separate systems. (In actual
experiments, of course, these long waves would not be detected by th e
spectroscope .) Consequently, there is a "region of discontinuity" :

aim (distance scattering centre-observer)- 1 -- 10- 6 KMO (90 )

where our formulae are physically insignificant .
It seems that there are also mathematical difficulties, because th e

neglected principal-value integral

So
mr (k) (k	 WM)1 dk

might become large for small 0 M . However, it is clear from (83) in con-
nection with (61) and (37) that yM (k) contains a factor and can
be expanded for small k in the form

with the abbreviations

M
= 7TL, ui uL ,

L=1

M

(uY) =

	

ui YL '
L=1

YM (k) = k ; (a o +al k+ . .) .

rk-l (k wM) i dk
= 0,
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and the higher terms are certainly finite for co l, = 0 ; hence the integral

is always a small quantity, even when w1, ß is small .

The above considerations are only valid if the level Em is sharp ,

i . e . if the state M is metastable. If it has a finite width 1'M, then the

expression for em (k) contains a factor (k L M
i I'M )- 1 instead of the

6-function (see 36), and no discontinuity arises .

Accordingly, (86) can be written in amore general forne by

introducing a function p(w) defined outside the region of dis -

continuity (90) b y

p(w) _

	

(w > 0), p(w) = 0 (co< 0) ;

inside this region it is necessarily indeterminate . On replacing

one finds instead of (86 )

- ipl Tol

	

- Ip2To2
. : .

- A Tlo 1- ipl Tl l

	

- ipa Tl2 . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

where pN = p (wN) . It is clear that for EM < IV< EM + l this

reduces to (86) .

For the phase shift in resonance one now finds from (91 )

the saine formula (89), . but with

- p (w L)
L= 1

Owing to um = 0, this result amounts to exactly the saine a

before .

48. Although (91) completely determines A as a function o f

w, it is not yet fully satisfactory. It is unduly complicated b ,

higher order terms, which are meaningless since terms of th ,

same order have already been neglected in obtaining (91) frai

the Schrödinger equation. As a consequence the results of th

previous chapters could only be derived from (91) by rathe r

lengthy manipulations . Therefore we shall now transform (91 1

into a form that resembles more closely the formulae of th

previous chapters .

Here the first summand in (C 1) is taken into account, but th e
second one has still been omitted . It can easily be added after -
wards, since it does not give rise to resonance . (85) now become s

J r

	

J
YN = - EJ ( UN/ wJ) EN' UT,f' *AN'YN ' ,

from which, writing EN, un,. AN'YN' - co ' , we get

WJYJ = -ENI I lk * AN UNYI

This is a set of homogeneous equations for the yJ, whose charac-
teristic equation determines A (= Ao) :

Det . II wJàJ7 +

	

i (uJU) II = 0 .

Here (uJul) is defined b y

(ural) L p(wL) u]'u .
L= l

The determinant can be expanded in powers of A and it i s
easily seen that only the zeroth and the first power survive . With
the abbreviation wJ +i(uJUJ) = wj one finds

1
0

wo

	

i(u°ul)

	

i(u°u 2 )

i (ulu°)

	

wl

	

i(u lu 2)
=- ~ I (u2u°) i(u2 u 1 )

	

w2 +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uoi . ug i (u° LIl)

	

. . . u°o Yuô

	

i(u°u2)w o . . .
1*

	

°
Uo

	

Uo wl I (ul u°)

	

u o * uo

	

i (ul u 2 ) .
+ + . . .uÔ* u0 i (LI2 ul\

	

. . . i (u2 u°)

	

Uô* uô

	

w2 .

	

.

The determinants can easily be worked out if real terms o f
relative order e2 and imaginary terms of relative order e 4 are
omitted. After dividing by w o w lw2 .

	

one thus gets

AN in (85 ) by p (a)N)

1 - AToo

(uu)

uN = wNtN <NI PIJ> .

	

(92)

For TNN, we use an expression similar to (88), but mor e
complete :

J . *LIN uN '

TNN'
J

-w,L '
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N
(';N = wN + i ~L P (WL) LIL * LiL .

In the approximation for resonance (with the level EM) this
equation reduces to

1 _ uôluô :+: _ KLofm0/ 2x

wm

	

wM+ irM

It should be noted that the imaginary term in w m is equal to I'm
only inside this resonance region .

