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-~ D. Finally, the distribution of the angular momentum in the
solar system has proved to be a stumbling block for many theories,
“As 1t is, the sun, although possessing more than 99 per cent. of
’»the mass of the system, possesses only 2 per cent, of its angular
momentum. The puzzle is why the sun has so little angular
‘momentum.
We may, perhdps point out here the dlfﬁcultles inherent in
this distribution of the angular momentum.
If the origin of the solar system has to be ascribed to a cata-
strophe of some kind, this accident in itself could have been
able to transfer angular momentum to the material which would
condense subsequently into the planets.
~ If, however, one tries to build upv a theory starting from the
‘sun, perhaps surrounded by a gas cloud, it is difficult to under-
stand how this distribution came about. If the sun had been
surrounded from the beginning by a gas cloud, the difficulty is
fo understand why the angular momentum per unit mass in this
“gas cloud should be so much larger than the angular momentum
},fper unit mass in the sun. If, on the other hand, the system started
- from the sun alone, with the material for the planets being provided
“for instance by eruptions from the sun, one certainly would ex-
“pect the angular momentum per unit mass to be about the same
for the solar as for the planetary material.
“Fouché, in 1884, was the first to point out the extraordmary
. character- of the actual distribution of the angular momentum.
We shall see how this question has played a great role in the
valuatlon of sundry theories.
. The origin of the asteroids will not be discussed here. The
generally accepted explanation involves the breaking up of a
larger body. According to recent work of Broww (1), this process
might also have given rise to the meteorites.
- We shall also not enter extensively into a diseussion of the
rregularities mentioned above. As far as the satellite systems are
concerned, the great resemblance between them and the planetary
system ‘seems to point to a formation of the satellite systems
““analogous to the formation of the planetary system itself, even
' though the distribution of the angular momentum is not quite
so .extreme as in the case of the planetary system (2). :
" The ring system of Saturn is probably due to the fact that. its

coincident. Also, the rotation of the sun is in the same direction’
and its equator is only slightly inclined to the planetary orbits.

B. The second striking feature is that the mean distances of’
the planets from the sun very closely obey the so-called Titius-
Bode law. If the mean distance of the n-th planet from the sun
is denoted by r, and if we count the group of the asteroids as one
of the planets, we have:

r, = a-+ b2,

where ¢ = 0.4 A.U. and b = 0.3 A. U.

We may remark here that orbital regularities and laws for
distances, comparable to the Titius-Bode law, are also found for
the satellite systems (compare Tables II, 1II, IV, V). _

C. The next group is the fact that the planets can be divided
into two groups. The inner planets which form the first group
have relatively small masses, high specific densities, low rotational
velocities, and few satellites. The outer planets, which form the
second group, have large masses, low specific densities, a relat-
ively fast rotation, and large satellite systems?!.

If a theory is able to withstand the attacks of serious criticism,
it ought to be able to explain the above-mentioned facts. How
ever, there are more features of the solar system which have to
be considered. We may call the reader’s attention to a few of these

Between Mars and Jupiter, there is no other planet, but th
system of asteroids, estimated by Baade to contain about 30000%
bodies, of which only less than 2000 have been observed up t
now. The total mass of the asteroid system is extremely smal
(about 0.0003 times the mass of the earth).

‘Saturn possesses a ring system.

The outer satellites of Jupiter and Saturn have 1etr0gad
motions.

The inclination of the equatorial plane to the orbital plane i
increasing in the series of the outer planets. Also some orbits o
satellites are much inclined to the equatorial plane of thei
primaries. :

Pluto, as we have already remarked does not fit in wit
the other outer planets.

1 We leave Pluto out of this discussion. Pluto’s orbit has a large eccentrlclty,
and the planet itself is small and dense.
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distance from Saturn is less than the limit of Roche, inside which
no satellite is stable against ‘a tidal action of the mother planet..
To understand this qualitatively, imagine a satellite brought
nearer and nearer to its primary. The tidal forces increase, but
the gravitational forces of the satellite itself on its matter remain
the same. And so at a certain moment, the satellite, if liquid,
would break in two and so forth until the fragments would be so
small that surface tension keeps them. together. If the density
of the planet were the same as that of the satellite, the critical
distance at which the breaking up would begin would be 2.44
times the planet’s radius, as shown by Roche in 1850. Since the
- ring system of Saturn lies completely inside this limit, it seems
reasonable to accept the thesis that these rings are the remains
of a satellite, broken up during its formation. ‘

It has been established that the age of the solar system is of |
the order of 2 to 3.10* years by different, independent indications
such as, for instance, the lead content of rocks, where the lead
is the end product of a radicactive family and thus has a different
alomic weight (206.0) from that of the familiar lead (207.1)
Another determination of the age of the universe can be obtained
from the redshift of extragalactic nebulae, giving the same result*

The sun is radiating at present at a rate of 4.10%® erg per sec, |
which corresponds to a loss of mass of 4.1012 g sec-1. If the sun |
had radiated energy at the present rate during the 3.10° years
of its probable existence, it should only have lost 0.0001 of its |
mass. We shall assume in the present paper that during the process, -
leading to the solar system as we find it at present, the physical
state of the sun was as we observe it at present. It is possible that"
we neglect vital processes by this assumption.

