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I. Introduction.

he close packing of the particles in the nucleus and the

existence of a relatively sharp nuclear boundary have led
to the comparison of the nucleus with a liquid drop’ ?. This
model has found numerous applications in the theory of nuclear
reactions, and also accounts for certain static properties of the
nucleus. Thus, main features of the empirical binding energies
can be interpreted in a simple manner if the energy of the nu-
clear droplet is expressed as a sum of surface energy, volume
energy, and electrostatic energy. The treatment of the nucleus as
a deformable body has met with considerable success in the
theory of nuclear fission®.

According to the liquid drop model, the fundamental modes
of nuclear excitation correspond to collectlive types of motion,
such as surface oscillations and elastic vibrations. Even if it has
not been possible, with certainty, to associate observed nuclear
levels with particular modes of oscillation, the model gives an
immediate explanation of the rapid increase of the level density
with increasing excitation of the nucleus.

In recent years, new progress in the theory of nuclear structure
has been obtained through the development of the so-called single
particle model®~7. This model assumes that nuclear stationary
states, like electron configurations in atoms, can be approximately
described in terms of the motion of the individual particles in
an average field of force.

The single particle model explains the pronounced stability
of certain nuclear species, those which possess closed shells of
protons or neutrons, and has been highly successful in accounting
for the spins of nuclear ground states. Nuclear magnetic moments
and electric quadrupole moments also give strong evidence of

1*
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shell structure. Among the many other applications of the model it
may be mentioned that it has proved valuable in the interpretation
of f-transitions and isomeric states.

The liquid drop model and the single particle model represent
opposite approaches to the problem of nuclear structure. Each
refers to essential aspects of nuclear structure, -and it is to be
expected that features of both models must be taken into ac-
count simultaneously in a detailed description of nuclear pro-
perties.

The necessity of combining the two models is clearly indicated
by the observed behaviour of nuclear quadrupole moments. On
the one hand, as already mentioned, the quadrupole moments
give definite evidence of shell structure; in particular they change
sign on the passing of the magic numbers, as predicted by the
single particle model. On the other hand, for many nuclei, the
magnitude of the quadrupole moments is too large to be ac-
counted for in terms of individual nucleons and suggests that
the equilibrium shape of the nucleus itself deviates from spher-
ical symmetry.

The behaviour of the quadrupole moments finds a simple
explanation® if one considers the motion of the individual
particles in a deformable nucleus. Due to the centrifugal pres-
sure exerted by the particles on the nuclear walls, the nucleus
may acquire a considerable deformation. The quadrupole mo-
ments thus induced have the same sign as those observed and
appear also to have the right order of magnitude.

The coupling between the single particle motion and the
nuclear deformation gives rise to a certain sharing of angular
momentum between the particle and the surface. The quantization
of angular momenta may therefore deviate essentially from the
case of the pure single particle model. While the latter model
may be termed a quasi-atomic model, the combined model
bears many analogies to maolecular structures!®?, where we
have to do with the interplay between electronic and nuclear
motion.

The modification in the angular momentum coupling has a
direct influence on the magnetic moment of the nucleus. It may
perhaps be possible, along these lines, to explain the fact that
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the magnetic moments, although strongly correlated to the single
particle values, still deviate considerably from these values® 19,

It is the purpose of the present and following investigations
to consider various properties of a nucleus described in terms
of a deformable surface coupled to the motion of individual
nucleons. This combined model may be referred to as the quasi-
molecular model.

Apart from the problem of nuclear moments, mentioned
above, the model may find application in the analysis of the
energy spectrum of the nucleus and of transitions between nuclear
states. Such transitions not only involve a change of state of the
individual nucleons, but must be expected to be accompanied,
in general, by changes in the vibrational and rotational state of
the nucleus.

The nucleus may possess additional degrees of freedom asso-
ciated with simple types of motion, such as elastic vibrations,
connected with the compressibility of the nucleus®” ', and the
so-called dipole vibrations'® ', connected with the polariz-
ability of the nucleus. These types of motion, however, are ex-
pected to have considerably greater frequencies than the surface
vibrations and should therefore in general be of smaller in-
fluence on the nuclear ground state and low-lying excited
levels.

The degree of accuracy obtainable by the model is difficult
to estimate on a theoretical basis at the present state of knowledge
regarding nuclear forces. For the ground state of the nucleus,
empirical evidence appears to indicate that the model may be
adequate for many purposes. With increasing excitation of the
nucleus, and decreasing spacing between the energy levels, how-
ever, the effect of configuration perturbations becomes of growing
importance.

For high excitation energies, it must be expected that the sta-
tionary states of the nucleus can, in general, no longer be described
in terms of the motion of individual nucleons and simple oscil-
latory modes of the nucleus. The coupling between the various
possible types of motion will imply a complexity in the state of
the nucleus which suggests the application of statistical or thermo-
dynamic methods. It is in this energy region, which in general is
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reached by the capture of a particle into the nucleus, that the
concept of the compound nucleus has proved fruitful in accounting

for nuclear reactions*.

In the present paper, we are considering some general fea-
tures of the quasi-molecular model. In particular, we shall discuss
the classification of nuclear states and the adequacy of simple coup-
ling schemes. For simplicily, we confine curselves (o the case of a
single nucleon interacting with the nuclear surface. In actual
applications of the model, it will be necessary lo take into ac-
count all degrees of freedom of the particle structure which
may be excited by the surface oscillations. The special case con-
sidered here is illustrative, however, of the general procedure
which may be applied in problems of this type.

Section II is concerned with the classical theory of nuclear
surface vibrations. The surface is described by the five expansion
parameters corresponding to the spherical harmonics of order 2;
higher orders are of minor importance here. It is convenient to
divide the kinetic energy of oscillation into a vibrational and a
rotational part. The quantum theory of the surface oscillations is
discussed in Section III.

Section 1V deals with the motion of a nucleon in a deformed
nucleus and, finally, in Section V, we consider the coupling of the
single particle motion to the oscillations of the nuclear surface.
A general solution of this problem would be rather complicated,
but, in the limits of weak and strong coupling between the particle
and the surface, simple approximate solutions can be obtained.

Of particular interest is the case of strong coupling, where
the single particle produces a large deformation of the nucleus.
In this limiting case, which may be approximately realized for
certain nuclear states, the system is, dynamically, closely analogous
to a linear molecule. For such states, the individual particles may
be considered as moving in an average field corresponding to a
cylindrically symmetric equilibrium shape of the nucleus. The
nuclear surface performs small vibrations about the equilibrium
shape, while the symmetry axis precesses around the total angular
momentum vector of the nucleus.

