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1. Iiitrodnetioit. The fundamental theorem of the theory of
almost periodic functions states that any almost periodic func-
tion f (x) with the Fourier serie s

f(x) c"fa(a,)e
ti.x , where a (A)= 34 {f(x)e-i1. i ,

satisfies the Parseval equatio n

111 f(x) = laO)I' .

Many proofs of this theorem have been given . Among them
the proof of Weyl [6] is, perhaps, the one which leads most
directly to the goal . It depends on a systematic use of the proces s
of convolution and on the methods of the theory of integral
equations. Another proof, depending on the general theory o f
Fourier integrals, is due to Wiener [7] ; it has been given a par-
ticularly simple form by Bochner [2, pp . 81-82] .

Though these proofs give a clear insight in the whole theory ,
the more elementary proofs are not without interest . Among them
the original proof of Bohr [3] is interesting by its crudeness .
Its idea is to consider for every positive T the periodic. function
with the period T which coincides with f (x) in the interva l
(0,T), and to use Parseval's equation for this function . By makin g
T --~ oc, one obtains the theorem . The passage to the limit is ,
however, of a complicated nature, and the whole proof is very long.

A considerable simplification was obtained by de la Vallée
Poussin [5], who used the same idea together with the convo-
lution process to prove the uniqueness theorem, which state s
that if a (A) = 0 for all 2,, then f (x) vanishes identically . From
this theorem Parseval's equation follows by a simple application
of the convolution process . Since f (x) vanishes identically if an d
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only if M {lf (x) ~ 2 } = 0, the proof of the uniqueness theorem
amounts to a proof of Parseval's equation in the particular cas e
where a (2) = 0 for all Z . A simplification of de la Vallée Poussins
proof has been given by M . Riesz [4] .

It seems very natural to base a proof of the fundamenta l
theorem on almost periodic functions on the corresponding theo-
rem on periodic functions . It must, however, he mentioned, tha t
the periodic function with the period T which coincides with
f(x) in the interval (0, T) will generally be discontinuous i n
the points zi T, so that it is not a special case of the theore m
on almost periodic functions, which is used . Moreover, the periodi c
functions will generally not approximate f(x) outside the inter -
val (0, T) .

The truth is that actually it complicates matters to introduc e
this periodic function . As will be shown in the following pages ,
the proofs take a simpler form if, instead of the Fourier serie s
of the periodic function with the period T, we consider th e
Fourier integral of the function fr(x) which coincides with f(x)
in the interval (0,T) and is 0 elsewhere . Naturally, for larg e
T this Fourier integral does not differ much from the Fourie r
series of the periodic function .

All we shall need on Fourier integrals is, that if F(x) is a
function, which is continuous in a certain closed interval an d
is 0 outside this interval, and i f

a m

F (x) e- i J.x dx, = A(2 ) ,e-

~

then in analogy to Parseval's equation

F(x)~z dx = -i

	

A(2) 12 dz
2Tr

Thus our proofs are more elementary than the proof of Wiene r
referred to above, with which they have no connection .

Our proof of the Parseval equation follows step by ste p
Rohr's proof. The main simplifications are in the beginning. In
the later part a simplification in the exposition has been ob-
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tamed by the use of a function introduced by Wiener [7, p . 495] ,
connected with Bochner's translation function [1, p . 136] .

In our proof of the uniqueness theorem we use de la Vallée
Poussin's main lemma, which actually concerns the Fourier inte -
gral of the function fr (x) . The simplification is in the remainder
of the proof, where we avoid the artifice of choosing T as a fin e
translation number .

2 . Proof of the Parseval equation. The inequality obtaine d
from Parseval's equation by replacing = by > being an eas y
consequence of Bessel's formula, it is sufficient to prove the in -
equality obtained by replacing = by < .

