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1. Introduetion. The fundamental theorem of the theory of
almost periodic functions states that any almost periodic func-
tion f(x) wilh the Fourler series

f(oc) oo Za (],) eiflx’ where «a ()L) — JW{/(T) e~i);.‘e},

satisfies the Parseval equation

M @) [} = X]a WP

Many proofs of this theorem have been given. Among them
the proof of Weyl [6] is, perhaps, the one which leads most
directly to the goal. It depends on a systematic use of the process
of convolution and on the methods of the theory of integral
equations. Another proof, depending on the general theory of
Fourier integrals, is due to Wiener [7]; it has been given a par-
ticularly simple form by Bochner {2, pp. 81—82].

Though these proofs give a clear insight in the whole theory,
the more elementary proofs are not without interest. Among them
the original proof of Bohr {3] is interesting by its crudeness.
Its idea is to consider for every positive 7' the periodic function
with the period 7" which coincides with f(x) in the interval
(0, T), and to use Parseval’s equation for this function. By making
T — oo, one obtains the theorem. The passage lo the limit is,
however, of a complicated nature, and the whole proof is very long.

A considerable simplification was obtained by de Ia Vallée
Poussin [5], who used the same idea togelher with the convo-
lution process to prove the uniqueness theorem, which states
that if a (4) = 0 for all 4, then f(x) vanishes identically. From
this theorem Parseval’s equation follows by a simple application
of the convolulion process. Since f(a) vanishes identically if and
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only if M{|f(x)[*} = 0, the proof of the uniqueness theorem
amounts to a proof of Parseval’s equation in the particular case
where a () = 0 for all 1. A simplification of de la Vallée Poussins
proof has been given by M. Riesz [4].

It seems very natural to base a prool of the fundamental
theorem on almost periodic functions on the corresponding theo-
rem on periodic functions. It must, however, be mentioned, that
the periodic function with the period T which coincides with
f(x) in the interval (0, T) will generally be discontinuous in
the points nn T, so that it is not a special case of the theorem
on almost periodic functions, which is nsed. Moreover, the periodic
functions will generally not approximate f(x) outside the inter-
val (0, T).

The truth is thal actually it complicates matters to introduce
this periodic function. As will be shown in the following pages,
the proofs take a simpler form if, instead of thc Fourier series
of the periodic function with the period T, we consider the
Fourier integral of the function fy(x) which coincides with f(x)
in the interval (0,7) and is 0 elsewhere. Nalurally, for large
T this Fourier integral does not differ much from the Fourier
series of the periodic function.

All we shall need on Fourier integrals is, that if F(x) is a
function, which is continuous in a certain closed interval and
is 0 outside this interval, and if

0
\F(a‘.) e M e = A (1),
e,
then in analogy to Parseval’s equation
(e @

F(x)P de = ;’1 S|A W Pda.
2w .

&
Thus our proofs are more clementary than the proof of Wiener
referred to above, with which they have no connection.

Our proof of the Parseval equation follows step by slep
Bohi’s proof. The main simplifications are in the beginning. In
the later part a simplification in the exposition has been ob-
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tained by the use of a function introduced by Wiener [7, p. 485],
connected with Bochner’s translation function [1, p. 136].

In our proof of the uniqueness theorem we use de la Vallée
Poussin’s main lemma, which actually concerns the Fourier inte-
gral of the function [y (x). The simplification is in the remainder
of the proof, where we avoid the artifice of choosing T as a fine
translation number.

2. Proof of the Parseval equation. The inequality obtained
from Parseval’s equation by replacing = by > bheing an easy
consequence of Bessel’s formula, it is sufficient to prove the in-
equalily obtained by replacing = by <.

For an arbitrary 7> 0 consider the funcltion

T w

1 e —iix 1 — AT d

TQ [(x)e M = igf’ (x) e~ g = a,.(4).
¢/ o

0

Then

1 4‘[’.- - 1 x® \ T (3 .
7;\!/’(30)( dx = 7 | fr ()P da = 5o [a, (A)PdL.
1, oo o

0 - — oo

It is therefore sufficient to prove:
To every d > 0 there exists a T, > 0 such that

T o o
27;,.[\](17‘(/1«)}“(1)»/ <Z E](I(l)l“’—l—d f()l' T > r()-

U

3. We begin by proving

Lemma 1. 7o every 1, and every § > 0 correspond an o > 0
and a T, > 0 such thal

e (3@
5’& y (IT ()u)

'/}v()— 0]

Pdi < |la()P4+d for T>T,.