* For a closer discussion of the relationship of the single particle model to
the compound nucleus, cf. V. WeIsskoprl15).
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[I. Classical Theory of Nuclear Surface Oscillations.

1) Surface vibrations as harmonic oscillators.

The theory of nuclear surface oscillations has been developed
by several authors® ® 17 In the following paragraphs, we shall
attempt to presenl it in a form especially suited for the treat-
ment of surface oscillations coupled 1o the motion of individual
nucleons.

Let the surface of the nucleus, in polar coordinates, be given
by R(¥, ¢). We expand R in spherical harmonics, writing

R({, ¢) = R, (1 +Z «j,u Yz,y(ﬂ, 2)), (1)

A p

where R, is the radius of the nucleus in its spherical equilibrium
shape. The function Y3 , is the normalized spherical harmonic
of order A, u; the phase factor is that used by Conpox and SHORT-
LEY'®. The expansion parameters o, are the coordinates
which describe the deformation of the nuclear surface. Since R
is real, we have ez, = (—)" e}, —p

The idea of a continuous nuclear surface does not apply it
we consider surface elements of linear dimensions comparable
with, or smaller than, the distance between the nucleons. The
quantities a3, 4 therefore lose their meaning if 4 becomes of the
order of, or larger than, A"

If the coefficients «j,, are small, the potential energy of
deformation takes the form

r 1 €
ALY @)
A, @
while the associated kinetic energy is given by

1 .
T =3 3 Bilds ul’ (3)
A p

The quantities Bj and C; depend on more detailed assumptions
regarding the properties of nuclear matter.
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For an incompressible nucleus of constant density go, one
finds

1
By — ;o RS, 0

assuming nuclear matter to have irrotational flow. If, moreover,
the charge of the nucleus Ze is uniformly distributed over its
volume, one obtains

- 3 2_1 Zzez
— —_— 2 5
Cr=U=DOA+2DRS—5 o577 R

(5)
where S is the surface tension. As an approximate estimate of
S we may use the average value

47 RS = 15.4 A7 MeV, (6)
0

deduced from nuclear binding energies!?,

It is to be emphasized that the above expressions refer to a
greatly simplified nuclear model. The nuclear deformability may
vary considerably from nucleus to nucleus and may be strongly
influenced by shell structures in the nucleon binding*.

In order to solve the dynamical problem given by equations
(2) and (3) we introduce the momentum conjugate to ay, .
defined by

Thu = F :Bl‘ii/y (7)

The Hamiltonian of the nuclear surface now takes the form
= 1 2 Cl 2 ‘
HS=T+V=15 {*QBﬁlnz,;tH—g—l“z.,u\} (8)
s M

and the surface oscillations may thus be considered as a system
of harmonic oscillators with frequencies

wy =1/= (9

and mass coefficients Bj.

* The writer is indebted te Drs. B. MorTeLson and W. J. SwraTeckr for
illuminating comments on this point.
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For the problem of the interaction of the surface oscillations
with the single particle motion, it is convenient to make a change
of coordinates in such a way that the kinetic energy of the
surface separates into a vibrational and a rotational part. This
coordinate transformation will be considered in the following
paragraphs for deformations of order 4 = 2. A particle moving
in the nuclear field interacts, to a first approximation, only with
deformations of even order, and of these the lowest order 2 = 2
is of special interest. Already deformations of order 1 = 4 can
be shown to be of much less importance in the present connection.

2) Deformations of order two.

The general deformation of order 2 represents, for small
values of the «-coefficients, an ellipsoid oriented at random in
space. Instead of characterizing this deformation by the five
coordinates &, (we drop the index 1 = 2), it may be described
by three angular coordinates specifying the orientation of the
ellipsoid and two internal parameters determining its shape. (The
sum of the three principal axes of the ellipsoid, to a first ap-
proximation, remains constant during the deformation).

Consider a coordinate system K’ whose axes coincide with
the principal axes of the ellipsoid. The orientation of X’ with
respect to a fixed frame of reference K will be characterized by
three Eulerian angles 0, ¢, ¢ of which 0, ¢ represent the polar
angles of the z’-axis in the K-system, while 6, #—y denote the
polar angles of the z-axis in the K'-system. It is often convenient
to write (6;) = (04, 05, 05) = (0. ¢, v).

The deformation defined by the e, in K is in K’ given by
the coefficients

. .
a, :Z ey Dy (6,), (10)
pH=—2

where Dyy(6;) are the transformation functions for the spherical
harmonics of order 2.

For our special choice of K’, we have a; = a_, and
a, = a_; = 0. Taking the inverse of (10) we get, since Dy, is
a unitary matrix,
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Cu ZZ avD/:i;v(ei)~ ; (11)
v

Equations (10) and (11) define a coordinate transformation from
the five ay to the new coordinates ay, a,, 0;.

These equations do not define the new coordinates uniquely.
If we restrict ourselves lo right-handed coordinate systems,
there are in fact 24 ways of choosing K’ with axes along the
ellipsoidal axes. To each choice corresponds a particular set of
coordinates ay, 0;. If the deformation possesses rotational sym-
metry, there are even an infinite number of ways of choosing
K’. The ambiguity in the coordinates is of significance for the
symmetiry properties of the wave function and will be considered
later (§ I11,3).

It is convenient to make the further substitution

ag= fcosy
a a 1 psiny (12)
2 = e .

V2

The set of coordinates B, y, 6; will be referred to as f,. Due to
the unitary character of Dy, we have

Z|oc‘u|2:Za?,=ag+2a§:ﬁz (13)
H v

and f is thus a measure of the total deformation of the nucleus.
From (2) and (13) we have

1 2
V= 0B (14)

for the potential energy of deformation.
The increments of the three axes of the ellipsoid, for a de-
formation B, y, is given by

5
5RKZI/EE/3ROCOS <y—u2?n>, (15)

where » = 1, 2, 3 for the «’, y’, z"-axes, respectively.
If we define the eccentricities by

2

R 2
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and the cyclic permutations, we find

15
e, = l/—_?ﬂsin (y

The coordinate y is a shape parameter which describes the

27
<27, (17)
;)

deviation from rotational symmetry. For y = 0 +p§, where p

7

Fig. 1. The nuclear deformation is characterized by the point A in the polar dia-
gram. The radius vector equals the total deformation parameter 8, while the polar
angle, measured from the {-axis, is given by the shape parameter . The eccen-

tricities e, €,, and e; are equal to % times the distance of A from the &-, #-,

and (-axes, respectively. If A falls on the &-, -, or [-axis, the nucleus possesses
rotational symmetry with respect to its x’-, y’- or z’-axis, respectively.

is an integer, two of the axes are equal and the ellipsoid becomes
a spheroid. A diagram of nuclear deformations is shown in Fig. 1.