- In general it is possible to divide all theories into.two groups,
according to the question whether or not the author has assumed
“an interaction with other celestial bodies as an important factor
-in-the development of the solar system. In the first case, we have
“an open system. and, using the term introduced by Belot, we can
“call these theories dualistic (sometimes the adjective ‘‘cata-
“strophic” is used). In the other case, we have to deal with a
“‘closed system and the theories are called monistic or uni-
formitarian. , :
_I.Monistic theories: 1. Descarres’ theory. The first theory
‘proposed in modern times is that of Descartes, advanced in 1644.
_ At that time; observational data were scarce and only the sun,
6 planets and 7 satellites (the moon, 4 Jovian and 2 Saturnian
_ satellites) had been observed. Also Newton’s law of gravitation,
which was to be published in 1665, was still unknown. It is
thus more surprising that Descartes was able to formulate a
theory which could explain many of the observational data than
thathis theory had to be abandoned after Newton’s severe criticism.
" Descartes started from a large whirl of matter in which 14
large bodies were floating as pieces of wood in a river. As can he
seen in actual whirls carrying pieces of woeod, the larger bodies
have a tendency to collect around them the smaller ones and in
the same way the sun became surrounded by the 6 planets, while
the earth, Jupiter and Saturn got respectively 1, 4, and 2 satellites.
Since the movement in the inner regions of a whirl is faster than
in the outer regions, one could also understand that the rotation
of the inner planets was faster than that of the outer ones.
~ The great historical significance of. this theory is that it was
the first attempt to explain the observational data, starting from
's‘onlé simple hypothesis. As soon as Newton had found his
‘gravitational law, it was, however, possible to shew that this
theory could not be maintained. :
=7 “Newton himself believed that God had created the solar system
in’ils' present state and that He would look after it if its future
“were ‘endangered by mutual perturbations of the planets. His
influence on his fellow-scientists was so large that the cosmogon-
‘ical theories of Buffon and Kant remained practically unnoticed.
This only changed when Laplace arrived with his theory.—
Liaplace who wrote about Newlon: “Je ne puis m’empécher d’ob-

B. Survey of Theories about the Origin of the Solar System

We can only report- here very incompletely on the variou
theories. For further details, and a detailed criticism of the older |
theories, we therefore refer the reader to the original papers and
to the many textbooks written on this subject, especially the -f
volumes by Russerr, Ducan, and STewarT (3), NOLKE (4), and |
RusseLL (5). ‘

"1 Compare the considerations of Bok (39) and Unséld (40).




server combien Newton s’est écarté sur ce point de la méthode

dont il a fait ailleurs de si heureuses applications.”

2. Kant’s theory. In 1755, ImMaNUEL KaNT in his ““‘Allgemeine’

Naturgeschichte und Theorie des Himmels” gave a qualitative

cosmogony, which was ultimately worked out more quantitatively:

by Du Ligondés in 1897.
Kant started his treatise by answering the theological objections

to the proposal of a cosmogony by remarking that the laws of

nature are created by God, so that it is not lack of reverence when
we try to find out the effects to which their action leads.

Kant’s idea is to start from a nebula in the centre of which
the sun is placed. Due to gravitational forces the rest of the
matter will rotate around the sun. Under the influence of mutual
collisions, the nebula will pass into a dise, where all particles
are rotaling in circles around the sun. The next step is that there
is a tendency of the matter in the disc to condense into some large
bodies which become the planets. Since this condensation takes
place. gradually, the first result will again be a rotating nebula,
but now on a smaller scale, from which the satellite systems ensue.
The larger the planet, the larger its gravitational attraction, and
the larger the number of satellites.

Kant also shews that the rotation of the planets around their
axes will be in the same direction as their rotation around the sun.
To understand this, we have to consider a particle moving in
the same orbit as and behind the planet. Under the influence
of the attraction of the planet, its velocity will increase and thus
also the centrifugal force. The result is that it will move outwards
and that if it collides it will give to the planet an angular mo
mentum of the right direction.

Kant was able to explain the first group. of regularities, men
tioned in part A. He did not attempt to explain the other three
He was unaware of the difficulty of the distribution of the angular
momentum, and.even.of the fact that-angular momentum has to
be preserved. The fact that the present distribution of the angular
momentum was not explained in this theory was the reason why
Kant’s theory was not accepted as the final answer. In the following
chapters we shall see that an extension of this theory seems to b
able to give an explanation of C and perhaps of B.

3. LarLace’s theory. In many textbooks and popular works

Nr. 3 9

‘Kant’s theory is mentioned together with the theory of Laplace

of:1796. The view often held is that Laplace put Kant’s ideas into
scientific terms. As we shall see, this iIs far from correct. The
theories are widely different. Moreover, Laplace when writing
his popular book ‘“‘Exposition du Systeme du Monde” was

unaware of the existence of Kant’s theory.

Laplace’s idea was to start from a situation where the sun is
surrounded by a hot gaseous atmosphere. This nebular atmo-

sphere was'gradually cooling and thus contracting. As it contracted,

the rotational velocity necessarily increased by the preservation
of angular momentum, and thus also the centrifugal force at the
equator. Ultimately this force became larger than the gravitational
force and a ring of matter was flung into space.

This process was repeated, giving rise to a system of concentric
rings from which by a process not further explained the planets
derived. Finally, the remains constituted the sun.

Laplace can easily explain A and perhaps B, but the crucial
point here is again D. In fact, if all the mass and angular momen-
tum of our solar system was concentrated in even as small a
volume as that of the present sun, the centrifugal force at its
equator would only be about five per cent. of gravity and it
would be far from any danger of breaking up.

This failure to explain D alone suffices to disprove Laplace’s
theory. Another difficulty, which can only he overcome quite
artificially, is that the Laplacian rings have no tendency to con-
dense into planets (they might form a swarm of asteroids but not
larger bodies). The only explanation is to suppose that the actual
condensation should have begun already before the throwing off
of the rings.

Faye’s theory of 1885 was essentially the same as Laplace’s

: and is also unable to explain D.

4. BirgeranD’s theory (6); BERLAGE’s theories (7): In 1912,
Birkeland gave a sketch of a theory in which the solar magnetic
moment and the particles emitted by the sun played a role.
His idea was that through the strong magnetic field of the sun the
charged particles, which are for the most part emitted from the
‘equatorial regions, should spiral down towards limiting circles.
The radii of these circles would depend on the ratio of the charge

“to:the mass of the particles.
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Birkeland is thus able to explain both A and B. The problem
D is not a problem in this case either, since, as shewn by Alfvén,
due to currents in the surrounding matter evoked by the sun’s
magnetic field transfer of angular momentum from the sun to
the surrounding matter is possible. The time needed for this
transfer is small (107 years) as compared with the age of the solar
system.

