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I. Introduction .

T
he close packing of the particles in the nucleus and th e
existence of a relatively sharp nuclear boundary have le d

to the comparison of the nucleus with a liquid drop s) ' 2) . Thi s
model has found numerous applications in the theory of nuclea r
reactions, and also accounts for certain static properties of th e

nucleus . Thus, main features of the empirical binding energie s

can be interpreted in a simple manner if the energy of the nu -

clear droplet is expressed as a sum of surface energy, volum e
energy, and electrostatic energy . The treatment of the nucleus a s

a deformable body has met with considerable success in the

theory of nuclear fission3) .
According to the liquid drop model, the fundamental mode s

of nuclear excitation correspond to collective types of motion ,
such as surface oscillations and elastic vibrations . Even if it ha s

not been possible, with certainty, to associate observed nuclea r
levels with particular modes of oscillation, the model gives an

immediate explanation of the rapid increase of the level densit y

with increasing excitation of the nucleus .
In recent years, new progress in the theory of nuclear structur e

has been obtained through the development of the so-called singl e

particle model 4)-7) . This model assumes that nuclear stationar y

states, like electron configurations in atoms, can be approximatel y
described in terms of the motion of the individual particles i n

an average field of force .
The single particle model explains the pronounced stability

of certain nuclear species, those which possess closed shells of
protons or neutrons, and has been highly successful in accountin g

for the spins of nuclear ground states . Nuclear magnetic moment s

and electric quadrupole moments also give strong evidence of
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shell structure. Among the many other applications of the model i t

may be mentioned that it has proved valuable in the interpretatio n

of ß-transitions and isomeric states .

The liquid drop model and the single particle model represen t

opposite approaches to the problem of nuclear structure . Each

refers to essential aspects of nuclear structure, and it is to b e

expected that features of both models must be taken into ac -

count simultaneously in a detailed description of nuclear pro-

perties .
The necessity of combining the two models is clearly indicate d

by the observed behaviour of nuclear quadrupole moments . On
the one hand, as already mentioned, the quadrupole moment s

give definite evidence of shell structure ; in particular they change

sign on the passing of the magic numbers, as predicted by the

single particle model . On the other hand, for many nuclei, th e

magnitude of the quadrupole moments is too large to be ac -
counted for in terms of individual nucleons and suggests tha t

the equilibrium shape of the nucleus itself deviates from spher-

ical symmetry .
The behaviour of the quadrupole moments finds a simpl e

explanation) if one considers the motion of the individual

particles in a deformable nucleus . Due to the centrifugal pres -
sure exerted by the particles on the nuclear walls, the nucleu s
may acquire a considerable deformation . The quadrupole mo-

ments thus induced have the same sign as those observed and
appear also to have the right order of magnitude .

The coupling between the single particle motion and the
nuclear deformation gives rise to a certain sharing of angular

momentum between the particle and the surface . The quantization
of angular momenta may therefore deviate essentially from th e
case of the pure single particle model . While the latter model

may be termed a quasi-atomic model, the combined model
bears many analogies to molecular structures 10) , where we

have to do with the interplay between electronic and nuclea r
motion .

The modification in the angular momentum coupling has a
direct influence on the magnetic moment of the nucleus. It may
perhaps be possible, along these lines, to explain the fact that
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the magnetic moments, although strongly correlated to the singl e
particle values, still deviate considerably from these values9' 10 )

It is the purpose of the present and following investigations
to consider various properties of a nucleus described in term s
of a deformable surface coupled to the motion of individua l
nucleons . This combined model may be referred to as the quasi -
molecular model .

Apart from the problem of nuclear moments, mentioned
above, the model may find application in the analysis of the
energy spectrum of the nucleus and of transitions between nuclea r
states . Such transitions not only involve a change of state of the
individual nucleons, but must be expected to be accompanied ,
in general, by changes in the vibrational and rotational state o f
the nucleus .

The nucleus may possess additional degrees of freedom asso-
ciated with simple types of motion, such as elastic vibrations ,
connected with the compressibility of the nucleus2)' 11), and the
so-called dipole vibrations l2>-14), connected with the polariz-
ability of the nucleus . These types of motion, however, are ex-
pected to have considerably greater frequencies than the surfac e
vibrations and should therefore in general be of smaller in-
fluence on the nuclear ground state and low-lying excite d
levels .

The degree of accuracy obtainable by the model is difficul t
to estimate on a theoretical basis at the present state of knowledge
regarding nuclear forces . For the ground state of the nucleus ,
empirical evidence appears to indicate that the model may b e
adequate for many purposes . With increasing excitation of the
nucleus, and decreasing spacing between the energy levels, how -
ever, the effect of configuration perturbations becomes of growing
importance .

For high excitation energies, it must be expected that the sta-

tionary states of the nucleus can, in general, no longer be describe d
in terms of the motion of individual nucleons and simple oscil-
latory modes of the nucleus. The coupling between the various
possible types of motion will imply a complexity in the state o f
the nucleus which suggests the application of statistical or thermo-
dynamic methods . It is in this energy region, which in general is
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reached by the capture of a particle into the nucleus, that the
concept of the compound nucleus has proved fruitful in accounting

for nuclear reactions * .

In the present paper, we are considering some general fea-
tures of the quasi-molecular model . In particular, we shall discus s

the classification of nuclear states and the adequacy of simple coup -

ling schemes . For simplicity, we confine ourselves to the case of a
single nucleon interacting with the nuclear surface . In actua l

applications of the model, it will be necessary to take into ac -

count all degrees of freedom of the particle structure whic h

may be excited by the surface oscillations . The special case con -

sidered here is illustrative, however, of the general procedur e
which may be applied in problems of this type .

Section II is concerned with the classical theory of nuclear

surface vibrations . The surface is described by the five expansio n

parameters corresponding to the spherical harmonics of order 2 ;
higher orders are of minor importance here . It is convenient to

divide the kinetic energy of oscillation into a vibrational and a
rotational part . The quantum theory of the surface oscillations is

discussed in Section III .
Section IV deals with the motion of a nucleon in a deforme d

nucleus and, finally, in Section V, we consider the coupling of th e

single particle motion to the oscillations of the nuclear surface .

A general solution of this problem would be rather complicated ,
but, in the limits of weak and strong coupling between the particl e

and the surface, simple approximate solutions can be obtained .
Of particular interest is the case of strong coupling, wher e

the single particle produces a large deformation of the nucleus .
In this limiting case, which may be approximately realized for
certain nuclear states, the system is, dynamically, closely analogou s

to a linear molecule . For such states, the individual particles ma y
be considered as moving in an average field corresponding to a

cylindrically symmetric equilibrium shape of the nucleus . The

nuclear surface performs small vibrations about the equilibriu m

shape, while the symmetry axis precesses around the total angular
momentum vector of the nucleus .

* For a closer discussion of the relationship of the single particle model t o
the compound nucleus, cf. V . WElsskoPF15) .



II . Classical Theory of Nuclear Surface Oscillations .

1) Surface vibrations as harmonic oscillators .