Outside the line width the denominator in the second ter m
of (93) can be replaced by wN,wN ; in the first term it can be
expanded, yielding

7 (

	

u

N uN * uN* uN
0 0	 I

P wL)

	

2
CO N

This imaginary term just furnishes the terms with N = N' that
are missing in the double sum in (93). With the aid of (92) our
general equation (91) thus reduces to (65) outside the line width .

When Kramers and Heisenberg (ref. 31 ) constructed thei r
scattering formula, they considered resonance fluorescence as
partly due to spontaneous emission by the excited atom (cf . 42) .
This gave rise to the question how this radiation combines wit h
the Rayleigh scattering that is also present outside the line width .
The present treatment shows that, basically, there is only on e
kind of scattering process, which in resonance has some feature s
in common with spontaneous emission .

49. The equation (93) has been derived under certain simpli-

fying assumptions, but it can be generalized, without performin g
any new calculations, by following up the analogy with the result s
of the previous chapters .

1 ° . The terms that have been dropped when writing (92) ca n
be supplemented by comparing (93) with (65) . Both equations
can be combined int o

tan = - TCZ (w)2
{0 00 + i L' P (wL) Z

(wL) 2 0oL01,0} .
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Here the prime means that all denominators coN are to be re -
placed by

wN = w N + iE P ( wL) Z((o L) 2 wL I <N I P I
L>

1 2 ;

and the bar means that all terms with denominators con, are t o
be discarded :

OOL O LO = O OLeLO -EN (w2 (o L/wN) 10 I PI N> 1 2 1 <NI PI L>I2 . (95)

2°. The assumption (71) of the potential being separable ca n

be dropped if also radiation with different polarization directio n
is taken into account . From (65) it is clear where polarization
superscripts have to be added .

3° . Degeneracy can be accounted for by writing L instead o f
L, following the example of (65). The result is an expression for
the phase shift of the. radiation with frequency co and polariza-
Lion w, caused by an atom in the state N = 0,y = ,uo, viz .

2{ ww

	

~P( L) ( L)2

	

wu

	

uw ~ `

The sum over L = (L „u) includes L = 0, p � po, but not the
initial state L = 0, p = ,uo (cf . 35) . In (94) one should no w
write coN , y = wN to exhibit the dependence on ,u, and P rather
than P to account for the three directions of polarization . Then

1<0polPwIN'><N'lPoIN>+(OpolPoIN'><N'lPo,lN>)
(97)- w N,

	

w + KN' N ~

n S~u =-7LZ(w)
O Otto ; Otto+i L w Z w

~~O~a; L ~L ; Of.t o

0

4°. From ch.V it seems that also the level shift can be embodied
in (96) by a slight alteration of the definition of wN . However ,
the interaction with the electromagnetic field constitutes a per-
turbation which splits up each degenerate level into a numbe r
of components with distances of the order of the electromagneti c
level shift . The matrix elements of this perturbation follow fro m
(73) and (79) ; they are for the level EN (see App. C)

holy) _ 2 e 2 V'
K

	

N I
P N'

	

' I P IN u'> \ cos2kdk . (98)
Nu'

N~
3 m2 N N'N < P

	

> <I''',

	

KNtN + k

uô
uoN .; :

wN
N$ N '

1

2.

N' *

	

11Z*
~ N

Zi0

	

LiL

	

ii0

w wN (93)

` uo
IN

uo
N*

.,‘-d wN +
NL

( 94)

(96)

= w w N
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Let us suppose that for each level this perturbation is cas t

into a diagonal form, with diagonal elements AN, say*. Then

each state N„u has the shifted energy value EN + ANµ = EN

and these shifts can be taken into account by puttin g

w~, = o - (ANJA - AQFlo) + 1 .ELp (WL) r (w L ) 2 CAL I <N I P I Lj 1 2 . (99)

The formula (96), together with (97), (99) and (95), describes

the scattering by an electron in an arbitrary field of force, for al l

values of w except the region of discontinuity (90) . The imaginary
terms are given to the order e 4 , so that it yields the correct value s

for the cross-sections as, aa, at .

50. The formula (96) will now be compared with the result s

obtained by previous authors . Outside the line width (96) wa s

shown to reduce to (65), which according to 33 is equivalent to

the Kramers-Heisenberg formula. Actually our result is more

restricted, since it has only been derived for scattering by an

atom in the ground state . The Rayleigh scattering is describe d
by the phase shift (57) and the Raman scattering by (65) . The

corresponding cross-sections are (58) and (66) .