Nevertheless, this theory could not be maintained since the
solar magnetic field is not strong enough to produce the desired
effect. The orbits of the emitted particles are only slightly curved
and they all leave the regions of the solar system.

Birkeland was the first author to consider electromagnetic
effects. After him, Berlage, inspired by his ideas, tried to account
for many features of the solar system by taking the solar electric
field into account. Berlage's theories met with the same fate as
Birkeland’s. They remained practically unobserved. For instance,
Alfvén who in 1942 again investigated the possible influence of
the solar magnetic fleld does not mention either of them.

In his first theory Berlage assumed that the sun emits negat-
ively charged solid particles and positively charged ions. Their
emission is a consequence of the fact that radiation pressure on
them exceeds gravitation. The result is a space charge around
the sun and a positive charge of the sun itself.

The next assumption is that the sun, as in the theory of Kant,
is surrounded by a gaseous disc. If we now roughly calculate the
equilibrium position of an ion in the disc under the influence of
the space charge, solar charge and solar gravitational field (Ber-
lage neglects the centrifugal force), it can be shewn that for each
ion there exists an equilibrium distance which increases with
decreasing atomic number of the ions.

The result is that in the disc there will be formed concentric
rings of ions, their radii depending on the ion in question.

These ion rings will act as the initial nuclei for condensation,
and -afterwards each of these rings will condense ultimately into
one planet, as in Laplace's theory.

Since to each of these ion rings is ascribed a certain isotope of
one of the elements, Berlage is able to estimate the masses of
the planets. Also he finds decreasing densities of the planets with
increasing distance from the sun, which—assuming that Jupiter
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‘and Saturn possess a heavy nucleus surrounded by a lighter

atmosphere (Jeffreys)—is in agreement with observation.
The distance of the rings from the sun can be shewn to

‘correspond to the Titius-Bode law.

We see that Berlage is able to explain here A, B and C: he does

not attempt an explanation of D. This theory will not, however,
. stand criticism. Apart from the fact that it can easily be shewn

that in the way Berlage suggests enough matter can never be
collected to build up, for instance, Jupiter there is the fact that
the basic assumption that the sun should emit negatively charged
solid particles is shewn to be wrong by observation.

This was the reason why Berlage himself left this theory for a
second attempt where he now used the fact that the sun emits
positive ions and electrons. Considering the effect of space charge,
radiation pressure and gravitation on the charged particles, but
still neglecting centrifugal forces due to rotation, Berlage is able to

“calculate the electric.field strength in the neighbourhood of the

sun. It then appears that this field is of a periodic character. This
means that there are concentric spheres on the surface of which
the field strength is equal to zero.

If we now consider the gaseous disc which is again supposed

“to be surrounding the sun, we see that since the atoms will all be

ionized for part of their life matter will be concentrated on the
circles where the disc is intersecting the spheres of zero field
strength. In this way Berlage now gets his rings of matter. The
rest of the condensation then takes place in the same un-

explained way as in Laplace’s theory.

This theory explains A and B, but has to leave C and D
unexplained. Berlage himself sees as a serious deficiency of this

. altempt that it is unable to explain the satellite systems. Amother
- serious objection is that the degree of ionization in the gaseous

disc will be so low that electrostatic effects are negligible (compare

: ;Chapter 11, Section B).

“In his latest theory, Berlage has completely left all electro-

~-magnetic considerations and considers in detail the history of a

gaseous system which may be found around the sun. He thus

" follows Kant. First of all, he shews that this system will assume

the form of a disc. He also gives an expression for the density
m the plane of the disc as a function of the distance from the sun.
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After that Berlage looks for a possibility that this disc may
condense spontaneously into rings. Afterwards these rings have
to condense into the planets. For that purpose he investigates

whether a slightly different density function -might be stable. .

This means that for this new density function, the total mass,
angular momentum, and energy are the same as before, but the
kinetic energy of the system is larger than initially. Berlage
really finds such a tendency to form rings.

In this way he can explain A and B. His reasoning is, however,
very loose as, for instance, his assumptions about the temperature
distribution and the laminar motion in the disc. Also his assertion
that rings will be formed does not rest on a firm foundation. Fin-
ally, there is still the difficulty of the condensation of the rings
into planets which we met already in the discussion of Laplace’s
theory.

5. ALFVEN's theory (8). The Swedish physicist Alfvén has
given a very interesting theory in a series of three papers, taking
into account the magnetic forces on ionized matter. .

His reasons for advancing this theory are the following. To
begin with, the force exerted by the sun’s magnetic moment on
ionized matter can be much larger than the gravitational force
on the same matter. For instance, on a proton moving in the
earth’s orbit with the earth’s velocity, the first force exceeds
the second by a factor 60.000. In the second place, ALFVEN has
shewn in an earlier paper (9) that transfer of angular momentum
from the sun to a surrounding ion cloud is possible. The rotating
magnetic moment of the sun evokes currents in the cloud.and
an effect similar to that braking a metal between a magnet's poles
takes place. This transfer of angular momentum can take place
in an appreciable amount in as short a period as 10° years. In
this way, D does noi present any difficulty.

Now, ‘Alfvén’s idea about the formation of the outer planets
is the following. Suppose that in its journey through space, the
sun meets an interstellar gas cloud and becomes surrounded
by it. If we may neglect the rotation and velocity of the-cloud with
respect to the sun, the atoms in the cloud will start falling towards
the sun, and their kinetic energy will increase during that fall.
Eventually this kinetic energy will become so large that ioniza-
ion by collisions can take place.
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The idea is now that collisions are so frequent that this ioniza-

ion indeed takes place. Once an ion is formed, the movement

towards the sun is stopped and the ion has to move along the
magnetic lines of force until it reaches an equilibrium position.
Alfvén shews-that this equilibrium position is situated in the
equatorial plane of the sun. .
Assuming now that the ions are moving uniformly towards
the sun and are all ionized at the same distance from the sun,
and considering in detail the subsequent movement of the ions
towards their equilibrium position in the equatorial plane, he
gets the mass distribution in the equatorial plane. Alfvén takes the
fact that this mass distribution agrees roughly with. the mass distri-
bution in the series of the outer planets as a support of his theory.
In this way Alfvén is able to account for the outer planets. This

- “mechanism is, however, unable to explain the origin of the inner
" planets because even in the most favourable case the distance

from the sun at which ionization occurs will be by far larger than
the mean distance of Mercury from the sun. Also, one should expect
from this mechanism to find lower densities for the inner than
for the outer planets but the densities of the inner planets are
higher than those of the outer ones.