The theory of nuclear surface oscillations has been develope d

by several authors3>, 16), 17) In the following paragraphs, we shal l

attempt to present it in a form especially suited for the treat -

ment of surface oscillations coupled to the motion of individua l

nucleons .
Let the surface of the nucleus, in polar coordinates, be give n

by R(O, ø) . We expand R in spherical harmonics, writing

R

	

ø) = Ra (1 -f-f aÂ , 11 Y;,, y(~, ø)),

	

(1 )
2., F~

where Ro is the radius of the nucleus in its spherical equilibriu m

shape. The function YA, µ is the normalized spherical harmonic

of order .1, p ; the phase factor is that used by CONDON and Si-ioRT-

LEY18t . The expansion parameters aÀ , I, are the coordinate s

which describe the deformation of the nuclear surface . Since R

is real, we have a2, = (-)/J 4-p .
The idea of a continuous nuclear surface does not apply i f

we consider surface elements of linear dimensions comparabl e

with, or smaller than, the distance between the nucleons . The

quantities a,{, /4 therefore lose their meaning if A becomes of th e

order of, or larger than, A11 .
If the coefficients aÄ, /j are small, the potential energy o f

deformation takes the form

ti

	

~

	

C~,laA>~,I2 ,
2, 1,

while the associated kinetic energy is given b y

T- 2

	

B A. 1

	

1, 12 .

	

( 3 )

The quantities BA and CA, depend on more detailed assumption s

regarding the properties of nuclear matter .

( 2 )

A,p
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For an incompressible nucleus of constant density eo, on e
finds

BA = R Po Rô ~

assuming nuclear matter to have irrotational flow . If, moreover ,

the charge of the nucleus Ze is uniformly distributed over it s

volume, one obtains

C A = (A-1)(A--2)R~S-2 .72A+1 Ro

where S is the surface tension . As an approximate estimate o f
S we may use the average valu e

4TtRS = 15.4A V'MeV,

	

(6)

deduced from nuclear binding energies10) .

It is to be emphasized that the above expressions refer to a
greatly simplified nuclear model . The nuclear deformability ma y

vary considerably from nucleus to nucleus and may be strongl y

influenced by shell structures in the nucleon binding" .

In order to solve the dynamical problem given by equation s
(2) and (3) we introduce the momentum conjugate to co, u

defined by
_ O T

~~, ,~

	

a n~
~L

= Ba n ~, ~

The Hamiltonian of the nuclear surface now takes the for m

2

Hs = T + V

	

28), 7q ,F4+ ~-~ P
1

and the surface oscillations may thus be considered as a syste m

of harmonic oscillators with frequencies

(4)

3 A-1 Z2 e 2
(5)

( 7 )

2., µ
21 (8)

w (9 )

and mass coefficients BA. .

* The writer is indebted to Drs . B . MOTTELSON and W. J . SwIATECxi fo r
illuminating comments on this point .
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For the problem of the interaction of the surface oscillation s
with the single particle motion, it is convenient to make a chang e
of coordinates in such a way that the kinetic energy of the
surface separates into a vibrational and a rotational part . Thi s
coordinate transformation will be considered in the following
paragraphs for deformations of order 2. = 2. A particle moving

in the nuclear field interacts, to a first approximation, only with
deformations of even order, and of these the lowest order 2 = 2
is of special interest . Already deformations of order 2 = 4 can

be shown to be of much less importance in the present connection .

2) Deformations of order two .

The general deformation of order 2 represents, for small
values of the a-coefficients, an ellipsoid oriented at random in
space. Instead of characterizing this deformation by the fiv e
coordinates aN, (we drop the index 2 = 2), it may be described

by three angular coordinates specifying the orientation of the
ellipsoid and two internal parameters determining its shape . (The

sum of the three principal axes of the ellipsoid, to a first ap-

proximation, remains constant during the deformation) .

Consider a coordinate system K ' whose axes coincide wit h

the principal axes of the ellipsoid . The orientation of K' with
respect to a fixed frame of reference K will be characterized b y

three Eulerian angles 0, q, y of which 0,99 represent the pola r
angles of the z '-axis in the K-system, while 0, r-y, denote th e

polar angles of the z-axis in the K' - system. It is often convenient
to write (O f) _ (O 1 , 0 2 , 02) = (0 , 99, y') •

The deformation defined by the aµ in K is in K ' given by
the coefficients

2
a, _X a l,Dt,v (O i ) ,

Ft = - 2

where D, (0 i) are the transformation functions for the spherical

harmonics of order 2 .
For our special choice of K', we have a 2 = a_ 2 and

a l = a-1 = 0. Taking the inverse of (10) we get, since Alp i s

a unitary matrix,

(10)
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at, _~ av D;v (0 i) •

	

(11 )
v

Equations (10) and (11) define a coordinate transformation fro m
the five a,, to the new coordinates ao, a 2 , 0 i .

These equations do not define the new coordinates uniquely .
If we restrict ourselves to right-handed coordinate systems ,
there are in fact 24 ways of choosing K ' with axes along th e
ellipsoidal axes . To each choice corresponds a particular set o f
coordinates av, 0 i . If the deformation possesses rotational sym-
metry, there are even an infinite number of ways of choosing
K' . The ambiguity in the coordinates is of significance for th e
symmetry properties of the wave function and will be considere d
later (§ I1I,3) .

It is convenient to make the further substitution

ao= ßcosy

1
a 2 = a_2 =

	

ß sin y .
V 2

The set of coordinates ß, y, 0 i will be referred to as 6. Due to
the unitary character of Dyv we have

Zlat,l2 = ~a v = ao+2az = ß2

	

(13)
µ

	

v

and ß is thus a measure of the total deformation of the nucleus .
From (2) and (13) we have

V = 2 Cß2

	

(14)

for the potential energy of deformation .
The increments of the three axes of the ellipsoid, for a de -

formation ß, y, is given by

SRti =

	

Ro cos (y-x 23 I,

	

(15)

where x = 1, 2, 3 for the x', y', z '-axes, respectively .
If we define the eccentricities by

e 3 = 1- R R (åR 1 -åR2 )

	

(16 )
1

	

0



Nr. 14

	

1 1

and the cyclic permutations, we fin d

ex =
15

	

2 .n
-ß sin y-x-- (17)V

	

3

The coordinate y is a shape parameter which describes th e
n

deviation from rotational symmetry. For y = 0 +p 3, where p

7
Fig. 1 . The nuclear deformation is characterized by the point A in the polar dia -
gram. The radius vector equals the total deformation parameter ß, while the polar
angle, measured from the c-axis, is given by the shape parameter y . The eccen -

tricities e l , e3i and es are equal to

	

times the distance of A from the -, s-,
1 5

and e-axes, respectively. If A falls on the -, sj-, or e-axis, the nucleus possesse s
rotational symmetry with respect to its x'-, y'- or z'-axis, respectively.

is an integer, two of the axes are equal and the ellipsoid become s

a spheroid . A diagram of nuclear deformations is shown in Fig .l .

3) Vibrational and rotational energy.

In order to express the kinetic energy of the oscillating nucleu s
in the 6-coordinates, we derive from (11 )

=

	

a v Dµv (0 i ) +

	

a v Øi ôØ
.Div (Ø i )

	

(18)
v

	

v, i
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If we introduce this value for eeN, in (3), the kinetic energy splits
into three terms . The first term is quadratic in åy and represents

vibrations by which the ellipsoid changes its shape, but retain s

its orientation . The second term, quadratic in represents a

rotation of the ellipsoid without change of shape . The third term ,

which contains mixed time derivatives & O i , vanishes, as can b e
shown from simple properties of the Dµv-coefficients and thei r

derivatives .