The dispersion in the case of resonance has been treated by

Weisskopf43 and by Breit44 , using time-dependent perturbatio n

theory . This method consists of taking an initial situation with

the atom in the ground state and some radiation present . Since

that is not a stationary state, other states are built up in the cours e

of time and from the rate of increase of their coefficients follows

the probability for scattering of the radiation present in the initia l

situation. Because of the difficulty of solving the resulting set o f

first-order differential equations, they had to resort to a simplified

model with only two possible states for the atom . Hence the Rama n

radiation does not enter into the picture . Of course, also the line

shift had to be neglected, because it would be infinite .
Weisskopf43 first calculated the Rayleigh scattering in re-

sonance and found a line width r° (in the notation we used in

41), corresponding to the transition from the excited state to th e

ground level . Our additional line width r' is due to the transition

* In case of a central force, when there is no other degeneracy than wit h
respect to the direction in space, this is automatically fulfilled if u is the magneti c
quantum number.

probability to other excited states, which he had omitted . Con-
sequently his result is equivalent to (80), if in the latter Am and
rm' are dropped .

It should be noted that in Weisskopf's formulae the frequencie s
of the incoming and the scattered photons may differ by a n
amount yA (his notation) . The reason is that he considers a
state of the whole system which is not stationary, but whos e
energy has an uncertainty yA . That in our stationary state treatmen t
such a quantity does not occur, may be considered as an advan-

tage, because it has no bearing on actual observations .

Breit, in his review on dispersion44, gives the same calcula-
tion of the scattering in resonance. In addition he analyzes . the
behaviour in time of atom and radiation field after the moment

when the interaction is switched on . Again this is immaterial for
actual scattering experiments : at most the decay of an excited
state can be observed by specially designed experiments 45 , but
not the decay of the initial state of the whole system .

Weisskopf43 also gives-without calculation-a formula for
the resonance scattering in the case where more levels are present .

This result is practically identical with ours ; only the width o f

the initial level does not appear in our formula, because we sup-
posed it to be the ground level . He also omits the width of th e
final level, just as we did (except in 36) .

In a later paper46 Weisskopf obtained a general formula b y
writing the Kramers-Heisenberg formula for the induced dipol e
moment, and adding terms i r in the resonance denominators .

This formula is correct when terms of relative order e 2 are dis -
regarded . However, since the imaginary terms Oe 4 in this formula
are not correct, it cannot be used to compute the total cross-sectio n
for instance, from the polarizability by means of the relatio n
(B 12)*. Therefore it was impossible for us to generalize th e
expression (57) for the phase shift in this simple way .

Hamilton 28 derived the usual results for emission and for
scattering outside the line width by solving the time independent
Schrödinger equation. For the physical interpretation, however ,
he made use of time dependent states, which he obtained b y

* Of course the total cross-section can be found by computing the partia l
cross-sections for Rayleigh scattering and for all Raman lines :

at = as + sL can .
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superposition of the stationary solutions . In his calculations again

only one higher level is taken into account and, of course, th e

usual divergences occur .

51. The problem of finding the states of steady scattering b y

arbitrary atoms, which Kramers 2 raised in 1948, has now bee n

solved . Nevertheless the present theory of emission and scattering

is incomplete on several points, even within the limits of non -

relativistic dipole approximation . We here list these points in th e

order in which they seem to be logically connected .
1 ° . Second order emission can be described by a superposition

of stationary states, chosen in such a way that at t = 0 the whole

radiation field vanishes . Hence one has to find linear dependenc e

relations of the kind (A 21) for quantum states whose phase shif t

is given by (96) . Since this is just a matter of algebra, there does

not seem to be any fundamental difficulty in describing in this

way the two-photon emission studied by M . Göppert-Mayer 47 .
For the emission of three of more photons, one has first to find

the expression for the phase shift in which the singularities in

the coefficients cN (k, k ' , k") etc. are taken into account .