Alfvén without any detail suggests the following process. The
sun in its travel through space should have met an interstellar
smoke cloud consisting of solid particles. Through the strong
radiation of the sun those particles will sublimate as soon as they
have come near enough. The resulting atoms become ionized but
al a shorter distance from the sun.

Instead of the Titius-Bode law, Alfvén introduces a diagram
where the ratios of the masses and of the distances from the
primary are connected. His explanation of this diagram, how-
ever, seems to be extremely weak, and it does not seem to be
possible to get the same result by valid reasoning..

" But also his original idea is unable to stand a critical scrutiny.
'In the case of a gaseous cloud surrounding the sun from the
beginning electromagnetic forces will not play any role at all
because of the absence of ionization in the cloud (cf. chapter 11,

* section B).

As far as Alfvén’s suggestion about the heating up of an inter-
stellar gas cloud is concerned, the atoms will certainly not save
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up their energy until they reach the immediate vicinity of the sun.
It can easily be shewn that their meah free path is by far too
small. However, one could imagine that the whole cloud was
heated up while confracting. Apart from the fact that one has
to assume zero angular momentum of the cloud around the sun,
and the fact that the energy gained seems to be emitted by radia-

tion before ionization takes place, it seems that the desired object

still is not attained. Ionization will start all over the cloud, and
since ions cannot approach the sun, only a very small fraction

of the gas cloud, insufficient to form the planets, will be available |

for further condensation.

6. YoN WEIzsAckER’s theory-(10). In a paper, dedicated to
Sommerfeld on the occasion of his 75th birthday, von Weizsicker
has advanced a new theory about the origin of the solar system.
The greatest importance of this theory is in the fact that it provides
us with a definite scheme for further calculationst.

His theory can be divided into different parts, corresponding
to the different stages in the development of the solar system.
First, he discusses the formation of a gaseous disc around the
sun, secondly, the formation of a system of vortices in this disc,
finally, the condensation process, and the satellite systems.

The first part is practically identical with the similar parts in
Kant’s or Berlage’s theory. The disc is supposed to contain about
one tenth of the solar mass, and the over all density will be about
10%® atoms per cm?,

The second part is the most interesting, but probably also the
weakest point in this theory. Supposing that the orbits of mass
elements in the disc may be assumed to be Keplerian, von Weiz-
sidcker shews that a system of vortices can be built up from these
Keplerian orbits. In fig. 1, we see such a configuration.

Von Weizsicker is led to such a configuration for two reasons.

The first is that gravitational forces are by far the most important
forces in the disc. The second . is that in a system-of vortices, as
shewn in fig. 1, the energy dissipation will be small. In the large
vortices the dissipation will be negligible in a first approxima-
tion. However, along those circles where the rings of vortices

mect there will be large viscous stresses. These will presumably

* Tt will be seen that the present paper is to a large extent a clarification and
extension of von Weizsiacker’s ideas.
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give rise to secondary eddies on the circles sepa. -

“vortices. These eddies are called the “roller bea. -
- “They will probably regulate the whole system. Howe

will be dissipated in these ‘‘roller bearings’. Conditions

‘densation will be more favourable in these secondary - -
: (compare Chapter IV), and so we may expect the planets

formed at distances from the sun corresponding to the radii.-

Figure 1. The outer arrow indicates the direction of rotation of the whole
disc, while the inner arrow indicates the direction of rotation in the vortices. The
sun is in the centre of the whole system.

the circles separating the main vortices. Now, von Weizsicker

"'gives reasons to believe that the number of large vortices in

each ring is constant. This means that the ratio of two consecutive
radii will be constant, thus giving us the Titius-Bode law for the
distances of the planets from the sun (neglecting the constant term).
““Another consequence of the condensation into planets in the
“yoller bearings™ is that we will get a counter-clockwise- rotation
‘df:th:e‘planets if the whole system is rotating in a counter-clockwise
irection, in agreement with observation. The rotation in the large
ottices is in the opposite clockwise direction.

2~D'u'1‘ing' their formation and immediately thereafter the planets
‘will be surrounded by extended atmospheres. In these atmospheres
the satellite systems will be formed. Von Weizsiicker does not,
owever; enter into an extensive discussion of this question.

;" Due to the dissipation of energy, the disc will disappear




16 Nr.3 Nr.3 17

gradually. Von Weizsdcker estimates its lifetime to lie between
107 and 102 years, which is of the same order of magnitude as the
period necessary to build up bodies of the size of the planets.

Von Weizsicker has given an explanation of A, B, and C. :
He also gives an explanation of D in the following way. The
dissipation of the gaseous system is accompanied by a flow of .
atoms into interstellar space and a simultaneous flow of matter
to the sun. He now assumes that the light elements leave the :
system, carrying with them the necessary angular momentum,
while the matler falling onto the sun does not possess any angular
momentum. In"this way, he can at the same time explain the
difference in constitution of the planets and the sun, and the
distribution of the angular momentum. It is, however, difficult
to see why this separation of the cloud according to angular
momentum and atomic weight should take place. Also, this process
cannot decelerate the sun sufficiently; there is a discrepancy of
a factor 100.000.