We may thus write

T = TVib + Trot .

	

(19)

For the vibrational energy, one gets immediately

Tvib = 2 B~ av 12
- 2 B (N 2 + ß 2 Y 2 )

v

by means of (12) .

To obtain a convenient form for Trot, we use the relation

Bt ô6 Dµ,v (B i) = i~ q x D,um (q i ) (~1x)mv>

	

(21 )
7

	

x, m

where the Mx are five-dimensional matrices well known fro m

the quantum mechanical representation of an angular momentu m

of two units . They obey the commutation rules

MxMR - Ma, Mx =- i Mx x A,

	

(22)

where the index xXA refers to the axis formed by a vector pro -
duct of the x- and A-axes. A representation is used in which

(M3)mv = ni6mv . The quantities qx denote the components o f

angular velocity of the ellipsoid along its axes, and may b e
written

gx =~ qxi Bi .

	

(23)

The coefficient matrix qxj has been given by CAsi1IR20) (p.15)' R .
By means of (18) and (21) one now obtains from (3)

Trot = 2 B.Z ayav' ' gx gx' (Mx M, ')vv'

	

(24)
v,v

	

x,x '

* The angles here denoted by B, y, y are equal to CASIMIR' s 19,

	

7r

99+ 2.

(20)
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by making use of the unitary character of D I,,,r . In this expression ,
the terms with x � x' vanish, since v takes only even values .

We therefore get the familiar type of expressio n

1
Trot= 2

where the moments of inertia dx are given by

(25)2

c(j;x =B 2
v a r' (Mx)vv' (26)

vv
or

{_ }
2

~c%x = 4Bßs sin 2

	

(27)

by means of (12) .

The moments of inertia are proportional to the square of th e

deformation parameter ß . In terms of the eccentricities (17), on e

may write
4z

	

2

	

2
x = 15 B ex = 4

o e x

where go denotes the moment of inertia of the entire nucleus with

respect to its center . The circumstance that, for small defor -

mations, j,,<< A, shows that only a small fraction of the nuclear

matter is effectively involved in the rotational motion .

4) Angular momentum of the nucleus .

The angular momentum can of the oscillating nucleus may b e
determined directly from the expressio n

	

(M = sQ (rv) d r,

	

(29 )

where the integral is extended over the volume of the nucleus .

For irrotational flow, the velocity û of the nuclear fluid may
be written

	

i~ = - grad x,

	

(30)

where, for small deformations, the velocity potential is given b y

	

x = -~ -1 red, Yµ (4,

	

ø) .

	

(31 )

(28)
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One thus finds

Cm = 2 eo Rô~a
P

c

	

YP
rxgrad } Ydu, dw

	

(32)

or, by means of (4),

Bau*å
IL' Mt'p,

	

(33)
g,

where the components of M along the x, y, and z-axes are given

by the Ml , M2 , and M3 of the previous paragraph .
In introducing the transformation (11), we make use of the

relation
-4-

DµvMmµ,Di.,ti = M' vti,

	

(34)
u, µ '

where the vector on the right hand side has components M,, M 2 ,
and M3 along the axes of the ellipsoid . According to (18), the angular
momentum becomes a sum of two terms . The first term contains

å„ and can be shown to vanish ; the second gives, by applicatio n
of (21) ,

C}]l x = B~avav

	

gx' (mx 'Mx)v ' v (35 )
v, v'

or, by means of (26),
ßPx = g x gx, (36)

corresponding to (25). We may thus writ e

1

	

(%yl
xS (37 )Tot = 2

x c~x

as an alternative form for the rotational energy .

III . Quantum Theory of Nuclear Surface Oscillations .

1) Stationary states of oscillating nucleus.

We assume that the quantum mechanical description o f
nuclear hydrodynamics can be derived from the classical equa-
tions of motion by the usual procedure of quantization .

In order to classify the stationary states of the nucleus it is
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convenient to take the Hamiltonian in the form (8), a form wel l
known from the quantum theory of fields (cf. WENTZEL21) , p. 33) .

The excitation of the nucleus may then be described in term s
of the five variables np, the occupation numbers, with eigenvalue s
0, 1, 2,	

In the usual way, we put

V2 B w (b µ + (-)' b!-, )

where w is given by (9) . We are restricting ourselves to 2 = 2
and have dropped the index A . The matrices by and their Her-
mitian conjugates by* obey the relation s

b,2 by = np+ 1

	

(39)

and are the destruction and creation operators .
In the n,,-representation, the Hamiltonian is diagonal and ha s

the eigenvalues

2

	

(40)
~l1

	

15 . __1EN = i~tw

P

where N

	

= 0, 1, 2,	

Each energy level is as many times degenerate as the N ex -
citation quanta can be distributed on the five individual mode s
of oscillation . In order to determine the angular momentu m
quantum numbers of the excited states, we consider the operato r
OPz given by (33) . By means of (7), (38), and (39) one find s
that (niz is diagonal in the nµ,-representation and has the eigen-
values

(41)
11=- 2

It follows that the excitation quanta are equivalent to Bose-Ein-
stein particles, phonons, of spin 2 . The number n,2 represents

(38)

by* by = ny

nn

	

2

	

= h

	

rCG .
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the number of phonons having a component ph of angular mo-
mentum along the z-axis .

From this equivalence one can determine the angular momenta

I of the excitation states having a given N. For the first few value s

of N one finds

N=0 I= 0
N=1 I=2

(42 )
N=2 I=0,2, 4
N=3 I=0,2,3,4,6 .

In the same manner, the states corresponding to the oscillation s

with A> 2 can be characterized as excitation of Bose-Einstei n

quanta of spin A .
As regards the order of magnitude of the level spacin g

corresponding to A = 2, it may be noted that, for a mediu m

heavy nucleus with A = 100, the approximate expressions (4)

and (5) give a value for huw of 2 .3 MeV. For a heavy nucleus

(A = 200), one finds huw = 1 .3 MeV .

Whereas these values indicate the general order of magni-
tude of the excitation energies for nuclear surface oscillations ,

simple level systems of this type are not to be expected in ac-

tual nuclei . Apart from the influence of shell structure on th e

nuclear deformability, the coupling of the surface modes to th e

motion of individual nucleons will in general give rise to a
more composite level structure . For the treatment of this coup -

ling effect, it is often convenient to consider the surface oscil-
lations in the coordinates ßµ .

2) Transformation to coordinates ß .

In Section II, the Hamiltonian has been given in terms o f

the coordinates ß~ and their time derivatives . In constructing

the wave equation in this set of coordinates we form the ex -

pression
ds2 = 2 T dt2 =7Gt,,v dß,, dßv .

	

(43)
it, v

The matrix Giv may be found from equations (20), (23), (25) ,
and (27) .
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The Hamiltonian now takes the form (cf. PAULI22) , p. 120)

2
HS = T + V = -

2

.ZG-1 a
aOIL

G G fLv
aß

+ V,

	

(44)
v

	

ß

	

v

where G µy is the reciprocal of Gyp. The determinant of Gfy i s
denoted by G and is found to be

G = 4B 5 ß 8 sin 2 3y sin 2 0

	

(45)

by means of the relation

sin y sin (y -
23

) sin (y

+ 3)

	

4 sin 3 y .