Proof. If f(x) is replaced by f(x) ¢ %% the function ap (1)
is replaced by a,(A-+1,). It is therefore sufflicient io consider
the case 2, = 0.
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(i) a(0) =0, i.e. M{f(x)} = 0. — On placing for a given
c>0

1 ol o
@ (x) = KI'T () dy
)
we have by a simple computation
1 L il o ei)vck 1 )
T\ D (x)e de = aT(?u)—“rC ;
hence ) o
1(°7 . T (°F etbe—q]?
o @pde =2 \ja p| " az.
TS[LD(”IN dx 27(\1(11()\ i di
) o e _

1 Wl
Since **\ f(y) dy converges uniformly in x towards M{f(x)}

AR

as ¢ — o0 there exisls to every ¢ > 0 a ¢ = ¢ (&), such.that when
7T>c then |@(x)| < & in the interval (0, T—¢). In the inter-
vals (—¢, 0) and (T—c¢, T) we have |® (x)| =< G = sup|f(2)|.
Outside the interval (—¢, 7) we have @ (x) = 0. Hence

f B ) 2 . 2
;glﬂ-"(m) P e < &+ "TG
and consequently
T e y C”\”*'l 2 I o -
ﬁﬂg\lﬂr(l)l e di < 2¢& for J)T”_TQ‘”"

For |1|< (some) @ = w (c) we have

Hence

7 w o .
‘)T§[a1‘(l)[2dly < 4-2¢ = 85 for T>T,.
27 A

(ii) a(0) = a=£0.— On placing f(x) = a+ h(x) we obiain
a corresponding decomposition of a,(x) in two terms:

ap(A) = b (4)+cp(A).
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Hereby

10 . T .
2\ laPdv = |ap :5—7;\113,1‘(1)?%.
A

v —a

Hence by the triangle inequality we have for every o >0

1
ra(n

A-‘}: ,1, [ _E
\|aT(l)l2d/L < Ja| + QﬂglcT(l)Pdl :

T

25

Let >0 be chosen such that (Ja|-I-3¢?%<|al*+d, and next
by (i), since M{h(x)} == 0, the numbers w and T, such that

T alt)
5 \]’cT (WPdL<9& for T>T,.
27\

-

Then

T .
i—;f;\ia'f(l”zd)“ =|af+d for T=>T,.
0,/¥m

4. On account of Lemma 1 it is, in order to prove lhe
Parseval equation, sufficient to prove the following

Lemma 2. To every 3> 0 there exists a finile set of numbers
Aise s Ay, sach that for every o > 0

T

la, (D [FdL<d for T>(some)T,(w).
2 r

Yliely|z o

[k—iln;] > w

We shall reduce this lemma to a lemma on the transiation
function

e(r) = sup|f(x+)—f(x)]|.
On placing for a given >0

i (x) = ]‘1 (L+r)—f1 (x)
we have
P\ T @ = 0 @ )

[T,
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hence s w

1 T &
r\IZI’(T)I dt:: vvvvv \|a (Z)HQUT 1] di.

LI &

Now | & (x)| < e(s) if the points x and x4z both lie in
the interval (0, 7), and | & (x)| =< G if one of the points lie in
(0, T), whereas ¥/ (x) = 0 if both points lie outside (0, T).
Hence

L 2 (2
1{\ If(a:) Pdr < e(x)® += ITG
e
and consequently
£ S _ 206
5 Aap WPl —1Fdl =268 il e(e) <& and T>=5.
A 7T - - &

— ™

On placing
] ¢ —e(r) when e(e) < ¢
p () = ]

0

when e(r) > ¢

we therefore obtain for every X >0

iy 0)!2(1(?'“ ()1)1) <22 {s 0
[ ¥ € (' r)ar | ~ ECSyvplr)dr
()/ i 7 )(v . f]
2 "rugx A-,o \L ;
2.
for T \2(5
&

In order to prove Lemma 2 it is therefore sufficient to prove

Lemma 3. To every ¢ 0 there exists a finite set of numbers
Ly, »++, Ay, such that for every w > 0 there exists an X> 0 for which

(¥ 11
ihr ~
X\ —1Pg()dr > — % Y\fﬁ(”f)dl

0

when [h—3 |2 o, |[A—ly| = o.

5. Translation numbers of /’(x) belonging to a given o> 0,
i.e. numbers ¢ for which e(z) < p, will be denoted throughout
by 7 (¢). We shall first prove
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Lemma 4. For every o> 0 the sel S of numbers . for which
e — 1] < 1 for all 1 =v()>0 is finile.

If 8§ consist of the numbers iy, -- -, L,,;, there exists lo every
w>0 an A>0, such that if |h—4 =0, -, [A—2,]> @,
then |e*'—1]|>1 for some positive t = ¢ (g) < A.

Proof. By the uniform continuity of f(x) there exists an
#>0 such that any positive z <<y is a = (g). Hence, if [1|> 7/3 4
there exists a positive ¢ = z(g) <_g for which |e'*!—1|> 1. Thus
S belongs to the interval |1] <X n/3 4.
and [A”# < #/3 mod 2 7 for all t = #(0)> 0, we have |1’ — 21" [t <
2;r/8 mod 27 for all { = v(¢)>0. In particular, the interval
28| — A" |<t<<4daf3]|2 —Ai"| of length 2 #/3|2'— "] will con-
tain no z(¢). Since every interval of a certain length ! = I(p)
contains a = (¢), we obtain |A'—A"| = 2#/31. Hence S is finite.