"Also his picture of the vortices seems difficult to maintain:
Keplerian orbits are only a first approximation. Hydrodynamies
has to be applied, but, as we shall see in Chapter III, it is as yet-
unable to give von Weizsicker’s configuration. However, the main
merit of this theory is that it has revived again Kant’s theory and
that it has drawn attention to the importance of hydrodynamical on to planets.
considerations.. In the following chapters we shall see that a slightly "~ The small eccentricities are again brought about by the resisting
different attack seems to give a reasonable explanation of A, C, medium. .
and perhaps B, while D has as yet to remain unexplained. i+ These theories have the advantage that they are able at first

IT. Dualistic Theories: 1. BurroN, CHAMBERLIN-MOULTON, sight to explain the distribution of the angular momentum (D)
JerFREYS, JEANS. Ten years before Kant published his theory a’ without difficulty. They do not attempt to explain either B or C
dualistic theory had been advanced by Buffon. In those days while for A they use the resisting medium.
fantastic ideas about comets were common and Buffon therefore «The first difficulty lies in the explanation of the planetary
proposed the collision of the sun and a comet as the source of otation. The explanation put forward by Chamberlin is not
our solar system. (Buffon estimated the mass of the comet of vincing and therefore Jeffreys assumed later that it was not
1680 as 28000 times the earth’s mass.) lose -encounter, but an actual collision which took place.

Through the collision maltter was torn out of the sun which ing into account the viscosily of the resulting ribbon torn
matter later condensed into planets. The rotation of the sun of the sun, he could then shew that rotation of the right
might also have been caused by the collision. ' ‘der -of magnitude would ensue.

Modern tidal and collision theories have the same foundation _ The next and greater difficulty is as Noélke has shown the
the only difference being that another star, instead of a comet, f_l-ii'ence_ of the l'ésis‘ting medium. It secems to be doubtful whether
is the foreign body which produces the material. is:medium- really can bring about the small eccentricities.

#l. Danske Vidensk. Selskaby, Mat.-fys. Medd. XXV, 3. 2

. -Chamberlin and Moulton proposed that as a second star was
“passing the sun in a hyperbolic orbit by tidal action and eruptions
‘material for the planets was provided. The first heavier eruptions
would provide the material for the outer and the secondary
eruptions that for the terrestrial planets.
After the second star had departed the gaseous matter would
cool and condense. Part of it had fallen back on the sun and
“part of it escaped into open space, but the rest could be used for
“building up the planets. In the cooling process liquid drops
(planetesimals) would be formed and even larger solid cores
which were sufficiently large to hold the lighter gases. In the
course of their rotation around the sun those cores swept up
matter and so the planets grew out of this gas.

The orbits of the cores which had originally large eccentricities
e. ‘ironed out’” by the resisting medium.
" The theory proposed by Jeans and also by Jeffreys in his first
paper is about the same. They do not introduce the solar eruptions
ssince- it is known that the radiation pressure responsible for
prominences and similar phenomena is not large enough to cause
eruptions as large as needed here. Tidal action produced a fila-
ment which breaks up into smaller gaseous fragments. In those
fragments condensation takes place into liquid bodies and so

'y
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up because of rotational instability. After this fission the two parts
will leave the system producing a situation similar to that met
in Lyttleton’s first theory. The same objections apply, therefore,
to this theory.

Another difficulty is the formation of the satellite systems.
Although the original idea was that tidal forces caused by the-
sun were responsible for them, Jeans himself shewed that this.
notion would not work. In Jeffreys’ later theory it is perhaps:
more easily explained, since (quoting Russell) “‘almost anything';_
may have happened in the period of wild turbulence, which
included the formation of the ribbon and its segregation into
separate bodies.”

Also, if the material comes from the sun, it will be extremely
hot and the danger exists that it may fly away into open space
before beginning to condense, as was pointed out by Serrzer (11).

Finally, the explanation of D is not as easy as it seems. At first
sight one would think that during the collision sufficient angular
momentum may have been imparted to the filament. RusseLL
(5) has shown, however, that this transfer of angular momentum
by the second star is not an easy job and that, if it was possible
at all, which he doubts, one would expect large inner} and. small
outer planets. A

Russell also deals with some other hypotheses to save these
theories, but ends his monograph by saying that we are as yet
no wiser about the origin of the solar system than we were when
Newton found his law of gravitation, a point of view shared by
Nolke. :
2. Binary hypotheses; Lyrrieron (12, 13), Hovie (14):
During the last decade, several theorics have been proposed
involving the assumption that the sun was originally a member
of a binary or multiple system.

The first theory of Lyttleson assumes that the binary companion
of the sun undergoes a close encounter with a third star, similar
to the encounter assumed in Jeffreys’ theory. The encounter
results in a disruption of the binary system and the production
of a gaseous filament which may produce the planets. Although
Luyten’s manifold criticism does not seem to be valid, the forma
tion of satellite systems and the small eccentricities, together with
SPITZER'S objection (11) seem to be too large stumbling blocks

In his second theory, Lyttleton starts from a triple star. The
separation of the two companions of the sun will decrease a
part of the evolution of a binary system. The two stars will
finally combine into one mass. This mass will, however, break

The last development in this direction is given by Hoyle.
According to Hoyle, a supernova outburst of the second component
will account for the breaking up of the binary system and for the
material from which the planets are formed. It seems, however,
‘that this theory meets the same difficulties.

- In his last paper, Hoyle considers the condensation process
in detail and arrives at estimates of the original rotational periods
of the planets. His reasoning develops along lines parallel to those
which will be discussed in Chapter IV. It seems, however, that he
arrives at wrong conclusions because he neglects the exhaustion
of the gaseous system and all hydrodynamical effects. His proof
“of the direct rotation of the planets is essentially the same as
‘that given by Kant or Alfvén.

. IL Final Remarks: We have not mcluded all theories in
our survey. Manyof them as, for instance, those by Arrhenius
“and See are merely variations on themes discussed here. Other
theories like the ‘““Welteislehre”” by Hoérbiger-Fauth, which has
“been dealt with conclusively by NoLke (4), or the recent
~theory by Harpane (15) who seems to drive the consequences
“of the expanding universe rather far need not to be taken
. seriously. _

~ However, there exists one recent theory which seems to be,
it present anyhow, only an outline of a theory but which must
e mentioned briefly. It is WHIPPLE’s attempt (16) to produce a
lanetzuy system from a 1arge smoke cloud. He starts from a
moke and’ gas cloud with a radius of about 30000 A.U. con-
ammg about one solar mass. The contraction of this ¢cloud should
Ioduce both the sun and the planetary system.