	

(46)

The volume element is proportional to Gi and may be taken a s

dr = ß 4 I sin3yI sin Odßdy de dqody~ .

	

(47)

The potential energy is given by (14), while the kinetic energy
may be written in the form (19) with

h2 1

	

4 a

	

1

	

1

	

a

	

a
T°~

	

2B {ß4aß ß aß + ß 2 sin 3yaysin
3yay ~ .

The rotational energy Trot has the form of the kinetic energy o f
a top (in general asymmetric) with moments of inertia 9x .

It is convenient to express Trot in terms of the angular mo-
mentum components along the axes of the ellipsoid . Putting

Qi?x = h Q x ,

	

(49)
we have from (37)

h2 2
Trot

	

2 ~x Q
2 .

The operators (2x may be expressed as differential operators i n
the O (cf . CASIMIR29) , p. 57) or they may be considered as ma-
trices, obeying the commutation relations

Qx QA- QAQx =- i Qxx A •
Dan.Mat.Fys.3ledd .26, no .14 .

(48)

(50)

(51 )
2
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We use the representation in which Q 3 is diagonal . The Qx com-
mute with the components 1iQx, hQy, hQr of the angular mo-
mentum along the fixed coordinate axes . The latter operator s
obey relations similar to (51), but with a change of sign of i .

z

Fig. 2 . Angular momentum diagram for the oscillating nucleus . The angula r

momentum vector Q, of length VI (I + 1), has components Qz, with eigenvalue s
M, about the fixed z-axis, and Q 3 , with eigenvalues K, about the z' -axis of the nucleus.

Since Trot involves ß only as a factor fr- 2 , the stationary stat e
wave functions separate in the following way :

`ß̀ (ßu) = f(ß) Ø (Y, B i),

	

(5 2 )

with Ø and f obeying the equation s

I 	 1	 asin 3 a
1

	

Q
sin 3 Y a

	

Y a + 4
Y

	

Y

	

x sine
(y_12 ,.c 2

-31Ø
= AØ (53)

and

~

	

B
f.~

4aß ß4a

ß +2 Cß2
+ 2 B

Ah2
ß2}f

= Est',
2

where ES is the total oscillation energy. For a particular valu e
of Q 2 = 1(1 + 1) and Qr = M, we may write 45 in the form

i
Øn7 ~ (y, e i )

	

(Y) 4, K ( B i)
K=-I

(54)

(55)
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where the functions gMK (Ø j) give a (21+ 1)-dimensional re -
presentation of the rotation group . These functions are eigen -

functions for the operators QZ and Q 3 belonging to the eigen-

values M and K (see Fig . 2). The symbol r stands for the two

quantum numbers which, in addition to I and M, characteriz e
the eigenstate s

3) Symmetry properties of the wave function .

A configuration of the nucleus determines the surface co -
ordinates ay uniquely, but, as already mentioned, there is n o
one to one correspondence between the coordinates ay and ßy .
The ay determine the principal axes of the ellipsoid, but the ßy

depend also on the designation of these axes as the 1,2,3 axis ,
respectively, and on the choice of positive direction for the thre e
axes .

Restricting ourselves to right hand coordinate systems, ther e
are 24 sets of ßy values which correspond to the same set of aµ .
In the special case of symmetry with respect to one or more o f
the axes, the arbitrariness in the choice of ß L is even continuously
manifold.

Since the wave function is one-valued in the ay, it mus t
be invariant with respect to those transformations of the ßy

which leave the ay unaltered . These may be expressed in term s
of three basic transformation operators R,_, R2, and R 3 .

R l corresponds to a reversal of the 2 and 3 axes and may

be defined by the schem e

R,(y, 0, (p, y) = (y , n - 8, 9;, + z, - y)

	

(56)

which implie s

Rlgml K (O i ) = exp{i7r (I+K)}ØM.-K(Oi)

	

(57)

The total deformation parameter ß is uniquely determined by
the ay and is left unaltered by all the transformations in question .
We have Ri = 1 .

R 2 corresponds to a rotation through 90° of the 1 and 2 axes
with respect to the 3 axis and is given by

2*
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R2 (y, O, 9), y) = (- y, 0, 49, iV + 2)

R2 gMK (O i ) = exp Ii
2

Kl
~°UM K (0 i) .

It is seen that R4 = 1 .
Finally, R3 corresponds to a cyclic permutation of the thre e

axes . The transformation of the Oi is expressed most simply i n

terms of the rotation with Eulerian angles 9'i = 12 , 0, 2 , which

performs the permutation of the axes . We have

	

111

R 3 (Y) = (- )

R 3 gMK ( B i) =Y gMK" (O i) QJK', K (T i )
K'

and R = 1 .
The 24 transformations of the ßp, can all be written in th e

form

R = Ri R2 Rs;,

	

(61 )

where s i , 5 3 , and s 3 are integers . Therefore, the solutions to (53) ,

which represent nuclear states, are invariant with respect to th e
transformations Ri , R 2 , and R 3 .

If we use the form (55) for the wave function, the symmetr y

requirements impose certain restrictions on the functions gK(y) .

From (57) and (59) follows

gK (y) = exp {i ~ (I+ K)} g'_K (Y)

gK (y) = exp ~i 2 K~ gK (- y) .

	

(63)

Similarly, the relation

(

	

2n)
9x (Y)

	

(Ti) 9x' Y- 3K'

is demanded to ensure invariance with respect to R 3 .

and

(58)

(59)

(60 )

(62)

(64)
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Applying (63) twice, one sees that gK vanishes if K is odd .

In the terminology used to classify the stationary states of a n

asymmetric top (cf. CAsiMix20), p. 61) we may say that only th e
even (6) classes of states exist . From (62) follows

gx(Y) = (-)Ig-x(Y) ,

showing that, for I even, only the symmetrical class 6+ is allowed ,
for I odd only the antisymmetrical class 6-. It is a particular
consequence that no state of I = 1 exists . The conditions (63)

and (64) effectively limit the variation interval for y to 0 < y < 3 .

The symmetry requirements for the states of the vibrating an d
rotating nucleus are analogous to those relating to certain type s

of molecules containing identical nuclei of spin zero .

4) States with I = 0.

In general, the wave equation (53) consists of a number o f

coupled differential equations in y of rather complicated char-

acter, and for free oscillations of the nuclear surface it is often

easier to consider the equations of motion in the coordinates a l, .

As an example of the solution of the wave equation in the ß~ -

coordinates we take the simple case of I = 0, in which th e

wave function is independent of O . Moreover, (63) and (64)

demand that be a one-valued function of cos 3y. The equation

(53) thus is reduced to the familiar equation for Legendre poly-

nomials P2, (cos 3y) with

11 = 9 ;. (R + 1)

	

d = 0, 1, 2 . . . .

	

(66 )

as eigenvalues .
Equation (54) for f(ß) may now be solved by putting

f(ß) = h (ß) exp
~
- a 13 13(67)

(65)

with

(68)
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and h (fl) a polynomial . For small ß, the leading term in h (fl )
is ß3A . If the highest power occurring in h(ß) is denoted by v,

the eigenvalues for the oscillation energy are given by

Ev = htw(2+v) v=3d, 3 .1+2, . . . .