2° . Higher order scattering processes, in which the incoming

photon is broken up into three or more photons, can be calculate d

along the lines of 36. The result. may be expected to be identical

with that of Güttinger 48 andWeisskopf46, except that the line shift

is included . However, processes in which several photons are

simultaneously absorbed and one or more photons emitted, can-

not be treated readily, owing to the incoherence of the incoming

photons. It is true that by putting in (85) AN = -n cot N (instead

of taking all 2's but one equal to ium) one obtains stationary states

containing several ingoing waves with different frequencies . But

these waves have definite frequencies wN and even definite phas e

relations, and therefore do not correspond to an incoherent mix -

ture of incoming photons . Hence it is necessary to use the many -

photon states for the description of the incoming field and, ac-

cordingly, to introduce adjustable parameters A into the singul-
arities of the coefficients cN (k,k '), cN(k,k',k"),•

	

.

3° . Scattering by an excited atom has not been treated, be-

cause it cannot be described by a stationary state. It seems pos-

sible, however, to construct an appropriate decaying state in the

following way. First one has to find the stationary states describin g
the scattering of two photons, one with the frequency w of th e
incoming radiation and one with a frequency k in the neighbour -
hood of the absorption frequency, Kmo say. These states-for dif-
ferent values of k-have to be superposed in such a way that at
t = 0 the radiation with frequency in the neighbourhood of Km o
vanishes . Since w has a fixed value for these states, they have
different energies w + k + Eo with a peak in the neighbourhoo d
of w + EM . Consequently the superposition will describe a non -
stationary state with ingoing radiation of frequency w, in whic h
initially the atom has the energy EM .

4° . The classical analogue of the quantized electromagnetic field
has only been used for one-quantum states . It is desirable that

for the many-photon states a similar classical picture will b e
developed . The solution of this problem is not obvious, but pre-

sumably it is possible to describe every state of the photon fiel d
by an appropriate mixture of partially coherent classical waves .

5° . Interference phenomena in the current time-dependent
theory require special calculations49 . In the present theory, owin g
to the close resemblance with the classical picture, they can b e
analyzed immediately . Indeed, the Rayleigh scattered waves of
two scattering atoms are both coherent with the incoming ligh t
and therefore also with each other . However, if the ground level
is degenerate, incoherent scattering is also possible (see 35) and
the two scattered waves will only be partially coherent50 . Th e
interference of Raman light can be studied in the same way, but
a complete account is only possible after the problem 4° has been
solved.

Appendix A .

A 1 . The purpose of this section is to find the principal axes
of the quadratic form

E Ann, xnx,j, - E ( tn aim, -1- anari ) xnxn' ,

where for definiteness to and can are supposed to be real . The
equation for the eigenvectors i s

sxn = ~Arin'xn' = tnxn+anEan,x11- :

	

(A 1)
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From this follows

xn = anß/(s - tn ) with ß = Ean,xn ,

and by substituting the former in the latter one finds the charac-

teristic equation for the eigenvalue s

an
1 .

s to

There is one real root between each pair of successive tn . I f

there is only a finite number of tn , there is one root larger than

all tn , and there are no other roots . If there is an infinite number

of

	

other roots may occur, e . g. complex roots .

To each root sv corresponds an eigenvector Xn :

Xiiv = anßv/(sv tn) ,

which may be normalized by a suitable choice of ß :

1

	

7

	

an

	

d ~ î an
ßÿ L1 (sv - tn)"

	

lds --i s- tn~s=s v

From the orthogonality of the matrix Xnv follow

an

	

8~ „

,~ (sv - tn) (Sy - tn)

	

ßÿ
,

The

xn = E Xnvyv, E Ann'xnxli = ESv iJv ;

and in particular one ha s

EXnvan = ßv, E anxn = X ßvJv .

It is useful for the calculations in 22 to associate with this

transformation an analytic function of s

a
F (s) _ > -7

an

	

1
4.- r s - t n

with the following properties . It has poles t o with residues ccn .

6 3

The characteristic equation can be written F(s) = 0, and the
normalization constants are given by ßv-

2 = - F ' (sv) .

A 2 . For the transformation of (11) one has to take to = vrz =
nar/L) 2 and an = e,,mo 3 . If for s we now write k 2 , the charac-

teristic equation becomes (using (9))

2

	

2
__

	

\

	

sn

	

, 2

	

e n

n

	

vn (k2 - vn)

The latter form of the equations has been chosen so that it i s
possible to put ån = 1 (transition to the point-electron) . Subse-
quently, the series can be summed :

and for large L this reduces to (15) .
With the abbreviations Ln and ?p„ according to (14) one find s

from (A 4 )

mo

	

d

	

en
.

	

En

	

e 2 Ln

	

(A7)
ßn - - [ds ( n, s - vn,

	

v
n,3 sinen'

	

2

The transformation (12) is according to (A 3)

2 vn sin rtn .