The original cloud is assumed to possess negligible angular.
momentum so as to account for the low angular momentum of
he'sun. The planets are assumed to be formed in a stream in the
loud so that those initial condensations which have to develop
cnto the planets have-already from the beginning the necessary
ngular momentum. The solution of D is thus put into the theory
rom the beginning. The planets (or better the condensations
2*
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which will later form the planets) will now spiral towards the
sun because their accretion of matter of zero angular momentum.

Whipple gives a rather half-hearted explanation of A, but
does not attempt to explain B or C. Furthermore, his discussion
of the planetary rotations seems to be difficult to follow and
lacks quantitative evaluation. Altogether, there seems to be very
little reason as yet to accept this theory as a final solution. _

Recapitulating, we can say that there seems at present to be no
theory which can explain satisfactorily the various properties o
our solar system. Especially the differences between the oute
and the inner planets and the present distribution of the angula
momentum seem to have presented unsurmountable difficulties

Chapter |I.

Summary.

In view of the fact that as yet no acceptable solution for the
origin of the solar system appears to exist, it seems justifiable
to investigate again a few aspects of this old question. There are
“several reasons why this should be dome. First of all, it seems
that as yet no sufficient attention has been paid to the physical
properties of a gaseous system from which the planets should
condense. Secondly, up to now nobody seems to have drawn any
conclusions from the remark of JEFrreys (17) that the initial
steps in the condensation process will be the same as in the
case of a supersaturated vapour. HoyrLE (14) has discussed _:jthis
problem rather extensively, but his discussion lacks quantitative
reasoning and he neglects a few important aspects of the problem
and therefore arrives at the wrong conclusions. Finally, in an
as-yvet unpublished paper which was dedicated to Prof. Niels Bohr
on.the occasion of his sixtieth birtday?, von WEeizsicker (18)
has. set forth new ideas about cosmogonies which might be used
ra discussion of the origin of the solar system. Our discussion
ill, however, Tun along lines slightly different from those of von
‘eizsdcker’s own theory (10) about the origin of the solar
tem, because of the difficulties encountered there.

Before discussing the new ideas which we wish to present
| the present paper and the reasons why we are discussing just
ose points which we shall look into, we shall briefly discuss
15 second paper by von Weizsicker.

- Von Weizsicker starts from a situation in which the universe

Dr. L. Spitzer has kindly drawn my aftention to the recent papers b
A. Gasser (Helv. Phys. Acta, 18, 226, 1945), J. Sourek (Memoirs and Observation
Czechoslov. Astron. Soc., Nr. 7, 1946), A. C. Banerji, Proc. Nat. Inst. Sc. India, ¢
173, 1942) and G. Armellini (Rendic. Reale Accad. d’Italia, serie 7, vol. 4, no. 11)
It has not, however, been possible to include these in the review in this intre
duction.

"1 I wish to express my sincere thanks to Prof. Bohr for giving me an oppor-
unity- to- see this manuscript. This paper has in the meantime been published.
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is filled with gas. The composition of this gas is supposed to be
roughly the same as that of the sun or of the interstellar gas, i.e.,
mainly hydrogen. Also there is a velocity distribution which may
be described apart from its fluctuations as the expansion of the
universe. The origin of these velocities and of the distribution
of the elements in the gas are not discussed and are supposed
to belong to earlier periods. Now, von Weizsiicker investigates
the development of this gaseous system. Because of its large
dimensions, turbulence will be present. The consequence is that
there will be regions of higher density. Matter entering such
denser regions will lose the energy gained in the gravitational §
field because of viscous interaction and will be captured. In this §
way we shall get conglomerations of matter. These conglomera-
tions are the first stage of galaxies.

In such a proto-galaxy, the same process will start afrest

mass (the star) surrounded by a faster rotating surrounding
gaseous cloud. This implies that although in the initial stages
the rotational velocities in the centre were much higher than at
‘the outskirts the second stage presents us with a slowly rotating
star and a faster rotating gaseous cloud. As soon as the density
‘in the cloud is below a certain limit the rotational velocities in
“the cloud will be determined by the central mass and follow
“the third Keplerian law.
" The equilibrium shape of such a rotating gaseous cloud will
be a lens shape or disc. In this disc there will still be turbulence.
However, it is still the question whether the cohfiguration of
‘vortices will really be as regular as the one given by von Weiz-
sicker..

Accompanying the disappearance of the solar gaseous envelope,

_condensation will take place in it. There will be many centres of
on a smaller scale, and the condensations will now be the proto- ccondensation and during the lifetime of the disc these condensa-

stars. The next step should be the formation of planets in the'®  tions will grow to become as large as the present planets. Together
gaseous system doomed to become a star, and the last step g ¢ with their formation the planets will become surrounded by
might be the formation of the satellite systems. extended atmospheres. The evolution of these atmospheres will
The formation of the star from the gaseous rotating systen probably be analogous to the evolution of the solar envelope.
will be accompanied by the dissipation of the system. The rotation In this way we have a mechanism for the formation of the
is due to the whirling movement of the matter, and we may expec satellite systems.
the linear velocities at the outskirts of the system to be of the orde
of magnitude of the turbulent velocities. Due to the concentration |
of matter in the centre, the outer parts will try to move with veloci-
ties given by Kepler’s third law. This means that different part 1
of the system will move with different velocities and viscou
~ stresses will result. These forces try to accelerate the outer part
and decelerate the inner parts of the system in an attempt to brin,
about a uniform rotation like that of a rigid body. Also thes
viscous forces entail a loss of energy. So we have a situatio
where there is at the same time a dissipation of energy and
transfer of angular momentum from the inside to the outside o
the system. Von Weizsicker assumes that these two processes ar
possible because mass with higher than average angular momen
tum disappears into interstellar space while at the same tim
the rest of the mass with low angular momentum will becom
concentrated in the centre of the systemn thus providing us wit
the necessary energy. In this way we get a slowly rotating centr