	

(69)

The ground state of the nucleus corresponds to v = 2 = 0

and has the wave functio n

T(pit) = f (ß) = 3 7c-i- (a B) 512 exp ~- 2 a B ß2 l,

	

(70 )

normalized for a volume element dr = ß 4 dß (cf. (47)) . From

(70) one finds

1302 =

	

=2 5

	

_5 h

2 aB 2 VB C

as a measure of the zero point amplitude .

IV. Motion of Nucleons in a Deformed Nucleus .

The motion of a particle in a deformed nucleus has bee n

considered by RAINWATER 8) who treated the nuclear field as a
potential well with infinitely high walls . FEENBERG and HnM-

MACx23) have discussed the problem of a finite well . These
authors restricted themselves to nuclear deformations possessin g
cylindrical symmetry, in which case the particle wave equatio n
can be studied in spheroidal coordinates . The shift of the energy

levels, with respect to those of a spherical potential, were cal-
culated in the first approximation containing linear terms in th e
deformation parameter.

In this approximation, the energy levels may also, for arbi-

trary deformations, be calculated by ordinary perturbation theory .
For an infinite well one may use the method of the perturbe d
boundary conditions24t' 25ß . We shall write the energy of the
particle

(71 )

H = Hp + Hint,

	

(72)
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where

Hp = Tp-I- Vp (r) + D (i )

	

(73)

is the particle energy for a spherical nucleus . We have included

a spin orbit coupling of strength D .

H,,,t represents the interaction of the particle with the nuclear

deformation and may, to first order in a,,, be written in the for m

Hint = - k (r) c YN (1i, ø)

	

(74)

if we restrict ourselves to the harmonics of second order . The po-

lar coordinates of the particle are denoted by r, 0, ø. If we can

assume that the change in potential accompanying the nuclea r

deformation takes place only at the surface, k will contain th e

factor å(r - R° ). For a potential well with infinite walls, the ex-

pectation value of k is given b y

k = 2 Tp ,

	

(75)

where Tp is the average kinetic energy of the particle in th e

nucleus. For more general models, the expectation value of k wil l

depend somewhat on the state of the particle, but it appears23>' 26 )

that it will not deviate essentially from the simple expression (75) ;

for a finite rectangular well it has been estimated to be some

25 °/0 smaller26> for most particle states .
If the magnitude 1 of the orbital angular momentum of th e

particle remains a good quantum number for a deformed nucleus ,

the significant matrix elements of Hp take a simple form. This

assumption implies that no near-lying single particle states with

different 1 exist, which can perturb the state in question .

If, moreover, the spin orbit coupling is large compared wit h

Hlnt, also j, the magnitude of the total angular momentum o f

the particle, will be an approximate constant of the motion . The

component jZ will only be a constant in the special case of de -

formations which are symmetrical with respect to the z-axi s

(aµ = 0 for y � 0) .
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For fixed j, the interaction energy may be written

Hint = kcl'aµto ,

	

(76 )
where

	

P

1

	

(77 )
ci- V4n 2 'J(j+ 1 ) ,

and where the operators 7E1, are given b y

3
= (i:_iu+' )

'±
- +~

	

i8 1i, (jx + ijy) +

	

ijy)
(78)

From this form of Hint the matrix elements can be immediately
evaluated, for instance in a representation in which jz is dia-
gonal .

If the spin orbit coupling is not strong compared with th e
coupling of the particle to the nuclear deformation, j is no longe r
a good quantum number and the form (76) for Hint is not valid .
Provided l remains approximately constant, we can still use a
similar expression for Hint , obtained by replacing c1 by

_

	

2

	

(79 )
ci

	

V 4~ (21-1)(21+3)

and by replacing, in zy, the components of j with the component s

of 1 .
Hint may also be expressed in relative coordinates whic h

describe the motion of the particle with respect to the principa l
axes of the deformed nucleus . If we denote by j l , j 2, and j3 the

components of j along these axes, we find from (76) and (78 )

Hint = kci ß(cos y 3j å j (J+ 1 )) +V3 sin ? (P -A)},

	

(80)

using the notation of (12) .
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For fixed ß and y, this interaction energy has the same for m
as the Hamiltonian for an asymmetric top, except for the fac t

that the effective moments of inertia, corresponding to (80), may

be negative. The eigenvalues for Hint can be derived in complet e

analogy to the procedure used for the top .

The formulae given in this section apply most directly t o
nuclei which possess a single particle in addition to closed shells .

However, for nuclei having closed shells minus one particle, th e

only necessary modification is a change of sign of the quantitie s
k and D .

In the case of more complicated nuclei, which have to be

described in terms of several particles in addition to, or lackin g

in, closed shells, the interaction with the nuclear surface takes

a simple form, analogous to (76) or (80), only if the magnitud e

J of the total angular momentum of the particles is a constant
of the motion. If the angular momenta of the particles are de -

coupled under the influence of the surface deformation, the inter -

action acquires a more complex character .

V. Coupling of Single Particle Motion to Nuclea r

Surface Oscillations .

1) Equations of motion .

The total system, nuclear surface + single particle, is describe d
by the Hamiltonian

H = Hs+ Hp+ Hint•

	

(81 )

Expressing the energy Hs of the surface oscillations in terms o f

the coordinates ß, we have

Hs = Tvib+ Trot+ V,

	

(82)

where the three terms are given by (48), (50), and (14), respect-

ively. The particle energy HF, is given by (73) and, for the inter-

action energy, we shall use (76) or (80), assuming j to be a
constant of the motion .

Even with this simplification, the equations of motion, de -
scribing the coupled system, are somewhat complex, but, in
limiting cases, simple approximative solutions may be obtained .
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If the interaction is weak, or more precisely, if Hint is small
compared with the level spacing of the uncoupled system, th e
motion of the surface and of the particle may, in first approx-

imation, be considered as independent . The effect of Hint may
then be treated as a small perturbation, and it will be convenien t
to use the form (76) for Hint .

If the interaction is strong, we may use a procedure analogou s
to the treatment of molecular structures . In this approximation ,

one may consider the motion of the particle relative to the axe s
of the nucleus, corresponding to the form (80) for Hint . The
vibration and rotation of the nucleus, to a first approximation ,
have only an adiabatic influence on the particle motion . Non-
adiabatic effects can be calculated as small perturbations .

The value of Hint depends on the single particle state i n
question and on its orientation with respect to the deforme d
nucleus . For the various nuclear species, we may expect levels o f
both types, corresponding to weak and strong interaction, respect-
ively . We shall, in particular, consider the strong coupling cas e
which appears, in many instances, to give the best representatio n
of nuclear ground states, as is indicated by the large empirica l
quadrupole moments .

The total angular momentum I of the nucleus is the sum o f

two parts, Q and j, referring to the surface oscillations and the

particle motion, respectively. Eliminating Q from (50), we may
write

h 2
Tot - Z 2

g
(Ix-jx) 2

x

	

x

for the rotational energy of the nucleus .

The commutation rules for the components of I and j along
the axes of the nucleus ar e

LI).- Ia,Ix = - i lxx ~

jxjd

	

= ijxx,l

Ixj7

	

jï:Ix = 0 .