	

2 vn k, cos	 nn,
-	

x"'

	

VLL,,. (kn, vn)

	

x VLL,,- (kn, - vn )

Finally, using (A 3), (A 6) and (A 7) one find s

2
_

	

en

	

ßnPn
=

	

I V 4 e2 cos rtn.
n

	

2

	

2

	

2

	

~/vn

	

vn Vmo k , - v,, 'J 3 Ln, kn

which completes the proof of (13) .
With k = ik ' the characteristic equation (15) becomes Tnh

Lk' = k'/x, and this equation has one positive root very near t o
. This eigenvalue ik ' ix will be denoted by k* and the cor-

responding i* is defined by n* = Lk* ,.s iLx . Hence

L* = L -cos2y]*/x
-e2L x

)

,

	

ß/

Ÿ

v (Sv tn) ( S v - tm)

transformation to principal axes takes the form

(A6)

2

in= 3L k2
1

	

_

(117r/L) 2

	

3 k (cot lcL-
kL)

2 e 2

	

1

(A8)
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In all summations over n this anomalous term must be included ,

i . e . n also takes the value * .

A 3 . For the transformation of (21) one has to replace to

and an by kv and Kdv , the subscript v being used to remind that

the value v = 0 is included . Writing for the eigenvalue para -

meter w 2 , one finds the characteristic equation

In order to evaluate this sum we now construct an analytic

function of w with the same poles and residues .

First we define the function n (k) by

so that n(kn.) = nn . Then the equation (15) for the kn is equivalent

to tan {Lk	 n(k)} = 0 and one can easily verify

+0.
7 cos2 7În

	

cos '	 n	 (co)

	

xw

	

Ln (w kn) tan {Lw

	

(w)) x2 + w 2

The second term is required for .subtracting the additional poles

due to cos 2 j(w) . After some calculations one finds from (A 10 )

and (A 11) the equation (23) .

Furthermore, from (A 4) with the aid of (A 11) is found after

laborious calculation s

ßv = 1/2 x/L„ (K/w„) sin 2

	

(A 12 )

where

Lv = L -sin cos ~v/wv + 2 x K' sin 2

	

= L - ((R. /el co)", .

Substituting all this in (A 3) one finds the transformation matrix

(now denoted by Y)

Nr . 15
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2 xK2 sin nn sin Cv

	

1
Ynv

	

'

	

(n � 0)
2

	

2
VLnLv'

	

kn

	

wv w v -k
(A 13)

Yov

	

1/
1 2xsin~

	

l/
/ 2

	

K 2
= K 2

i Lv

	

cov '( (0 2vY

	

x L , V

	

- K2) 2 + w v/ x2

	

,

Again, putting w = iw' in (23) one finds an imaginary roo t
co* ti ix, which is not quite the same as the root k* for the free
electron. The values of Yn . and Yo* can be found from (A 13)
by taking, like in (A 9),

L x

The values of Y*v are found by means of (A 9) .

When the second procedure is applied (in 18), the sum i n
(A 10) does not contain the term with n = f . The correspondin g
terms in (A 11) have to be subtracted on the right and the resul t
is that the sign of the last term in (A 11) is reversed . One then
finds (27) instead of (23), and both (A 12) and (A 13) hold ,
provided L ' is replaced by

L

	

(1- 22)
2K' \ 2L; -

	

[L_()I .

Here the derivative has to be computed from (27), but its explicit
expression is rather complicated .

A 4. In this section it will be shown that the transformatio n
(12) is indeed a transformation to phase-shifted light quanta, as
stated in 13 . For this purpose consider the boundary problem
given by

v " (r) + k2v (r) = 0, v (L) = 0, v'(0) + x v (0) = 0 .

The solution is trivial and furnishes the normalized eigenfunction s

vn (r) = 1/2/Ln sin (knr - si n) ,

	

(A 14)

where kn , ra n , Ln are again given by (15) and (14) . In particular ,
for x = o0 one finds the orthogonal function s

un(r) = J/2/L sin vn r .
Dan . Mae.FØ .Medd.26, no.15 .

	

5

1
K2 (A 10)

cos

	

sin

	

tan k

	

k
n(k) =

V
Y2+k2

	

n(k)

	

/x2+k2,

	

~( ) = x

k

(A 11)
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The integration can readily be performed, and B0 turns out t o
be equal to Xnn' given by (A 8) . This proves (18) .