‘Now, the question discussed in the present paper is in how far
his qualitative scheme may account for the various properties
of the solar system. Before starting to discuss the various aspects
of the problem quantitatively we shall give a brief survey of the
contents of the following chapters.
In Chapter II we shall first of all discuss the shape of the solar
ga%eous envelope. We shall try to take into account the dissipa-
tion of the disc by asgummg this disc shape to vary slowly. After
that we shall discuss’the various physical properties of this disc.

he most important property is the temperature in the dise since
the temperature is important in determining the shape of the dise.
irst, it is shewn that ionization in the dise is negligible. As was
1st shewn by Eppiveron (19), ionization by stellar (or solar)
adiation will result in a much higher temperature of the gaseous
system because the electrons will leave the atom with kinetic
energies , corresponding to the surface temperature of the star.
hese high velocity electrons will, by interactions with the gas
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atoms, set up a high temperature. Then, we have to calculate
the optical depth of the disc in order to determine whether much
radiation energy is captured in the disc. This, however, appears
not to be the case. After that, we can determine the temperature
in the disc. This temperature ranges from 75°K in the neigh-
bourhood of Neptune, to 700°K in the vicinity of Mercury.

Next, it is shewn that the radiation density will be approxi-
mately a diluted Planck radiation, that radiation pressure can be
neglected, and that there will be no appreciable separation of
elements, due to either gravitational separation, thermal difffusion,
or other sources. Finally, we compute the densities of various
molecules in the disc.

we see that we have been able to explain some hitherto unexplained
. points of the group C, and, possibly, shed some light on the
difficulties connected- with the explanation of B and D.

We have been able to account for the fact that the planets
fall into two definite groups (C) by looking carefully into the
condensation process.

Although the Titius-Bode law (B) has still to remain unex-
plained there seem to be indications that a thorough investigation
of the hydrodynamical problems connected with the evolution of
gaseous systems, such as we have studied here, might give a
clue to this property of the solar system.

A regular system of vortices would at the same time give us an
easy explanation of the circular orbits. The direct rotation of all
-the planets in one plane follows immediately from the fact that
the condensation takes place in a rotating disc.

The present distribution of the angular momentum (D) still
cannot be explained but some indications are given as to the
direction in which the solution might possibly be found.

We have not discussed at all the way in which the sun should
have been formed from an original nebula. This formation may
have an important bearing on the explanation of the present
distribution of the angular momentum but falls outside the scope
of the present paper.

Altogether, the present paper gives a program for future
investigations of many points rather than a complete solution.

In this way, we have a more or less definite physical picture
of the disc.

In Chapter III we shall discuss the hydrodynamical aspects
of a gaseous disec in general. 1

We shall try to estimate the lifetime of the dise, and the'§
transfer of angular momentum, not necessarily due to a flow of;
matter, from the central body to the disc during the lifetime of ]
the dise. We shall also discuss the question whether it is possible to
explain the Titius-Bode law.

In Chapter IV the condensation process is discussed. This
discussion will resemble very closely the discussion of Hovre (14):
or voN WEIZSACKER (10) but some new features will be revealed.
We shall discuss the three stages in the condensation process.
These are the formation of condensation nuclei, the growth of':ﬂ
these nuclei, and finally the stage of rapid gravitational capture.

In Chapter V we shall apply the results of Chapters II to IV.
to the solar envelope. We shall see that we are now able to explain;
the differences between the outer and the inner planets as far as’
mass and density are concerned.

In Chapter VI we shall discuss the satellite systems and the:
rotations of the planets. It will be seen that we can divide the |
satellites into two groups which we shall call the ‘‘regular’” and
the “irregular’’ satellites. It is proposed that the “‘regular’’ satellites
are formed out of the planetary envelopes. The ‘‘irregular’
satellites, however, are supposedly captured by the planets.

If we now compare the results of the present paper with th
requirements of a successful theory discussed in thei introduction
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For this temperature we shall use:
T = a-r73, (2.4) |

which follows if the temperature is determined by an equilibrium
between the absorbed solar” radiation, and emitted black body
radiation by the gas. In the next sections of this chapter we shall
derive this formula for the temperature.

Combining equations (2.3) and (2.4), we have

| Chapter Il.

: p=>bor i (2.5)
Physical Properties of the Solar Envelope.
) - Normalizing b so that T = 6000° for r = 7.10 cm (solar
We shall consider here a gaseous system in the centre of - radius), we get: b = 4.101° cm? sec—2. 1 ‘
which the sun is situated. The radiation of the sun is assumed ' .Intr’oduci;g:
to be the radiation of a black body of 6000°K. The dimensions 0
of the sun are supposed to be the same as at present (r, = bloga - ‘ (2.6)

7.10" cm). The constitution of the envelope will be assumed !
to be about the same as the constitution of the sun, i. e., mainly
hydrogen and helium, corresponding to a mean molecular weight
of about 3. '

A. Shape of the envelope. In this section we shall follow

where o is an arbitrary constant, and writing equation (2.1)
~out in the two directions parallel and perpendicular to the rota-
tional axis, we have

vOoN WEIZSAcKER (10) with a few alterations. We shall start from ¥ QQ = ( *yj\ado%_ b ) iz, (2.7)
the equations of motion: 0z T 2>
1 —_
grad U+ — grad p —w?s =0, (2.1 (?_q: (wz‘y—%—k—%)ﬁs. ’ (2.8)
: e Js rf 2rF
where U is the gravitational potential energy, ¢ the density of the ) .
gas, p its pressure, and - its angular velocity. Finally, S is th Equation <2'7) can be solved, and gives us
vectorial distance from the rotational axis (z-axis). ) 29 M, b
We take for U: o ===t logr+7(s), (2.9)
r?
¥ M
U=—=>2, (2.2 - ..