3) Vibrational and rotational energy.

In order to express the kinetic energy of the oscillating nucleus
in the f,-coordinates, we derive from (11)

. , 0
Gy = 3, Dy (0) + > a,8,25- D5, (6). (18)
v v, J )
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If we introduce this value for «, in (3), the kinetic energy splits
into three terms. The first term is quadratic in @, and represents
vibrations by which the ellipsoid changes its shape, but retains
its orientation. The second term, quadratic in §; represents a
rotation of the ellipsoid without change of shape. The third term,
which contains mixed tlme derivatives d,,éi, vaniShes, as can be
shown from simple properties of the Dy-coefficients and their
derivatives.
We may thus write

T = Tvib+ Tror- (19)

For the vibrational energy, one gets immediately
_1 cgp L 52 2,52

by means of (12).
To obtain a convenient form for T, we use the relation

. 9 .

Z aié_efD#” (Bi) = IZ D D,um(oi) (Z"[x)mv: (21)
7 7 x,m

where the M, are five-dimensional matrices well known from

the quantum mechanical representation of an angular momentum

of two units. They obey the commutation rules

M M) — MM, = — i My, (22)

where the index »xA refers to the axis formed by a vector pro-
duct of the »- and A-axes. A representation is used in which
(M3)my = Mmdémy. The quantities ¢, denote the components of
angular velocity of the ellipsoid along its axes, and may be
written

Qe ZZ ijéj- (23)
]

The coefficient matrix g.; has been given by Castmiz®® (p.15)*.
By means of (18) and (21) one now obtains from (3)
1 ‘
T, = 532 avav’z Ge Qe (M, My Doy (24)
v, R

* The angles here denoted by 6, ¢,y are equal to CasiMir’s &, ’l"‘g’

7
¢P+§-
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by making use of the unitary character of Dy,. In this expression,
the terms with » = %" vanish, since » takes only even values.
We therefore get the familiar type of expression

=2 Said. (25)
*
where the moments of inertia &, are given by
&y =B Z aytty (M) (26)
or "
&, = 4 BB?sin® {y—xz—;—t} (27)

by means of (12). _

The moments of inertia are proportional to the square of the
deformation parameter 5. In terms of the eccentricities (17), one
may write

4z 1 : .
F =15 Be = 74 e (28)
where &, denotes the moment of inertia of the entire nucleus with
respect to its center. The circumstance that, for small defor-
mations, & {{ &, shows that only a small fraction of the nuclear
matter is effectively involved in the rotational motion.

4) Angular momentum of the nucleus.

—
The angular momentum (] of the oscillating nucleus may be
determined directly from the expression

I = Sg(}’x?) de, (29)

where the integral is extended over the volume of the nucleus.
For irrotational flow, the velocity U of the nuclear fluid may
be written

7 = —grad y, (30)

where, for small deformations, the velocity potential is given by

1,.
¥ = —Z' grzaﬂYu(ﬁ,a). (31)
"
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One thus finds

o= Lo S o\ v L regrad Y. do (32)
g € 02, p o\ tpy I8 H
ts
or, by means of (4),
—> . £
O% — IBZ“/A“/J,' M:u,:u’ (33)
s

where the components of IT/I) along the x, y, and z-axes are given
by the M, M,, and M; of the previous paragraph.

In introducing the transformation (11), we make use of the
relation

—> —

Z DMy Dy = M, (34)
ey’

where the vector on the right hand side has components M;, M,,

and M; along the axes of the ellipsoid. According to (18), the angular

momentum becomes a sum of two terms. The first term contains

ay and can be shown to vanish; the second gives, by application

of (21),
O/}/lx = Bzavav'ZQu’ (M M)y, (35)
v, v »
or, by means of (26),
My = 4. (36)
correspanding to (25). We may thus write
2
_ L sV (37)
rot 2 A; ch

as an alternative form for the rotational energy.

III. Quantum Theory of Nuclear Surface Oscillations.

1) Stationary states of oscillating nucleus.

We assume that the quantum mechanical description of
nuclear hydrodynamics can be derived from the classical equa-
tions of motion by the usual procedure of quantization.

In order to classify the stationary states of the nucleus it is
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convenient to take the Hamiltonian in the form (8), a form well
known from the quantum theory of fields (cf. WenTzEL?Y, p. 33).
The excitation of the nucleus may then be described in terms
of the five variables ny, the occupation numbers, with eigenvalues
0,1,2,.....

In the usual way, we put

h
= l/m@ﬁ(_)" P
(38)

7y = zl/’%‘f’ @h— ()b,

where @ is given by (9). We are restricting ourselves to 4 = 2
and have dropped the index A. The matrices b, and their Her-
mitian conjugates by; obey the relations

bl = n,+ 1
(39)

and are the destruction and creation operators.
In the ny-representation, the Hamiltonian is diagonal and has
the eigenvalues

ENZHw%’(;——}—n#):hw(g—{—N), (40)

where N = anu: 0,1,2,.....
"
Each energy level is as many times degenerate as the N ex-

citation quanta can be distributed on the five individual modes
of oscillation. In order to determine the angular momentum
quantum numbers of the excited states, we consider the operator
(M, given by (33). By means of (7), (38), and (39) one finds
that (1, is diagonal in the ny-representation and has the eigen-
values 5
W, = h> un,. (41)
p=—2
It follows that the excitation quanta are equivalent to Bose-Ein-
stein particles, phonons, of spin 2. The number n, represents
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the number of phonons having a component ph of angular mo-
mentum along the z-axis.

From this equivalence one can determine the angular momenta
I of the excitation states having a given N. For the first few values
of N one finds

N=20 I1=0

N =1 I=2

N =2 I1=0,24 (42)
N =23 1=20,2,346

In the same manner, the states corresponding to the oscillations
~with 4> 2 can be characterized as excitation of Bose-Einstein
quanta of spin A

As regards the order of magnitude of the level spacing
corresponding to 1 = 2, it may be noted that, for a medium
heavy nucleus with A = 100, the approximate expressions (4)
and (5) give a value for hw of 2.3 MeV. For a heavy nucleus
(A = 200), one finds hw = 1.3 MeV.

Whereas these values indicate the general order of magni-
tude of the excitation energies for nuclear surface oscillations,
simple level systems of this type are not to be expected in ac-
tual nuclei. Apart from the influence of shell structure on the
nuclear deformability, the coupling of the surface modes to the
motion of individual nucleons will in general give rise to a
more composite level structure. For the treatment of this coup-
ling effect, it is often convenient to consider the surface oscil-
lations in the coordinates f.