A 5. When the equation for the phase is more complicated ,
as e. g. in (23), there is no corresponding boundary problem .

Nevertheless, if a phase function (co) is given by

tan C(w) = (w/x) Ø(w) ,

we may consider the set of functions

wn (r) = V2/Ln sin (wn r -

where Cr, = (wn), and wn is determined by the condition

wn (L) = O . For convenience, a factor with

L = L - (d ~/d w)wn

	

(A 15 )

has been added, but that does not mean that the functions are

normalized . They can be expressed in the complete orthogonal
set vn (r) :

Lvn (r) _ Cnn' vn' (r) , C nn = Spn (r) vn' (r) dr , (A 16)

Cvn = (kn /wv) Ynv = (w v /kn) {Ynv -V2 x/Ln (sin rin/kn) Yov}, (A17)

according to (A 13)" .

In order to prove (26) we deduce from (25), using successivel y

(A 14), (A 17) and (A 16) ,

*) The same equation holds in the second procedure, where Ø is determine d
by (27), provided the derivative in (A 15) is accordingly computed from (27) .

Nr . 1 5

A ' = -Ze l/3/2Env{vn(r)/knr} YnvPv

-Z e 1/3/2 Env {vn(r)/cwvr} Cvn Pv -

-Z e Env 1/3 x /Ln {vn(r) sin r]n/knr} Yov Pv

_ -Ze1/-3/2Ev{wv(r)/wvr}Pv -

- .̀ e En 1/3 x/Ln {vn(r) sin ?7n/n,,} Ev Yo, Pv .

On the other hand

P = P' = ePem = el/mEYovP,

and with the aid of the relatio n

Z, 1/2/Ln {v n (r) sin Yi n /kn} = 1/x,

	

(A 19)

which will be proved presently, . (A 18) reduces to (26) .

A 6. In this section an identical relation between the wn (r)
will be derived, which proves that they are not. independent . Let

Ø(z) be a one-valued analytic function in the complex z-plane ,

whose-only singularities are simple poles and which tends to a

limit different from zero when l zl tends to infinity . Then

G z ^_
sin {Lz - (z)} _ x sin Lz

-cos Lz
-

	

sin c (z)

	

zØ (z)

is also one-valued analytic and its only singularities are the zero s
Qi of Ø . The zeros of G(z) are the characteristic values wn and

the values of the derivative in these points ar e

G ' (LUn) = Ln/sin Lw„ ,

Ln being defined by (A 15) .

If J is a closed path of integration that does not pass throug h

any point co n , then

1

	

sin zx dz

	

sin w x

	

! sin wn L sin w n x

2 rc i G(z) (z -w) _ G (w)
+

	

Ln (wn- w)

J

the sum being extended over all w n inside J . The integral on th e

left vanishes for J ->- oo, x l < L . Hence, with x = L -r ,
5 *

Both orthogonal sets are connected by an orthogonal transfor-

mation J.
vn (r) = .»nn' uR (r) , Bnn' = vn (r) un . (r) dr .

and one finds readily

2 x

	

sin Sn sin ri n•

	

1

	

LC nn, =	 	 1 -
VLn Ln,

	

(.0 2,i2ll - k2n•

	

(wn)

For the harmonic oscillator (co )

	

Ø= w 2/(w 2 - K 2 ) and

67

(A 18)
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sin w x

	

+00
sin wn L sin w n x

G (w)

	

Ln (co - w n)

the last member being valid if Ø is an even function, so that

w_ n = - wn . Substituting w = Q 1 ,

co
' 2 sin -, t sin (wn r - Sn )

0 =

	

Ln(Qi- w,)

In this way one finds a relation between the wn (r) for each

zero of Ø .
Incidentally the relation (A 19) can be proved on choosing

Ø = 1 (so that wn = kn, Cn =7În, Ln = L,t) and taking in (A 20)
w = 0 and L very large . Moreover, if in this relation x goes to

infinity, it becomes

E (2 sin vn r)/L vn = 1,

	

(A 22)

which proves (17) .

A 7 . In this section the work of A 1 is reformulated for th e

case of a continuous spectrum. First suppose that the to are very

dense on the real axis ; introducing functions 8(t) and a(t) by

to+1	 to = s ( t n.) ,

	

an = V E ( tn) a ( tn) ,

we suppose that they vary slowly :

de/dt «1 ,

	

d a/dt « a/s .