For an arbitrary T> 0 consider the functio n

r

~~~ f(T) L

-iÂ .x d.x = Çf,(x)eiTdx = a l . (X) .

Then

t

Ĥ
T

~ f(x) I2 dx = 1,

'o

((e w

Ifr(x) 12dx =

2 n;
a
j

, (~) 12 d1. .

-~

	

~-- ~

It is therefore sufficient to prove :
To every d > 0 there exists a To > 0 such tha t

2

	

aT
(~) r dA < I a(2.) + d for T> To .

,,

3. We begin by provin g

Lemma L To every 2, o and every d > 0 correspond an co > 0
and a To >> 0 such tha t

T
Çl,o±o.)

2-~1 a
7
.(J. )I2 dti <~a(1o )1 2 +d for T> To .

4i /, .o- fr l

Proof . If f(x) is replaced by f(x) e---Jo r the function aT O. )
is replaced by aT (7. -I- 4) . It is therefore sufficient to consider
the case 7.o = O.
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(i) a (0) = 0, i . e . Al{ f (x) ) = 0. - On placing for a give n
c > 0

x+,

(x) = ~ ~ fT ( cJ) dy

X

we have by a simple computation

ii, c
T +~

O

Ø(x)2 i ~. dx

	

aT(2)c i~c t

hence
è

T~ Ø (x)I2dx = ~~~Iaz.(â)I2

@ _._,

2

d~ .

I x± c
Since -- f (y) dy converges uniformly in x towards AI{ f (x) }c

as c> oo there exists to every F > 0 a c c (F), such that when
T > c then I 0 (x) I < F in the interval (0, T - - c) . In the inter -
vals (- c, 0) and (T-c, 1) we have ((h (x) I < G = sup I f(x) I .

Outside the interval (- c, T) we have (D (a) = O . Hence

	 G 2
I~(x)I2dxF2

2 c
r

.-~

and consequently

T
2-rr

aT(2) I2
cr- I

c
d~ < 2 F2 for T> To

2 c G 2
F 2

~ym

For 12,1 (some) co -= w (c) we hav e

Hence

eiGc

	

I 1

(ii) a (0) = a* O . - On placing f(x) = a -I- h (x) we obtain

a corresponding decomposition of aT (x) in two terms :

a T (1) = bT (ît) -f- cT (),) .

(J,)I 2 d%

	

4 . 26 2 _ 8F 2 for T> To .
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-,a~ 2 dx = 1a 2
= I' 'Ç01 b 7 , (2,)1 2 d~ .

2 7r
-~

Hereby

e , o

w 0everyHence by the triangle inequality we have fo r

T
0 (11

'a ,(a)1 2 d ~2 r
Q - Ø

5_ fal + (a )12 d

Let F->0 be chosen such that (la I -I- 3 £) 2 < a r+ c5, and next
by (i), since M t h (x) } = 0, the numbers w and T o such that

T

	 ~ 1Cr (7u) (2 d ), G . 9 r'' fo r2 T
~- w

2

T

,t

(a w

1 a r, (a) 12 dJ <

	

2 -- d for T > T o .
p

	

-1 I

4. On account of Lemma 1 it is, in order to prove th e
Parseval equation, sufficient to prove the followin g

Lemma 2 . To every a .> 0 there exists a finite set of number s
X1 1 , . ., 1

.
such that for every w > 0

Then

T i

27r IaxMr d) < d
e'I1.-~~1I> w

I'1-,n.m)

for T> (some) To (w) .

We shall reduce this lemma to a lemma on the translatio n
function

e(i) = sup ~f(x + r)-f(x )1 •
x

On placing for a given r> 0

(x) = fl,(x+r)-fr(x)
we have

ryoo

~` (x)e i ~ x dx = al,(7~)(e l az_1 ;
1
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hence
1

	

T

	

( \r I

ZIl
~ x)I2 dx =

27EI a
1 .(~)I2 I ei 1.T - 1l

d d%. .
P:- p

	

- x

Now I i h' (x) I
< e (r) if the points x and x +-r both lie i n

the interval (0, T), and I ' (x) I G if one of the points lie i n
(0, T), whereas I% (x) = 0 if both points lie outside (0, T) .
Hence

1°

	

~
-I ; ~ I [IJ (x) I2 dx Ç e (r) 2 -j- r

,~

~

and consequently

l '
2 T-)aT

	

M( ~) II e t ,tr _

On placing

< 2 s ` if e

	

<

	

and 7'--
2 t,G 2

s
.,
"

cP ('r ) =
J s e (r) when e (r) _ s

10

	

when e(r)> F

we therefore obtain for every X> 0

(a l ,
e Y

(a)I2

	

Ieiit_
1I ` (f(r)dr)d%

	

2 FE 2

	

(c)
e.'-x

	

V e, p

	

I

	

t p

2 X G 2
for E 2

In order to prove Lemma 2 it is therefore sufficient to prov e

Lemma 3. To every e> 0 there exists a finite set of numbers
1. i ,

	

, 2, 31 such that for every ø> 0 there exists an X> 0 for which

Ĥ
x

	

P X
'e -11-9)(r)dr>

7 -

	

(r)d r
P-o

	

e n

when I7 ~i l > co,

	

w .

5. Translation numbers of f (x) belonging to a given O > 0 .
i . e . numbers r for which e (r) < o, will be denoted throughout
by r (O) . We shall first prove
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Lemma 4 . For every p> 0 the set S of numbers 7 for which
11 < 1 for all t = r(p)>0 is finite .

If S consist of the numbers 2 , • •, 4 1 , there exists to ever y
w>0 an A>0, such that if -211 > w, , 12, -A. m 1> w ,

then I e `Åt - 11> 1 for some positive t = r (Q) <A .
Proof. By the uniform continuity of Rx) there exists an

> 0 such that any positive r <7t is a r (p) . Hence, if 12,> 43 y