T.et now w >0 be chosen, and consider the closed bounded
set of numbers i for which [1—4,|> w, ---, |A—2y| = v,
|A| < n/34. This set is covered by the open sets U, defined by
an inequality [e*'—1|>1fora t =« (¢) > 0. Hence, by Borel's
theorem, it is covered by a finite number of these sets, say by
Uw s Utn. As number 4 may then be used any number larger
than the numbers ¢, £, -, {

n'

6. We now turn to the proof of Lemma 3.
The translation funetion e(z) being almost periodic, so is

the function ¢ (z). Since ¢ (¥) is non-negative and not identi-
cally zero, we have
M{g(®)} = m>0.

In Lemma 4 let ¢ = 4 m. Then the lemma gives numbers
Ay, =+, Ay and, when >0 is chosen, a number A>0.

It [A—i|=w, -+, |[A—24,| > o, there exists a positive
{ = z(p)<<A such that [¢*'—1|>1. For X>A we have

1 W X 1 fo/»TA i L
\’\ e —1F g (D de = oy \H 1 g () |~ 1 Py (o + 1) do.
‘ L] e [25]
Now, since |1#|> /3 mod 2 &, the relations |27| < /6 mod 27
and |4 (z+ 0] < #/6 mod 2w cannot be valid together, i, e. we
have for every «
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max{]e””—l]z, Ief)"(TH)—IF} ~ ‘ein/s__llz ~ 1

Moreover, since ¢ is a 7(g), we have e(r+1) < e(v) +¢, and
consequently

g+ = p(@)—o.

Hence we obtain

1 X' 1 X —A
;\,Slel“ ip gou)du”\ﬂga(r%ewz.

0

Here the right hand side converges for X->oo towards
Y(m—g) = {gm. The right hand side of the inequality in
Lemma 3 converges for X-> oo towards 7 m. Hence the latter
inequality is valid for some X and the proofl is completed.

. Proof of the uniqueness theorem. The main lemma in
de la Vallée Poussin’s proof states that when a (1) = 0 for all
J, then aT(}h) — ( uniformly in A as T— co. Starting from
this lemma the proof may by completed as follows.

For a given £>>0 let T,>>0 be chosen such that |a, ()| < ¢
for all 4 when I'>7,. For U> T > T, consider the function

o o T o
Gpp (@) = %Sfu (ot 0) fp (D dl = %&fu @+ 07 dt.

Plainly, ¢,,; (x) vanishes outside the interval (— 7', U) and coin-
cides in the interval (0, U— 7') wilh the almost periodic function

1T —
gy (@) = Ti/(mﬂ)/(o dt.

L2N]
By a simple calculation

\gTU (x)e ¥ dy = Uay (M) a, (A).
Hence Y

20T f 1] Y

1 U . 9 s
\}gl () Pdx < U\IJ’ o @ Pde = 5 i';\]aU (1) ]”IaT(].)]ZdA
&y ¥

T el

< & :;\IGUU)! di = l\lll(l)t de < &G

)
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For U-» oo this gives

M{lgp (@) < 6"

For T'— oo the function g, (x) converges uniformly in x fo-
wards the convolution

g(m)=1‘t4{f(x+t)ﬁﬁ}.
Hence
M{lg@P) < £62.

Since this is true for all ¢é> 0, we have M{|g (x)?} = 0, which
implies g (x) = 0. In particular g(0) = M{|f(x)} = 0, and
hence f(x) == 0.

8. Another variant of the proof of the uniqueness theorem.
It may be remarked thal a slight change in the above proof
perinits us to replace the use of Parseval’s formula for Fourier
integrals by Parseval’s formula for periodic functions, which
may be formulated as follows:

If F(x) is continuous in a closed interval of length < P
and is 0 oulside this interval, and if

(o]

\F(x) e dr = 4 (D),

o @
b
A(Qpnn)\ .

F(x)Pdr = -
\F@rar =4
& — n=—uw

Applying this formula to the function g, (x), which vanishes
outside the interval (— T, U), and using that f,, (x) also vanishes
outside this interval we obtain

then

*U—-T

)

0

N 1 7 27\ 27
2 < 2 —_ s 72 -
]gT(x)l d‘r = SIgTU(x)I d.’E T+ [IZ’ L aU(T_.}‘. bvn> aT(T_I_U
—® N=—ux
2 1 7 ) 2 ? 2 N 2 2 2
<& —_f}_USU“ ay T*—I—TJH = &\ |fy (@) Pdx < & UG,
n=—w -

and the proof is completed as before.
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