Then, with xn = x(tn)1/ (tn ) equation (A 1) can be written

(s-t)x(t) = a(t)Sa(t')x(t')dt' = a(t) ß .

The formal solution, given in 27, i s

x(t) = a(t){(s-t)-1-Aå(s-t))ß,

	

(A23)

A being determined by

s

	 (t)t dt-7~a (s) 2 = 1 .

	

(A24)

For a justification we consider (A 2) for our nearly continuous
spectrum.

The (real) roots s are, from a macroscopical point of view ,
continuously distributed, but microscopically the position of eac h
root between two successive is is determined by the equation
(A 2) . Lets be the root between tm and tm+1, and put s = tm + a ,
0 < a < s . Then

It is readily seen that the first sum on the right tends to a principal -
value integra l

an

	

a(t)2 dt Ç' a(02 dt

tm+e/2-tn ~~tm+8/2t s-t '

which does not depend on the microscopical position of s .

The second sum is convergent, so that the higher terms, with
n-m `> N say, may be neglected . The other terms cover an

interval 2 Ns, which is small for small E, so that a,2~ may b e
taken constant in it . Hence this sum can be written

-7 sin

Ln

sin

(wnwn)

~n) (A 2 ~

co

=- 2

n=1

2 sin C r,
	 u~2

	

(r) . (A 21 )
2

	

nLn S~t - wnV

one can use instead of a the parameter

a . = - 7L cot m/E .

The characteristic equation (A 2) for s then takes the form (A 24)
with 2 as eigenvalue parameter to be determined .

The solution (A 23) can now easily be justified in the same way .

Appendix B .

Since we employ an expansion in multipole waves rather tha n
in the customary plane waves, the mathematical connection be-

tween both pictures has to be established . We shall first derive
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the relation between the intensity J of the plane wave and the

	

E = TEoe- iwf ,

	

Eo = iwe ;

outgoing energy I associated with its electric dipole component .

Next we express the cross-sections in terms of the polarizability

a and, subsequently, we derive the relation between a and the

	

The work done by the field force per unit time i s
phase shift C . Finally we shall apply the resulting formulae to th e

classical damped harmonic oscillator .

	

EM = 4 i to (E O Mo - Eå Mo )
= 2

co I Eo 1 2 ~a .

	

(B 6)
1°. Let a monochromatic plane wave in the z-direction b e

represented by the vector potential
On the other hand, the dipole emits, according to a well-know n

A (t) = Re ei w (z-0 .

	

(B 1)

	

calculation 51, per unit time the energy

The expansion in multipole waves can be written

eeicoz = EiubtuAtu(r , z9 ,p) ,

where the subscript 1 refers to the order of the multipole and u
distinguishes the different waves of the same order . Since th e

multipole waves are orthogonal on the surface of a sphere with

large radius r, one finds the coefficients btu from

btu S Atu (r,z9,q)) 2 cl .Q = S eAt" .(r,'+9',T) e iwrcosa4 dS~ .

	

(B 2)

I = (w4 /3) 1 Mo 12 = (w4/3) I a 12 I Eo 12 .

	

(B 7 )

Since J = 1%1 2/8 r, (B 6) and (B 7) give respectively

at = 4 nu) a ,

	

a s = (8 7L(0 4 /3) a I2•

	

(B 8)

As the field is now singular in the origin, its dipole component

will not only contain the regular dipole term sin wr/r, but also
cos wr/r . Therefore it can be writte n

A

	

s}l~C	 ~sin(wr-C) iw t
( t)

=

	

r

	

We are only interested in the electric dipole wave : 1 = 1,

	

(B 9 )

u = x, g, z ; in this case we hav e

A lu(r,= 'e" sin wr/r .

	

(B 3)

	

Performing the elementary integrations in (B 2) one finds

	

A = TZ iw I0e iwt/r + finite terms,

b ltt = (3/2 co) (e"e) so that the expansion takes the form
so that one finds

S7iee icu(<- t> = -
NZesiwTre-iwt + . . . _

	

(B 4)

	

C sin _

	

icoMo .

	

(B 10)

On the other hand, the constants C and C. have to be adjusted

Now the plane wave (B 1) has the intensity J = w 2/8 n,

	

so that (B 9) contains the same ingoing dipole wave as (B 4) :

whereas the outgoing (and also the ingoing) energy per unit tim e
in (B 3) is w 2 /12 . Thus from (B 4) follows

	

Ce i ~ = 3 e/2 w .