2) Transformation to coordinates §,.

In Section II, the Hamiltonian has been given in terms of
the coordinates f#, and their time derivatives. In constructing
the wave equation in this set of coordinates we form the ex-
pression

ds? = 2Tdt* =>'Gydf, dp,. (43)
v
The matrix Guy may be found from equations (20), (23), (25),
and (27).
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The Hamiltonian now takes the form (cf. PauLr®®, p.120)

Hy T+V——*ZG“6 GEGH a+V, (44)
wy /S/L ﬂv

where G* is the reciprocal of Guy. The determinant of G, is
denoted by G and is found to be

G = 4B58%sin? 3y sin? (45)

by means of the relation

smysm( ~—2§)51n(y+2n> :—i—sinSy. (46)

The volume element is proportional to | G%’l and may be taken as
d7:=/34|sin 3y|sin0dﬁ dy db dp dy. (47)

The potential energy is given by (14), while the kinetic energy
may be written in the form (19) with

B h2 0.1 1 8
Top = — {ﬂ"'aﬁ‘ﬂ aﬂ ﬁzsln3y6ysm3y6} (48)

The rotational energy 7., has the form of the kinetic energy of
a top (in general asymmetric) with moments of inertia 4.

It is convenient to express Ty, in terms of the angular mo-
mentum components along the axes of the ellipsoid. Putting

M. = 10, (49)
we have from (37)
hz
T, ot 222 gx Qi (50)

The operators Q. may be expressed as differential operators in
the 0; (cf. Casmmir®®, p. 57) or they may be considered as ma-
trices, obeying the commutation relations

Q%01 — Q1Qx = — i Qux2. (51)
2

Dan.Mat,Fys. Medd. 26, no. 14.
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We use the representation in which Q, is diagonal. The Q, com-
mute with the components hQ,, hQ,, iQ, of the angular mo-
mentum along the fixed coordinate axes. The latter operators
obey relations similar to (51), but with a change of sign of i.

Fig. 2. Angular momentum diagram for the oscillating nucleus. The angular

. -
momentum vector Q, of length \/I (I 4+ 1), has components Q,, with eigenvalues
M, about the fixed z-axis, and Q,, with eigenvalues K, about the z"~axis of the nucleus.

Since Tyo involves § only as a factor §7% the stationary state
wave functions separate in the following way:

F(Bu) = F(BYDP(y. 0), (52)
with @ and f obeying the equations
a . a1 0%
‘sinSyﬁsmSy@—’_ZZ—’Tn b = AP (53)

o ao2f, A7
Sm(y x3)

and
1 AR®
g Oty f= Bl G0

146,08
\=2555"

where Eg is the fotal oscillation energy. For a particular value
of Q2 = I(I+ 1) and Q, = M, we may write @ in the form

I
®y," (7,6, =Z’%§; T DLy (8D, (55)
K=—
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where the functions (JL,;;(6;) give a (21 + 1)-dimensional re-
presentation of the rotation group. These functions are eigen-
functions for the operators @, and (@; belonging to the eigen-
values M and K (see Fig. 2). The symbol r stands for the two
quantum numbers which, in addition to I and M, characterize
the eigenstates @,

3) Symmetry properties of the wave function.

A configuration of the nucleus determines the surface co-
ordinates «, uniquely, but, as already mentioned, there is no
one to one correspondence between the coordinates e, and f.
The «, determine the principal axes of the ellipsoid, but the g,
depend also on the designation of these axes as the 1,2,3 axis,
respectively, and on the choice of positive direction for the three
axes.

Restricting ourselves to right hand coordinate systems, there
are 24 sets of 8, values which correspond to the same set of ay.
In the special case of symmeltry with respect to one or more of
the axes, the arbitrariness in the choice of §, is even continuously
manifold.

Since the wave function is one-valued in the «y, it must
be invariant with respect to those transformations of the £,
which leave the &, unaltered. These may be expressed in terms
of three basic transformation operators Ry, R,, and R,.

R, corresponds to a reversal of the 2 and 3 axes and may
be defined by the scheme

Ry, 0,9 9) =(,n—0,9p+n—vy) (56)
which implies
Ry Dy (8) = exp{in (I+ Ky Ty _ 1 (6). (57)

The total deformation parameter § is uniquely determined by
the ey and is left unaltered by all the transformations in question.
We have R} = 1.
R, corresponds to a rotation through 90° of the 1 and 2 axes
with respect to the 3 axis and is given by
2%
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B 0.9.) = (~7.0.9.9+5) (58)
and '
RZ‘Q)JIVIK (6,) = exp {ng} @;/1,1((01')' (59)
It is seen that R} = 1.

Finally, R; corresponds to a cyclic permutation of the three
axes. The transformation of the 8; is expressed most simply in

7 7 .
terms of the rotation with Eulerian angles ¢; = (5, 0, 5), which

performs the permutation of the axes. We have

27
Ry(y) = ( —?) 60)
Ry Ty (6)) = > Dnier 0 Tgee (90

and R} = 1. :
The 24 transformations of the f, can all be written in the
form
R = R} RIR3, (61)

where s;, s,, and s; are integers. Therefore, the solutions to (53),
which represent nuclear states, are invariant with respect to the
transformations R;, R, and R,.

If we use the form (55) for the wave function, the symmetry
requirements impose certain restrictions on the functions gx(y).
From (57) and (59) follows

9x @) = explin(I+ K)}g_, () (62)

7T
9x () = exp »{ng} 9x (7). (63)
Similarly, the relation

9z () :; Dier (@) 95 ('V — 232) (64)

is demanded to ensure invariance with respect to R,.
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Applying (63) twice, one seces that gz vanishes if K is odd.
In the terminology used to classify the stationary states of an
asymmetric top (cf. Castmir®®”, p. 61) we may say that only the
even (&) classes of states exist. From (62) follows

9 = () 9_x (. (65)

showing that, for I even, only the symmetrical class &7 is allowed,
for I odd only the antisymmetrical class &—. It is a particular
consequence that no state of I = 1 exists. The conditions (63)
7T
g.

The symmetry requirements for the states of the vibrating and
rotating nucleus are analogous to those relating to certain types
of molecules containing identical nuclei of spin zero.

and (64) effectively limit the variation interval for y to ¢ < p <

4) States with / = 0.