there exists a positive t = r (p) < r for which

I
e` )' -11> 1 . Thus

S belongs to the interval 2, < 43' .
If 2« and 2," both belong to S, i . e . if 12 ' t < 43 mod 2 Tt

and I 2" tl < 43 mod 2 n, for all t = r (0 >0, we have 2, ' -2." ~ t
2,r/3 mod 27r for all t = r (p) >O . I n particular, the interval
243g '-2," ~< t<43 I 2 ' - 2," of length 2437 '- 2," will con-
tain no r (p) . Since every interval of a certain length l = 1(p)
contains a r (p), we obtain 12, '-2" > 2431 . Hence S is finite .

Let now w > 0 be chosen, and consider the closed bounde d
set of numbers ï, for which I2-411 > w,

	

•, ~2. -2m l > w ,
121 ,T/3y . This set is covered by the open sets Ut defined by
an inequality I e ' '" -1 1 > 1 for a t - (p) > O . Hence, by Borel' s

theorem, it is covered by a finite number of these sets, say b y
Uri, •, Ur . As number A may then be used any number large r
than the numbers y, t1,

	

t
n .

6 . We now turn to the proof of Lemma 3.
The translation function e (i) being almost periodic, so i s

the function 9)(T) . Since cy (r) is non-negative and not identi-
cally zero, we have

M{ p(r)} = m>0 .

In Lemma 4 let p = - rn . Then the lemma gives number s
2 i , • • •, 2 and, when w> 0 is chosen, a number A> O .

If I 2,-2,11 > w,

	

, 12 -2,m l > w, there exists a positiv e
r (Q)< A such that (e' "- 1 H 1 . For X> A we hav e

~ v
t~iei tir 1

1

2cy(r)dr> 1
co

	

1
12 T (,r) + 1 e'

l. (
1-1-

t> .- t
2 P (r + t)1 d r.

Now, since 2 tl > ,'r,/3 mod 27r, the relations lir < 46 mod 2 n
and 12, (r + t.) < 46 mod 2 n cannot be valid together, i . e. we
have for every r

eo
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max { 1 e
ztiz -1

1
2

	

;ti(r+t )FI)

	

> I e ` ~/ s -1~ 2 > .

Moreover, since t is a t (Q), we have e (T + t) < e (Z-) + Q, and
consequently

Hence we obtain

nX - :1

p
-1 1 2 (r) dr ? --

	

(T) oJdr .
-- 2 X

Here the right hand side converges for X-te oc toward s
(in - Q) = is In . The right hand side of the inequality i n

Lemma 3 converges for X> oo towards 1, in . Hence the latter
inequality is valid for some X and the proof is completed .

7. Proof of the uniqueness theorem . The main lemma in
de la Vallée Poussin's proof states that when a()) = 0 for al l
A, then a r (~.) 0 uniformly in 1 as T -o- oc . Starting from
this lemma the proof may by completed as follows .

For a given e > 0 let To > 0 be chosen such that I ar (20 (Ç e
for all ). when T> To . For U> T> To consider the function

gTU(x ) = rr~fUr(x + t)fr( t ) dt =-

	

fU (x+t)f(t)dt .
c o

Plainly, gru (x) vanishes outside the interval (- T, U) and coin-
cides in the interval (0, U- T) with the almost periodic functio n

gT (x)

	

T
f (x+ f(t) dt .

c o

By a simple calculatio n

Ĥi
. .o

gru(x)e-

FJ
.xdx = ( Tel u O.)a r (~) .

Hence

1 a

	

1((
o

	

ti ÇT
Üg (x) 12

d.r. ~- T
gu

(x) 12 dx

	

2, r (ti) 1 2 I ar O.) 1 2 dî~

o

	

~ -- ø

	

"- ø

~

	

eL i

< E 2 t ~.~ \ 1 au (/.) 2 d). = E" 1 ~~.

	

~

	

U
lf(x) ctx

	

E 2 tt 2 .

v_ ~

	

t o

~Y('z +t) > P(r ) - e .

._
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For U -~ cc this gives

m { l gT (x) 12 < F 2 G2 .

For T-- oo the function gr (x) converges uniformly in x to -
wards the convolutio n

,q(x) =M {f(x+t)f(t) } .

Hence
Mll g(x)l2} < 82 G 2 .

Since this is true for all e> 0, we have M{ l q (x) l2 } = 0, which
implies g (x) -- 0 . In particular g (0) = M{ l f (x)12 } = 0, and
hence f (x) -== 0 .

8. Another variant of the proof of the uniqueness theorem .
It may be remarked that a slight change in the above proo f
permits us to replace the use of Parseval's formula for Fourie r
integrals by Parseval's formula for periodic functions, which
may be formulated as follows :

If F(x) is continuous in a closed interval of length

	

P
and is 0 outside this interval, and if

~• F(x)
e- i

Â
x dx = A O.) ,

e,-- ..
then

2

Applying this formula to the function g 7, U(x), which vanishe s
outside the interval (- T, U), and using that fu (x) also vanishe s
outside this interval we obtain

qT (x) 12 dx < l g T U
o

	

e-

2 7 r
U T +U n = E Z \ l fu (x) l2 dx

	

62 UÇ 2 ,

2 rr
v

	

n
T{ U

2

a

and the proof is completed as before .

2
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