From these expressions the commutators involving the Q k may
be derived .

(83)

(84)
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In the strong coupling approximation, it is convenient to us e
a representation in which 13 andj3 are diagonal . Their eigenvalue s
will be denoted by K and Q, respectively (cf. Fig . 3). The wave
function for a stationary state of the system thus takes the for m

M2 Slyx4~Sl, K (f, Y) z ,Q gIv1K

	

(85)

which is a generalization of (55) . The function xs2 represents a
single particle state with j3 = Q. The states of the nucleus ar e

z

M

K

Fig . 3 . Angular momentum diagram for the quasi-molecular nuclear model . Th e

total angular momentum I of the nucleus is the resultant of the single particl e

angular momentum f and the rotation vector Q of the oscillating nucleus . Th e

projections of j and I along the z'-axis of the nucleus, which become approximat e
constants of the motion in the strong coupling approximation, have eigenvalues

Q and K, respectively .

characterized by the quantum numbers I and M, referring to the
absolute value of the nuclear angular momentum and its com-
ponent along a fixed z-axis, respectively . Additional quantu m
numbers are specified by the index r .

2) Symmetry properties of the wave function .

If the single particle motion is described relatively to the axe s
of the deformed nucleus, the transformation operators R 1 , R 2 , and
R 3 , introduced in (III, 3), also act on the particle wave functions .
In the representation corresponding to (85) one finds
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R I x9 = exp {- in(j + .Q)) x-Q

	

(86)

R2 ZQ = exp {- i - Q}x Q

	

(87)

R3 x ,g =

	

gS2', S2 (Øi) xD,

	

(88)

Q '

in analogy to (57), (59), and (60) .
The invariance of P. with respect to R thus implies tha t

Ts K vanishes except for

K-Q = 2 v

	

v = 0,+ 1,± 2, . . . .

	

(89)

corresponding to the even class of states . The condition R, iF

= zI' next demands

9'Q, K (ß' y) =

	

(ß, y),

	

(90)

and 'Tf may, therefore, be expressed in the form

YfMa = ~ 9'sa K{xs~ ØMK +(-)I-1x,-Sa gM,-KJ ' (91 )
.2> 0

K

For I- j even, only the class 6+ exists, for I - j odd, only th e

class

	

.

The invariance with respect to R 2 and R3 imposes the further

restrictions

9'2, K (ß, Y) = (-)v9'Q , K(ß. - Y)

	

(92)
and

~-j ~

9'S2,K(ß,Y) _

	

RS2,S2'(9, i)°Ux,K,(Ti) 9'SY,K' ß,Y- 23
S2' K '

on the functions WWQ , K (cf. (63) and (64)) . The variation interva l

for y is thereby effectively limited to 0 < y <-3- .

3) Strong coupling approximation .

In the case of strong interaction between the single particl e
and the nuclear surface oscillations, the wave equation possesse s
solutions for which the angular momentum components j 3 and
I3 are approximately constants of the motion .

(93)
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In considering nuclear states of this type, it is convenient t o
divide the Hamiltonian into two parts of which the first, Ho ,
commutes with j3 and I3 , while the second part, U, contains
no diagonal elements in the j 3 , 13 representation .

We thus have
H = Ho ~- U,

	

(94)
where

It 2

	

tt 2
Ho = Tvlb+ V -+ - (4-+-4~21(I(I-~1)-I3--~j .1 +1 ) -j3)

2

	

1

	

/
+ 2~ (I3-j3) 2 + Hp+~ kc1 ß cos y (3j~-j(j+1)) ,

3

and where
2

U = U1 + U2 + U3

	

Iij1+ß2 I212 )
2

	

/

	

(96)
2

	

2

	

2

	

2	 llf (	 -	
+ v2 kc ~ ß sin y)(A - j2)+(4~

1

	

/ (I1-I
D

1

	

2

	

2
according to (81), (82), (83), and (80) . We first consider th e
solutions corresponding to the unperturbed Hamiltonian Ho ; the
influence of U will be discussed in the following section .

If U can be neglected, the nuclear state may be characterize d
by the quantum numbers I, M, K, and Q, and the wave functio n
(91) reduces to a single term if we look apart from the symmetr y
requirement (93) .

The function qQ, K (ß, y) is given by the equatio n

	

Ho(I3 = K, j3 = Q) 6p (ß, y) = EØ (ß, Y),

	

( 97 )

where E is the energy of the nucleus . This Hamiltonian may b e
considered as a sum of a kinetic energy Tvib and a potentia l
energy W (ß, y) which does not contain derivatives with respect
to ß or y . From (14) and (27) one find s

1

	

„ 1

	

h2
ß (ß, y) = Hp + 2Cß-+ 2kcjßcosy(3S22-j(j+1)) + 8Bß2 sin 2 y

(K-S2) 2

2
+ 16Bß 2

	

1 2l +

	

1 2~ (1(1+I)-K2+j(j+1)-522) .
SIn2(y - 3

	

sin 2 (y + 3

The particle energy Hp is a constant with respect to ß and y .

(95)

(98)
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We shall in particular consider states with K = Q which ar e
found to have the smallest energy . The ground state of the nucleu s
is expected to be of this type . For K = Q the potential (98) ha s
a minimum for ß = ßl and y = yl, where

y t = l 0 for 3D2-j(j+1) {>0 ,

	

(99)

while )3 1 is given by the equation

2

C Nl-2 kc~I 3S22 -j(j+ 1 )I 3Bß~(I(I-F-1)-{--j(j+l)-2522) =0,

	

(10 0

which has a single positive root . The potential (98) also possesse s
other minima, but these lie at higher energies . The potentia l
function is illustrated in Figs . 4 and 5 .

The ß1, yl configuration represents the equilibrium shape o f
the nucleus deformed under the influence of the single particle .

w (/3, 4) -Hp

0

	

0,f

	

0.2 ß1

	

0,3

	

0.4

	

0. 5
Fig . 4 . Potential energy for nuclear vibrations, as a function of ß for y = y, . Th e
potential has a minimum for ß = ß l . For larger ß, the increase of W is due t o
the surface tension, while the increase of W for small /3 is due partly to the couplin g
to the single particle motion and partly to the rotation vibration interaction . Th e
numerical values given on the figure correspond to the example discussed o n

page 34 .

This equilibrium shape possesses rotational symmetry with respec t
to the 3 axis of the nucleus, and we have therefore a wide-goin g
analogy to the structure of linear molecules .

3MeV-

2MeV-

f MeV -
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If we neglect the third term on the left hand side of (100) ,
the equation for ß l is equivalent to that obtained by RAINWATER$)

for the equilibrium deformation of the nucleus . The extra term
represents the rotation-vibration interaction. The effect of thi s

term becomes small in the limit of very strong coupling betwee n

w(pr .ëi-HP

3Me V

fMsV

. f ~
0

	

77

	

1ff

	

TT

	

517

	

21T
.3

	

3

	

3

Fig .5 . Potential energy for nuclear vibrations as a function of y, for ß = ß1 . Th e

singularities in W for y = n ± 3 and n ±
23

are clue to the rotation vibratio n

interaction . The validity of the strong coupling approximation implies that th e

amplitude of the wave function is small for

	

-y r 3 . The curve illustrates

the numerical example considered on page 34 .

single particle and nuclear surface . In actual cases, however, the
effect may be quite appreciable .