In general, the wave equation (53) consists of a number of
coupled differential equations in y of rather complicated char-
acter, and for free oscillations of the nuclear surface it is often
easier to consider the equations of motion in the coordinates ey.
As an example of the solution of the wave equation in the f,-
coordinates we take the simple case of I = 0, in which the
wave function is independent of ;. Moreover, (63) and (64)
demand that @ be a one-valued function of cos 3y. The equation
(53) thus is reduced to the familiar equation for Legendre poly-
nomials Pj (cos 3y) with

A=9A(A+1) A=01,2 ... (86)

as eigenvalues.
Equation (54) for f(f) may now be solved by putting

[® = @ exp| 5 o) (67)

with

G @
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and h(p) a polynomial. For small §, the leading term in h(f)
is f3%, If the highest power occurring in h(f) is denoted by »,
the eigenvalues for the oscillation energy are given by

E,,:hw(g—i—v) vy =34, 3A+2, -, (69)

The ground state of the nucleus corresponds to v = 4 =0
and has the wave function

Y0 = 1) = Fa @B el janpl. G0)

normalized for a volume element dv = f4df (cf. (47)). From
(70) one finds

— 51 5 h
2: o — ——— = — —
Po=1# 2«B 2}BC

(71)

as a measure of the zero point amplitude.

IV. Motion of Nucleons in a Deformed Nucleus.

The motion of a particle in a deformed nucleus has been
considered by RainwaTER® who treated the nuclear field as a
potential well with infinitely high walls. FEENnBERG and Hawm-
Mack®™ have discussed the problem of a finite well. These
authors restricted themselves to nuclear deformations possessing
cylindrical symmetry, in which case the particle wave equation
can be studied in spheroidal coordinates. The shift of the energy
levels, with respect to those of a spherical potential, were cal-
culated in the first approximation containing linear terms in the
deformation parameter. '

In this approximation, the energy levels may also, for arbi-
trary deformations, be calculated by ordinary perturbation theory.
For an infinite well one may use the method of the perturbed
boundary conditions®® 2, We shall write the energy of the
particle

H = H, + Hyy, (72)
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where

H, = Tyt V, () + D (E-5) (73)

is the particle energy for a spherical nucleus. We have included
a spin orbit coupling of strength D.

H,,, represents the interaction of the particle with the nuclear
deformation and may, to first order in ey, be written in the form

Hint = - 1{‘(1‘) Za‘uylu(ﬂ, g) (74)
w

if we restrict ourselves to the harmonics of second order. The po-
lar coordinates of the particle are denoted by r, #, o. If we can
assume that the change in potential accompanying the nuclear
deformation takes place only at the surface, k will contain the
factor d(r — R,). For a potential well with infinite walls, the ex-
pectation value of k is given by

k=2T, (75)

where T—p is the average kinelic energy of the particle in the
nucleus. For more general models, the expectation value of & will
depend somewhat on the state of the particle, but it appears®” 2
that it will not deviate essentially from the simple expression (75);
for a finite rectangular well it has been estimated to be some
25 °/, smaller®® for most particle states.

If the magnitude ! of the orbital angular momentum of the
particle remains a good quantum number for a deformed nucleus,
the significant matrix elements of H, take a simple form. This
assumption implies that no near-lying single particle states with
different [ exist, which can perturb the state in question.

If, moreover, the spin orbit coupling is large compared with
H,,, also j, the magnitude of the total angular momentum of
the particle, will be an approximate constant of the motion. The
component j, will only be a constant in the special case of de-
formations which are symmetrical with respect to the z-axis
(e = 0 for p70).
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For fixed j, the interaction energy may be written

Hpy = ](ch“,uny, (76)
where #

5 1 (77)
=/ — 77
o= 175G
and where the operators m, are given by

3. 1.,.
Ty = (5],2—2J(j+1)>

nil=¢|/§v{jz<jxiz‘jy>+<jxiz:iy)jz} - 08

3 .. ..
niz = l/g(]xil.]y)g'

From this form of Hj,; the matrix elements can be immediately
evaluated, for instance in a representation in which j, is dia-
gonal.

If the spin orbit coupling is not strong compared with the
coupling of the particle to the nuclear deformation, j is no longer
a good quantum number and the form (76) for Hj, is not valid.
Provided ! remains approximately constant, we can still use a
similar expression for H,, obtained by replacing c¢; by

5 2
o= )3z arais 7

>
and by replacing, in 7, the components of j with the components
-

of (.

H;,; may also be expressed in relative coordinates which
describe the motion of the particle with respect to the principal
axes of the deformed nucleus. If we denote by j;, j,, and j; the

>

components of j along these axes, we find from (76) and (78)
1 . v & °y .

Hy = keyplcosy (3j3—jG+1D)+V3siny (i —iD}, (80

using the notation of (12).
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For fixed §# and yp, this interaction energy has the same form
as the Hamiltonian for an asymmetric top, except for the fact
that the effective moments of inertia, corresponding to (80), may
be negative. The eigenvalues for H;;; can be derived in complete
analogy to the procedure used for the top.

The formulae given in this section apply most directly to
nuclei which possess a single particle in addition to closed shells.
However, for nuclei having closed shells minus one particle, the
only necessary modification is a change of sign of the quantities
k and D. .

In the case of more complicated nuclei, which have to be
described in terms of several particles in addition to, or lacking
in, closed shells, the interaction with the nuclear surface takes
a simple form, analogous to (76) or (80), only if the magnitude
J of the total angular momentum of the particles is a constant
of the motion. If the angular momenta of the particles are de-
coupled under the influence of the surface deformation, the inter-
action acquires a more complex character.

V. Coupling of Single Particle Motion to Nuclear
Surface Oscillations.

1) Equations of motion.

The total system, nuclear surface 4 single particle, is described
by the Hamiltonian

H = HS+ H + int (81)

Expressing the energy Hg of the surface oscillations in terms of
the coordinates f, we have

HS = Tvib+ Trot+ v, (82)

where the three terms are given by (48), (50), and (14), respect-
ively. The particle energy H,, is given by (73) and, for the inter-
action energy, we shall use (76) or (80), assuming j to be a
constant of the motion.

Even with this simplification, the equations of motion, de-
seribing the coupled system, are somewhal complex, but, in
limiting cases, simple approximative solutions may be obtained.
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If the interaction is weak, or more precisely, if H, is small
compared with the level spacing of the uncoupled system, the
motion of the surface and of the particle may, in first approx-
imation, be considered as independent. The effect of H;,, may
then be treated as a small perturbation, and it will be convenient
to use the form (76) for H,.

If the interaction is strong, we may use a procedure analogous
to the treatment of molecular structures. In this approximation,
one may consider the motion of the particle relative to the axes
of the nucleus, corresponding to the form (80) for H,. The
vibration and rotation of the nucleus, to a first approximation,
have only an adiabatic influence on the particle motion. Non-
adiabatic effects can be calculated as small perturbations.