	

(B 11 )

Combining (B 5), (B 10), and (B 11) one find s

cc

	

4w3 (1_e2i ~) .

From this, together with (B 8) follow 5 2

The singularity caused by the dipole moment M has, accordin g

to classical formulae, the form

J=(2w2/3n-)I .

2°. Suppose there is a scattering centre at the origin which

has an induced dipole moment M proportional to the field strength

E of the incident plane wave :

(B 12)
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In the first term on the right one can writ e

PuPw-PuPw = PuPw -PwPu - {Pu , .È~w]

= PuPw -PwPu -iauaw v.

Hence, the eigenstates being labelled by N, M, J ,

	 V<Na u VIJ><JIaw VIM >
J

J

	

EJ -1Z

r (EN- S2) (EJ-EM) + (EM -Q) (EJ-EN)

E ,~ - S~

	

<N P„ I J> <J I Pw I M>

7 372
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3 ~

	

(

	

2i c )

	

itan

cot R
1-é

	

w2

	

+ i tan C'

3n 1 1-é-2i

	

=

6 or~I 2
2w 2

	

w2l

tan

l+ i tan ~

_ °t
C

_ 3n

	

1 -itan~ 2

2w2(1
~ e

	

I2)

	

2w2
1

	

1+itan WI ~

3° . For a damped harmonic oscillator the equation of motion i s

R + yR + K 2 R, = (e/m)s31Eoé1øt

	

(B 13)

The damping term y is the sum of the radiation damping an d

the damping due to energy dissipation by other processes 5 a

y = y° + y',

	

7° = 2 e 2 w 2 /3 m = w 2 /x .

From (B 13) follows in the ordinary way for the polarizabilit y

a = (e 2 /m) (K2	 w2 - iyw)-1 ,

and the phase shift can then be found from (B 12) :

w a/x
tangy = w

2 -K 2 + iy ' w

This formula takes the form (80) in the neighbourhood of th e

resonance frequency. The expressions one obtains for the cross-

sections are also similar to those in 41.

Appendix C.

Here we shall derive a general relation between matrix ele-

ments of the unperturbed atom, which has been used several

times to prove the equivalence of the results obtained by Kramers '

Hamiltonian with the usual results . If H is the Hamiltonian

P 2/2m+ V(11) and Q an arbitrary constant, one finds successivel y

PU (H-D)-1 P. = i {Pu Pw -Pv(H-D)-1 (H Q))

= i {(H-S2) P o (H

	

Po,-PoPio)

= 2i(PuPw-P„Pw)+(H-Q)P„(H-0)-1Po, (H-P )

9uP.(H-S~)+(H S2)P„PW) .

This identity will now be specialized in various ways .
1° . On taking N = M = 0, v = w, and SZ = Eo + w and

Q = Eo - ,w respectively, one obtains two identities, which adde d
together yield the equality used in (49) .

2° . On taking M = N, v = w, and S2 = EN -k one finds
the equivalence of (74) and (79) . If all three directions in space
are taken into account, one has to sum over v, which amounts
to writing in (79) the vector P .

3° . In the same way, by writing N = N,,u and M = N,,u ' ,
taking S2 = EN -k and summing over v = w, one finds (98) .

4°. Finally write the identity with Q = EM + wM , and also
with Q = EN -wM and v and w interchanged ; the sum of both
equalities thus obtained is

j<NIavVIJ><J1awvIM>+<NlawVlJ><JIaUVIM>t-<N
a a V

l E 1. EM- °M

	

EJ -EN +wM J

	

I v w

(KNM-wM) KJM -wMKJN <N
Pu J> <J I Pw I M >

KJM-wM

wMKJM +(KAIN +wM)KJN<N
Pwl J><J 113,1 NI >

KJN+ wM

a t =

l5 y

6a

2

M>
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8
Adding to this the identity

ff 9
0 - <N P„PW PwP, Mi =

	

i<NIP,IJ><JIPW ~M><NPu, J><JPr,

1 o
after multiplying with - 2 (2 wM + KMN), one gets on the right-

hand side

w (w VI, --KMN )/
<NIPUIJ><JIPWIM> <NIPWIJ><JIPUIM>

	

( CM
J

	

KJM -wM

	

KJN+ wM

This includes (60)-and also (49)-as special cases .
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