The nucleus will vibrate around the equilibrium shape and,
for small oscillations, the potential may be approximated b y
the expression

W(ß, y) = W (ß1.vt>+ p (ß-ßJ 2 +2 9(v -y i) 2 (101 )

5MeV-

7MeV-

v

with

p = C -}-~ßi(I(I-I-1)-I-j(j-}-1)-2S2z)

	

(102)
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and

	

2 h 2

= 2 kcl ß11 322 -j(j+ 1 )I+ 3Bß 2 (I(I+1)+j(j+ 1 )-2 522) . (103)

With this form for the potential, the wave equation (97) ma y
be solved approximately by separation of the coordinates ß and
y. Putting

~ (ß, y) = (x) (Y) ,

where ß 1 x = 13- 13, and y = y - yl , the wave equations for e
and ap become, by means of (48) ,

(105)
_

	

h2

	

a2

	

4)

	

1
2 Bß2(ax2+4+2 P ßi x2f(x) = Eo(x)

and
_

	

h2

	

la

	

a

	

1

	

2 l
(106)

2 Bß2 y ay
y ay + 2 yy 7 a1(y) = Ey~l (y) ,

assuming throughout that x (K 1 and y (< 1 . We have

E = W (ß1, yl) + Eß+ Ey (107)

for the total energy of the nucleus .
Equation (105) may be solved by noting that the functio n

e2xe(x) satisfies the wave equation for the linear harmonic oscil-
lator. The eigenvalues of Eß are

2

B
E

BM_
+ h V B (nß +

2 )

	

nß = 0, 1, 2 . (108)

and the wave function representing the state nß = 0 is given b y

(109)

where

s

	

2~a
I /pB .

As a consequence of the zero point vibration, the mean value o f
x is shifted from zero to

Nr . 1 4

(104)

(x) = (-S ) 'exp I- .s (x + s)2},

(110)
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1
x = - (111 )

s '

while
1

(x-x)2 = (112 )
4
-

.s

gives the mean square deviation .

Equation (106) is equivalent to the radial equation of a two -
dimensional harmonic oscillator with zero angular momentum .

The eigenvalues of Ey are

Fy

	

h V Bß7(ny+ 1)

	

ny =0,1,2•••

	

(113)

and the ground state wave function is given b y

no (y) = ~texp t y 2 }

	

(114)

t = 2~~lgB .

In accordance with (47), the volume element has been taken to

be I y I dy For the state (114) ,

y2 = 1

	

(116 )
2 t

gives the mean square deviation from the equilibrium valu e

y = 0 .
In the limit of very strong coupling, the last term in (100)

may be neglected, as already mentioned, and, according to (102 )

and (103), the values of p and q will be approximately equa l

to C and Cß7, respectively. From (110) and (115) it then follows

that, as regards order of magnitude ,

1 2
s-- t

	

1^ ~ ,

	

(117)
0

where ßo is the zero point amplitude for free nuclear surfac e

oscillations, given by (71) . The above approximate solution to th e

wave equation (97) thus becomes valid for ßi >i ß0 .
Dan. Mat .Fys âiedd . 28, no. 14 .

	

3

with

(115)
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If one uses the tentative values for B, C, and k given by (4) ,
(5), (6), and (75), one finds that, for most nuclear states, /l i s

of the same order of magnitude as ß0 . In such cases, the abov e
solution to (97) cannot be expected to be very accurate .

As a numerical example, we may consider a heavy nucleu s
with Z = 80, A = 200. We assume a single particle state with
j = 9 / 2 and take the angular momentum quantum numbers of

the nucleus to be I = Q = K = j . This choice is expected t o

represent the nuclear ground state10) .
From (4), (5), and (6) we find C = 63 MeV and h 2 /B = 25 keV .

Taking k to be 40 MeV, we find from (99) and (100), by means
of (77), the values ß1 = 0 .24, y 1 = a. This deformation repre-

sents an oblate spheroid with åR 3 = - 0 .15 Rp (cf . (15)) .
From (102) and (103) one obtains p = 130 MeV and q =

4 .86 MeV, and the spacings between the eigenvalues Eß and Ey

are, from (108) and (113), found to be 1 .8 MeV and 1 .4 MeV ,

respectively. For s and t one gets the values 2 .1 and 1 .7 from
(110) and (115), respectively. Thus, according to (112) an d

(116), we have (x_) 2 = 0.12 and q2 = 0 .30 .
Due to the magnitude of the deviations from equilibrium ,

these estimates are, of course, quite crude and can only indicate
orders of magnitude . A more accurate solution to (97) would fal l

off more rapidly than (109) and (114) as we move away fro m

equilibrium. Actually, the potential (98) is singular for ß = 0 a s
ac

	

2 r
well as for y =

	

8 or

	

3 (cf . Figs. 4 and 5) .

For many applications, such as in the estimate of the nuclear
quadrupole moment, a more accurate solution to (97) may b e

required . In the present connection, where we are primarily con-
cerned with the classification of the quantum states of the nucleus ,

we shall not consider the problem in more detail .
In order to obtain nuclear wave functions, valid in the stron g

coupling limit, we still have to take into account the symmetry
requirements discussed in the preceding paragraph . The two de -
generate eigenfunctions to Ho with j3, I 3 equal to Q, K and - Q,
- K, respectively, have to be combined according to (91) . For

the particular case of I = j, the symmetrical combination mus t
be taken .

The condition (92) requires 9) to he an even function of y



(K, Q I:0, l d2 + 1 , K + 1 ) = +(K . S2 Ij2 I2I 12 -} - 1 , K + 1 ) =
(124)

4 V{(j-,Q)(j + D + 1)(I+K)(I + K+ 1) .

Nr. 14
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since we have assumed v = O. Thus, only the eigenvalues (113) ,

corresponding to even ny, are acceptable. Finally, the condition
(93) may be satisfied by taking for the wave functio n

Tr (I, M, K, Q, nß, ny) =

R
(118)

( 1 + R3+ R å)9~D
r

~ ' (ZQ
r
lK+(-)

r
jX Qgn

r
z,-x) ,

where R 3 acts on Z2 , MK, and according to the equations
(88) and (60) . In the wave function (118) the three axes of th e
nucleus enter in a symmetrical manner .

4) Effect of perturbation terms.

In order to estimate the influence of the perturbation term s
(96) we consider their matrix elements in the j 3 , I 3 representation .

We first note that the non-vanishing elements ofjl , j 2 , Ir and I2 are

given by

(D Iji+ ijsl ,Q Æ 1 ) = V{(j+,Q)(j+Q+I)}

(KI71 ~iI2 IK+ 1) = V{(I+K)(I+K+1)} .

	

(120)

The operators occurring in U have therefore the following matrix

elements

( K , UT -A I + 2 , K) = ~ V{(j+S2)(j +S2 -1)(j+.i~+l)(j+D+2)) (121 )

(K, .QIIi-I2I S2,K +2) = V{(I +K)(I+K-1)(I+K+1)(I+K-I-2)} (122 )

( K , n Ij i ILI .Q - 1 , K + 1 ) = +(K, Q Ijs lsI D- 1 , K + 1 ) =

From these expressions all non-vanishing matrix elements of U
may be derived .