The value of H;,; depends on the single particle state in
question and on its orientation with respect to the deformed
nucleus. For the various nuclear species, we may expect levels of
both types, corresponding to weak and strong interaction, respect-
ively. We shall, in particular, consider the strong coupling case
which appears, in many instances, to give the best representation
of nuclear ground states, as is indicated by the large empirical
quadrupole moments. N

The total angular momentum I of the nucleus is the sum of

> >
two parts, () and j, referring to the surface oscillations and the

>
particle motion, respectively. Eliminating Q from (50), we may
write

2
T,= ZQHE (L, _‘]%)2 (83)

for the rotational energy of the nucleus.
The commutation rules for the components of I+ar1d J?along
the axes of the nucleus are
Llp — Il = — iDLy
Judi — jidx = Ljuxa (84)
Lija — jod = 0.

From these expressions the commutators involving the Q, may
be derived.
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In the strong coupling approximation, it is convenient to use
a representation in which I; and j; are diagonal. Their eigenvalues
will be denoted by K and £, respectively (cf. Fig. 3). The wave
function for a stationary state of the system thus takes the form

i =_Q§{ P67 x B ) 10 Dy (0D, (85)

which is a generalization of (55). The function y, represents a
single particle state with j, = £. The states of the nucleus are

Fig. 3. Angular momentum dlagram for the quasi-molecular nuclear model. The
total angular momentum I of the nucleus is the resultant of the single particle
angular momentum ] and the rotation wvector Q of the oscillating nucleus. The

projections of j and I along the z'-axis of the nucleus, which become approximate
constants of the motion in the strong coupling approximation, have eigenvalues
£ and K, respectively.

characterized by the quantum numbers I and M, referring to the
absolute value of the nuclear angular momentum and its com-
ponent along a fixed z-axis, respectively. Additional quantum
numbers are specified by the index 7.

2) Symmetry properties of the wave function.

If the single particle motion is described relatively to the axes
of the deformed nucleus, the transformation operators R;, R,, and
R;, introduced in (III, 3), also act on the particle wave functions.
In the representation corresponding to (85) one finds
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Ry, =exp{—in(j+D} 1 (86)

Rygo= exp{—ig.@}gm (87)

Rigp =T, 00 10 (88)
Q/

in analogy to (57), (59), and (60).
The invariance of ¥ with respect to Rj thus implies that
®g, x vanishes except for

K—0Q =2y y=0,4+1,4£2,.... (89)

corresponding to the even class of states. The condition R, #
= ¥ next demands

Po.x By =0 _o_ kB, (90)

and ¥ may, therefore, be expressed in the form

I, 1, 1 I—j T
ijT = ZW.Q,TK{xQ@MK"I' (_) ]X—Q@M,-—K}' (91)
22>0
K

For I —j even, only the class &" exists, for 7 —j odd, only the
class & .

The invariance with respect to R, and R; imposes the further
restrictions

Po,xBy) = ()P0, x(B—») (92)
and
Po,x(B.v) = QZ D, 0 (w) Tig, (90 P, & (ﬁ, y—%ﬂ) (93)

on the functions @@, g (cf. (63) and (64)). The variation interval

for y is thereby effectively limited to 0 << y<§.

3) Strong coupling approximation.

In the case of strong interaction between the single particle
and the nuclear surface oscillations, the wave equation possesses
solutions for which the angular momentum components j; and
I, are approximately constants of the motion.
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In considering nuclear states of this type, it is convenient to
divide the Hamiltonian into two parts of which the first, H,,
commutes with j; and I;, while the second part, U, contains
no diagonal elements in the j,, I; representation.

We thus have

H = H,+ U, (94)
where

H, = +V+( L + w )(1(1+1) B+jG+1)—j2)

ub 4(51 4% 3

h® . rr
+og i T i, 5 ke, feosy (33— G+ 1),

and where

A
U=U,+U,+U; = _(L; IIJ1+Cg 2]2)

2 2 2 2
+ —h———h—+V3Icc ﬁsmy)(h )—I-( R

according to (81), (82), (83), and (80). We first consider the
solutions corresponding to the unperturbed Hamiltonian Hg; the
influence of U will be discussed in the following section.

If U can be neglected, the nuclear state may be characterized
by the quantum numbers I, M, K, and 2, and the wave function
(91) reduces to a single term if we look apart from the symmetry
requirement (93).

The function @@, x(f, y) is given by the equation

Hy(Iy = K, js =) ¢ (B, y) = Eg (B, »), (97)

where E' is the energy of the nucleus. This Hamiltonian may be
considered as a sum of a kinetic energy T,y and a potential
energy W (8, y) which does not contain derivatives with respect
to § or y. From (14) and (27) one finds

3 :
16 B4 ( ﬁ2?n) sillz(y-!-z:i—n)

The particle energy H, is a constant with respect to § and .

(95)

(96)

(98)
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We shall in particular consider states with K = £ which are
found to have the smallest energy. The ground state of the nucleus
is expected to be of this type. For K = £ the potential (98) has

a minimum for f = §, and y = y,, where

ylz{gfor 30°—j(j+1) {;8, (99)

while f,; is given by the equation

2

C ﬂl—;—kcj |32 —j(j+1)] ——3~g73-?- IU+D+j(j+1)—22%) = 0, (100
which has a single positive root. The potential (98) also possesses
other minima, but these lie at higher energies. The potential
function is illustrated in Figs. 4 and 5.

The f;, y; configuration represents the equilibrium shape of
the nucleus deformed under the influence of the single particle.

WA ) -H,
IMeV
2Mel
1 MeV
T T i T T ""ﬂ
0 0.1 02 B o3 04 05

Fig. 4. Potential energy for nuclear vibrations, as a function of B for y = y;. The

potential has a minimum for 8 = B,. For larger 8, the increase of W is due to

the surface tension, while the increase of W for small f is due partly to the coupling

to the single particle motion and partly to the rotation vibration interaction. The

numerical values given on the figure correspond to the example discussed on
page 34.

This equilibrium shape possesses rotational symmeiry with respect
to the 3 axis of the nucleus, and we have therefore a wide-going
analogy to the structure of linear molecules.
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If we neglect the third term on the left hand side of (100),
the equation for f§, is equivalent to that obtained by RainwaTer®
for the equilibrium deformation of the nucleus. The extra term
represents the rotation-vibration interaction. The effect of this
term becomes small in the limit of very strong coupling between

w(s.)-H,
)
7Me V-

SMe S

IMe V-

I MeV-

T >
27 T 47 174 amr

3 3 3
Fig. 5. Potential energy for nuclear vibrations as a function of y, for § = ;. The

0

Calag e ee e e

singularities in W for y = o L g and 7 + 2% are due to the rotation vibration

interaction. The validity of the strong coupling approximation implies that the

amplitude of the wave function is small for |7 —y |2 g The curve illustrates

the numerical example considered on page 34,

single particle and nuclear surface. In actual cases, however, the
eflect may be quite appreciable.