(119)

and

(123 )

4V{(j+0)(j-Q+l)(I+K)(I +K +1 ) ?

3*



36

	

Nr .1 4

The effect of the perturbation depends on the ratio of th e

matrix elements to the energy difference between the correspondin g

unperturbed energy levels . If this ratio is small, U will have onl y

a small influence on the stationary state of the nucleus .

The perturbation term U l in (96) connects the state (Q, K )

with states .(Q ± 1, K+ 1) and (0 + 1, K 1) . Perturbations o f

this type are well known from the theory of diatomic molecules ,

where they tend to decouple the electronic angular momenta from

the molecular axis . If we disregard numerical factors depending

on the angular momentum quantum numbers, the order of

magnitude of the matrix elements of U, is given b y

h 2

U1 ~ B13 2

according to (27) . Since the operator Ul changes the value of Q,

the ßl-values of the combining states are essentially different and ,

according to (98) and (100), their energy difference will therefor e

be of the order of
d i E~Cß;,

	

(126)

again neglecting numerical factors depending on the Q-values .

From (71) we thus find
U~

	

i~oll}

	

(127 )
d 1 E (ßi) '

showing that the perturbations are small, provided ß l ») ßo . Th e

same condition was found in the preceding paragraph for th e
validity of the approximate solution of the wave equation (97) .

Even if Ul is small, it does remove the degeneracy betwee n
the states (.0, K) and (-Q, -K). In molecular spectra, this effect
gives rise to the so-called S2-doubling (or A-doubling) of the
energy levels. In nuclei, however, no doubling phenomenon o f
this type will occur since, according to (91), only a particula r
combination of the (Q, K) and (-Q, -K) wave functions, either
the symmetrical or the antisymmetrical, is allowed . The situation
is similar to the case of diatomic molecules with identical nucle i
of spin zero .

The perturbation U2 represents the effect on the particle motio n
of deviations from rotational symmetry in the shape of th e

(125)
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nucleus. The operator U2 in (96) connects (Q, K) with (Q ± 2, K)
according to (121 ) . For strong interaction, the largest term of U2
is that involving kc 1 ß sin y . From (100) we have, as regards orde r
of magnitude,

U. - C ßiy,

	

(128)

while 4 2 E ..~ 4, E is given by (126) . We thus find

E yßi

	

(129 )

according to (116) and (117) . Again ('2 is small, provided ßi >i ß0 .
One might expect to obtain an improved treatment by in-

cluding the large part of U2 in the unperturbed Hamiltonian . In
analogy to the case of polyatomic molecules, one would then firs t
solve the particle motion for fixed, but arbitrary values of ß an d
y and, subsequently, consider the vibration and rotation of th e
nucleus . In contrast to the molecular case, however, the de -
formation of the nucleus depends essentially on the motion of th e
single particle . For this reason, the matrix element . of U 2 will i n
general be smaller, and the value of 4 2 E larger, than the valu e
corresponding to the motion of the particle in a fixed field . The
effect of U2 is, therefore, smaller in the nuclear case and canno t
be simply accounted for in analogy to the molecular case .

Finally, the perturbation U3, like U2, arises from the asymmetr y
in the nuclear shape, and represents the anomaly in the nuclea r
motion as compared with the motion of a symmetrical top . The
operator U3 connects (Q, K) with (Q, K+ 2) . The order of magni-
tude of U 3 is found to be

h 2
U3 "-, Bß2 y,

1

while

4 3 E^'	 ß 1

	

(131 )
B lg i y

gives an estimate of 4 3E, arising primarily from the term in (98 )
involving (K - Q) 2. Thus,

43E^- y3
~ßl/3

	

(132)

according to (116) and (117) .

(130)
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The above estimates of the perturbation effects show that, i n
the strong coupling limit (Nr >> ß o), the treatment outlined in th e
preceding paragraph becomes valid for a large class of nuclear
states . For these we may consider the particle as moving in a
field possessing cylindrical symmetry, while the nuclear surfac e
vibrates around its symmetrical equilibrium shape . Of course,
such a treatment will break down if the nucleus vibrates o r
rotates too strongly and in addition the states may become strongly
perturbed in cases where, by coincidence, the energy denominator s
AE can become small .

As already mentioned in the preceding paragraph, the tentativ e
estimates (4, 5, and 6) and (75) of the parameters B, C, and k

entering into the description of the nucleus, lead in general t o
comparable values of ßl and ßo. In order to estimate the magni-

tude of the perturbation terms, we consider, as an example ,
a heavy nucleus with A = 200, Z = 80, j = 9/2, the case alread y
discussed in the preceding paragraph . It may be noted that th e
situation is not greatly changed if we consider lighter nuclei o r
smaller values off, provided j> 3 / 2 (or I? 1). In the case ofj = 1/ 2 ,
the value of Hilt used above vanishes .

We take the ground state to have the quantum number s
I = K = Q = j = 9 / 2 and nß = ny = O . The perturbation Ul
connects this state with states having K = d2 = 7 / 2. By means of

the numerical values quoted in the preceding paragraph, on e
finds from (123) a value for Ul of about 1 / 2 MeV to 1 MeV ,
depending somewhat on the effective value chosen for ß and y .
The most important regions for fi and y are 0 .15 < ß < 0 .30 and

- y I < -6 . We may here disregard the symmetrization rul e

leading to wave functions of the type (118) . The energy difference
between the ground state and the state K = Q = 7 / 2 , nß = ny = 0
is estimated to be some 3 MeV, but, since the wave functions

(ß, y) for the two states are far from overlapping completely ,
the effective value for 4 1E will include some excitation of th e
ß, y vibrations . If d 1E is taken to be about 5 MeV, the ratio

U 1

Al E
may be expected to be of the order of 10-20 0 /Q .

The term U2 in (96) connects the ground state with states
having (Q, K) = (5/ 2 , 9 / 2 ) . From (96) the matrix elements have
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been found to be about 0 .5 MeV . The value of 4 2E appears to
be somewhat larger than 4 1E and is estimated to be some 5 t o

10 MeV . Finally, U3 introduces admixtures of states of the typ e

( 9 /2 , 5 / 2 ), and from (122) values for U3 of the order of 0 .3 MeV

have been obtained, while 4 3E is estimated to be about 5 MeV .
It appears that the amplitudes of the connecting states may

not exceed some 10-20 °/e. In some applications, these ampli-
tudes only enter squared and, in such cases, the strong couplin g

approximation may be rather accurate .

In conclusion, it must be stressed that an analysis like th e

above rests on a highly simplified nuclear model . Anomalies in
the nuclear deformability and the influence of additional par-

ticles may greatly change the picture . In general, a more detailed

analysis will be needed to decide which coupling model give s
the best representation of a particular nuclear state under con -

sideration * .

The writer's interest in the present problem was greatly

stimulated by some notes by Professor NIELS BOHR, written in
July 1949, on the relationship between the compound nucleu s
and the single particle model . I also wish to thank Professor JOH N

A. WHEELER for enlightening discussions .

* A discussion of various nuclear properties implied by the model considere d
is being prepared by B . MOTTELSON and the writer.
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