The nucleus will vibrate around the equilibrium shape and,
for small oscillations, the potential may be approximated by
the expression

WB.Y) = Wy + 4 p(B—F0*+3 g (r—y)* (101)
with

2
p:c+13h—ﬁ4(1(1+1)+j(j+1)—292) (102)
1
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and

1 Ny 2 h* Lo
q= 2_]“3,':31I3QZ_J(J+1),+§EI§§(I(I+1)+J(J+ 1)—20%). (103)
1
With this form for the potential, the wave equation (97) may
be solved approximately by separation of the coordinates § and
v. Putting

¢ (By) =E@)n, (104)

where fix = §— f, and y = y — y,, the wave equations for &
and 7 become, by means of (48),

a 2

and
10 0
{2Bﬂ2yayyay+2qy}n(y) Eyy (), (106)

assuming throughout that x {{1 and y<{{ 1. We have
E =W (B, v)) + Eg+ E, (107)

for the total energy of the nucleus.

Equation (105) may be solved by noling that the function
e**& (x) satisfies the wave equation for the linear harmonic oscil-
lator. The eigenvalues of Eg are

E 21 h P =0,1
g = ﬁ2+ ﬁ—i— ng=20,1,2--. (108)
and the wave function representing the state ng = 0 is given by
3 1)?
Ey(x) = (E> exp {—s (m—]——) }, (109)
n s
where
§ = £ E (110)
2h C

As a consequence of the zero point vibration, the mean value of
x is shifted from zero to
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x =, (111)
while

@ -

1
1s (112)

gives the mean square deviation.

Equation (106) is equivalent to the radial equation of a two-
dimensional harmonic oscillator with zero angular momentum.
The eigenvalues of E, are

q
E},:hl/B—ﬁ%(ny‘f“l) ny:(), 1,2"' (113)

and the ground state wave function is given by

no(y) = V2 texp{—iy%} (114)
with
_ Boyg
t = 2ﬁ|/qB. (115)

In accordance with (47), the volume element has been taken to
be ‘g I dy For the state (114),

1

2
¥y =53 (116)
gives the mean square deviation from the equilibrium value
y =0

In the limit of very strong coupling, the last term in (100)
may be neglected, as already mentioned, and, according to (102)
and (103), the values of p and ¢ will be approximately equal
to C and CpA%, respectively. From (110) and (115) it then follows
that, as regards order of magnitude,

s~t~(@)2, (117

0

/

where f, is the zero point amplitude for free nuclear surface
oscillations, given by (71). The above approximate solution to the

wave equation (97) thus becomes valid for g, >> f,.
Dan.Mat. Fys Medd. 26, no. 14. 3
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If one uses the tentative values for B, C, and k given by (4),
(5), (6), and (75), one finds that, for most nuclear states, §; is
of the same order of magnitude as f, In such cases, the ahove
solution to (97) cannot be expected to be very accurate.

As a numerical example, we may consider a heavy nucleus
with Z = 80, A = 200. We assume a single particle state with
j = %/, and take the angular momentum quantum numbers of
the nucleus to be I = 2 = K = j. This choice is expected to
represent the nuclear ground state'™.

From (4), (5), and (6) we find C = 63 MeV and A?%/B = 25 keV.
Taking k to be 40 MeV, we find from (99) and (100), by means
of (77), the values 8, = 0.24, y; = m. This deformation repre-
sents an oblate spheroid with dR; = — 0.15 R, (cf. (15)).

From (102) and (103) one obtains p = 130 MeV and ¢ =
4.86 MeV, and the spacings between the eigenvalues Eg and E,
are, from (108) and (113), found to be 1.8 MeV and 1.4 MeV,
respectively. For s and { one gets the values 2.1 and 1.7 from
(110) and (115), respectively. Thus, according to (112) and
(116), we have (x—x)2 = 0.12 and y? = 0.30.

Due to the magnitude of the deviations from ecquilibrium,
these estimates are, of course, quite crude and can only indicate
orders of magnitude. A more accurate solution to (97) would fall
off more rapidly than (109) and (114) as we move away from
equilibrium. Actually, the potential (98) is singular for § = 0 as

7T 27 .
well as for y = +3or + 3 (cf. Figs. 4 and 5).

For many applications, such as in the estimate of the nuclear
quadrupole moment, a more accurate solution to (97) may be
required. In the present connection, where we are primarily con-
cerned with the classification of the quantum states of the nucleus,
we shall not consider the problem in more detail.

In order to obtain nuclear wave functions, valid in the strong
coupling limit, we still have to take into account the symmetry
requirements discussed in the preceding paragraph. The two de-
generate eigenfunctions to H, with j;, I3 equal to £2, K and — 0,
— K, respectively, have to be combined according to (91). For
the particular case of /7 = j, the symmetrical combination must
be taken.

The condition (92) requires ¢ to be an even function of y
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since we have assumed » = 0. Thus, only the eigenvalues (113),
corresponding to even ny,, are acceptable. Finally, the condition
(93) may be satisfied by taking for the wave function

Y{I,MK,2Q, ng, Hy) =
I,ng,n I I—j I (118)
(1-+R;+ R%) 99!}’?;, Y (%Q@MK + (=) X_Q@M,_K),

where Ry acts on ¥, @1{“{, and ¢, g according to the equations
(88) and (60). In the wave function (118) the three axes of the
nucleus enter in a symmetrical manner.

4) Effect of perturbation terms.

In order to estimate the influence of the perturbation terms
(96) we consider their matrix elements in the j,, I3 representation.
We first note that the non-vanishing elements of j, j,, I, and I, are
given by

@t ip12F D = HGEDGFL+1)y  (119)
and

(K|, FilL|KT1) = J{I+ KT K+1)}. (120)

The operators occurring in U have therefore the following matrix
elements

(K, QI3 —R12F 2, K) = VG £ (£ Q- DGFR+DGFL+2) (121)

(K Q|1 — 13| 2, K¥2) = 5 AU = K) £ K—DUFE+OTFE+)} (122)

(B2, I|Q—1,KF1) = +(K 2|j, |21, KT1) =
_ (123)
GO G2+ D UK U K+ 1)

(K2|j L|2+1LKFD =TFT(K 2|, L|2+1,KF1) =
. (124)
VGG 2 DAL UFE+1).

From these expressions all non-vanishing matrix elements of U
may be derived.
3#*
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The effect of the perturbation depends on the ratio of the
matrix elements to the energy difference between the corresponding
unperturbed energy levels. If this ratio is small, U will have only
a small influence on the stationary state of the nucleus.

The perturbation term U; in (96) connects the stale (2, K)
with states (£2 4+ 1, K- 1) and (24 1, £ F 1). Perturbations of
this type are well known from the theory of diatomic molecules,
where they tend to decouple the electronic angular momenta from
the molecular axis. If we disregard numerical factors depending
on the angular momentum quantum numbers, the order of
magnitude of the matrix elements of U/; is given by

ﬁ2

UINBkﬂZ

(125)
according to (27). Since the operator U; changes the value of 2,
the B;-values of the combining states are essentially different and,
according to (98) and (100), their energy difference will therefore
be of the order of

A E~CBT, ' (126)

again neglecting numerical factors depending on the £-values.
From (71) we thus find:

U, (B
—— ~ 127
1B (m)’ (127)

showing that the perturbations are small, provided f; >»> 8,. The
same condition was found in the preceding paragraph for the
validity of the approximate solution of the wave equation (97).

Even if U, is small, it does remove the degeneracy between
the states (2, K) and (—£2, —K). In molecular spectra, this effect
gives rise to the so-called £2-doubling (or A-doubling) of the
energy levels. In nuclei, however, no doubling phenomenon of
this type will occur since, according to (91), only a particular
combination of the (£, K) and (—£2, —K) wave functions, either
the symmetrical or the antisymmetrical, is allowed. The situation
is similar to the case of diatomic molecules with identical nuclei
of spin zero.

The perturbation U, represents the effect on the particle motion
of deviations from rotational symmetry in the shape of the
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nucleus. The operator U, in (96) connects (2, K) with (2 4 2, K)
according to (121). For strong interaction, the largest term of U,
is that involving k¢;f sin . From (100) we have, as regards order
of magnitude,

Us~ Cp2y, (128)
while 4,FE ~ A{E is given by (126), We thus find

Uy Bo

—L Ly~ (129)

4LE™TT B,

according to (116) and (117). Again U, is small, provided 8, > B,.

One might expect to obtain an improved treatment by in-
cluding the large part of U, in the unperturbed Hamiltonian. In
analogy to the case of polyatomic molecules, one would then first
solve the particle motion for fixed, but arbitrary values of § and
y and, subsequently, consider the vibration and rotation of the
nucleus. In contrast to the molecular case, however, the de-
formation of the nucleus depends essentially on the motion of the
single particle. For this reason, the mairix element.of U, will in
general be smaller, and the value of 4,F larger, than the value
corresponding to the motion of the particle in a fixed [ield. The
effect of U, is, therefore, smaller in the nuclear case and cannot
be simply accounted for in analogy to the molecular case.

Finally, the perturbation Uy, like U,, arises from the asymmetry
in the nuclear shape, and represents the anomaly in the nuclear
motion as compared with the motion of a symmetrical top. The
operator Uz connects (22, K) with (2, K 4 2). The order of magni-
tude of U; is found to be

hz
~ —— 130
U~ e (130)
while
\ h® 1
AabNEE?’J? (131)

gives an estimate of A,E, arising primarily trom the term in (98)
involving (K — )2, Thus,

_yi 3 (ﬂﬂ>3 132
A E 14 8, (132)

according to (116) and (117).
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The above estimates of the perturbation effects show that, in
the strong coupling limit (8, >> f,), the treatment outlined in the
preceding paragraph becomes valid for a large class of nuclear
states. For these we may consider the particle as moving in a
field possessing cylindrical symmetry, while the nuclear surface
vibrates around its symmetrical equilibrium shape. Of course,
such a treatment will break down if the nucleus vibrates or
rotates too strongly and in addition the states may become strongly
perturbed in cases where, by coincidence, the energy denominators
AE can become small.

As already mentioned in the preceding paragraph, the tentative
estimates (4, 5, and 6) and (75) of the parameters B, C, and k
entering into the description of the nucleus, lead in general to
comparable values of f#; and f,. In order to estimate the magni-
tude of the perturbation terms, we consider, as an example,
a heavy nucleus with 4 = 200, Z = 80, j = 9/,, the case already
discussed in the preceding paragraph. It may be noted that the
situation is not greatly changed if we consider lighter nuclei or
smaller values of j, provided j = 3/, (or I 1). In the case of j = 1/,,
the value of H,,, used above vanishes.

We take the ground state to have the quantum numbers
I = K=48=j=79, and ng = n, = 0. The perturbation U,
connects this state with states having K = 2 = 7/,. By means of
the numerical values quoted in the preceding paragraph, one
finds from (123) a value for U; of about 1/, MeV to 1 MeV,
depending somewhat on the effective value chosen for § and .
The most important regions for g and y are 0.15 < 8 < 0.30 and

7
|7c~y l <5 We may here disregard the symmetrization rule

leading to wave functions of the type (118). The energy difference
between the ground state and the state K = 2 = 7/,, ng=ny =20
is estimated to be some 3 MeV, but, since the wave functions
@ (B, v) for the two states are far from overlapping completely,
the effective value for 4,E will include some excitation of the
B, v vibrations. If 4.,F is taken to be about 5 MeV, the ratio

U
A—}JJ may be expected to be of the order of 10—20 9/,.
1

The term U, in (96) connects the ground state with states
having (2, K) = (°/5, */;). From (96) the matrix elements have
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been found to be about 0.5 MeV. The value of 4,F appears to
be somewhat larger than A,F and is estimated to be some 5 to
10 MeV. Finally, U, introduces admixtures of states of the type
(*/2» ®/5), and from (122) values for U, of the order of 0.3 MeV
have been obtained, while 4,F is estimated to be about 5 MeV,

It appears that the amplitudes of the connecting states may
not exceed some 10—20 %,. In some applications, these ampli-
tudes only enter squared and, in such cases, the strong coupling
approximation may be rather accurate.

In conclusion, it must be stressed that an analysis like the
above rests on a highly simplified nuclear model. Anomalies in
the nuclear deformability and the influence of additional par-
ticles may greatly change the picture. In general, a more detailed
analysis will be needed to decide which coupling model gives
the best representation of a particular nuclear state under con-
sideration®,

The writer's interest in the present problem was greatly
stimulated by some notes by Professor NieLs Bonr, written in
July 1949, on the relationship between the compound nucleus
and the single particle model. I also wish to thank Professor Joun
A. WHEELER for enlightening discussions.

* A discussion of various nuclear properties implied by the model considered
is being prepared by B. MorTeLson and the writer.
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