1 here 7 is independent of z, and has to be solved from the fol-
where y is the gravitational constant, M, the solar mass (we neglec I?yving equation, obtained by substituling equation (2.9) into
the gravitational action of the gaseous envelope), and r the distanc e_qu\?tlon (2-8):
from the cenitre of the sun. , (—idz = wlris. (2.10)

For the pressure we use the ideal gas law: \ ;
’ 1. Von Weizsicker's normalization giving 300° K. for r = 10¥ c¢cm (mean

distance of Venus from the sun) is derived from the observational data about
Yénus’ temperature. The surface temperature of Venus is, however, lower than
the-equilibrium temperature required here by a factor 1.4 because of the fact
that the sun can only heat up that part of the surface which faces the sun.

p = oRT, , (2.3)

where R is the gas constant per gr., and T the absolute temperature. -
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Since 7 is independent of z we have for the case of equilibrium :

) Mo {s\}
@ = f(s)r¥ = “‘213?0(£> . (2.11)

r

for the height of the disc the distance over which the density is
“decreased by a factor 2, we get for this height h:

where y is still a function of s.

Now, the pressure gradient is everywhere in the system small |
compared with the gravitational force (even for r = 1038, the -
term with b in equation (2.8) is only about 1/200 of the gravita-
tional term). It seems therefore to be permissible to neglect in
equation (2.1) the term dp/ds, and determine @ from the equation:

h —— (r\} 1
=== 9 sl ~ . 1
. 2 /1og 2 (%2) 5 (2.16)

The density in the equatorial plane decreases because of the
term with xa ‘/E in the exponential. Since »? is very large compared
with the dimensions of the solar system, it is possible to find
values of a such that xa /s is large as compared with one, and still

au . a' large as compared with the dimensions of the solar system.
Fria In this way, we should have an appreciable decrease in density
or in the equatorial plane, thus getting for the shape of our envelope
oY Mo : a lens shape. '
T TE (2.12) “ The density in the equatorial plane can be written in the form:

which corresponds to Kepler’s third law.

We might try to take into account the dissipation of the disc, -
which will result in a steep density gradient, and therefore a .
steep pressure gradient. (Von Weizsicker here introduces an
artificial boundary.) One way of iniroducing this is by putting -

[
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where g,, is the maximum density in the disc, and s, the distance
- from the sun where that maximum density is attained. We find
.. 8, from:

pt=1—aq-s, (2.13)1 S = (xa)2 (2.18)

where a may increase with time. As long as a—! is large as com-
pared with the dimensions of the solar system, equation (2.12)
will approximately be valid in the equatorial plane of the sun.

Using equations (2.6), (2.9), (2.10), (2.11), and (2.13), we
get for the density in the envelope:

The advantage of the density function given by equation
(2.14) over the one given by von Weizsiicker lies in the fact that
it is now no longer necessary to introduce an artificial boundary
as. was done by _von Weizsicker.

In using equation (2.17), we shall often assume:

L1 1 — - .
0= 0o (ﬁ)%, e‘ (V_;_LT;>_"“VS ' (2.14) 0 = 2.10%% atoms per cm?; s, = 1,6.10'* cm, (2.19)
Ty ’ ; .
where x ig given by corresponding to a total mass of the system of about one tenth
2y M, 10 3 of the solar mass. The value of s, is taken so that we can expect
Ty T 10% em®. (2.15) a maximum planetary mass in the approximate neighbourhood

of Jupiter (cf. Chapter V, Section B).
: B. Degree of ionization. There are two possible causes for
ionization, viz., the solar radiation or the collisions between the
atoms. In order to get an idea about the degree of ionization due

We see from equation (2.14) that the density falls’ off rapidly
in directions perpendicular to the equatorial plane. If we take

1 Any p?, decreasing with increasing 's, will give a slowly decreasing density
in the equatorial plane. Equation (2.13) is one of the simplest ways of introduci : i i i
such a decreasing u®. 4 ( ) P Y nirodueing 1 Strictly speaking h/r depends on r bul only as r*fs. The value given in equalion

(2,16) is an average value for the disc.
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to the solar radiation, we may suppose for a moment that we have .
to deal with a spherical gaseous envelope with a density of about’
10* hydrogen atoms per ecm®. This certainly will give us an upper
limit since there is a possibility of the loss of energy by oblique
emission from the disc which possibility is not present in the
case of a sphere.

(2.21), we get the following table, where for the absorption
coefficients of Na and K we use the values given by Rupksosing
(21) and LawreENcE and EpLEEFSEN (22), and for Mg:

_ / 3.
Ayg = Axa (XNa/XMg) -

Table 2. 1.
Using STROMGREN’S equation (20): l
. : ‘ Mg ( Na | K
Yog Sy = — 0.44 —4.51 0+él°log T+§1°logR—§1°10gN, (2.20) ' \ ‘ '
Abundance relative to hydrogen..... 3.10— 3.10 10°%
where So: radius _of the sphere containing.the H II region (i. e, \?01:15122?1211&];‘;?3;;3 lnelectrovolts 3712111 3513;0 ' 4?:;0
the region where the hydrogen is ionized), in parsecs P 5.10-20 1,6.10-19 3.10-20
(1 pc = 3.10% cm); ‘ Spin em. e IO 71010 3.100 7.10%2
R: radius of the central star, in solar radii; ' _
T: temperature of the central star;  We see that the only element which might be ionized would
G- 5040° " be potassium. We have not, however, taken into account that the
T’ ‘ effect of recombination processes leading to excited states, fol-
N: number of hydrogen atoms per em?.

‘lowed practically always by cascading to the ground state, will
ecrease the degree of ionization as pointed out by STROMGREN
20). Furthermore, the fact that the radiation emitted after the
ecombination can leave the disc obliquely also diminishes the
egree -of ionization.

One might be afraid that the radiation density in the ultra-
iolet might be higher than corresponding to a black body radia-
ion of 6000°. Recent V-2 rocket experiments (23) show, how-
éVer, that the radiation density in the uliraviolet follows a black
body radiation of "3800° more closely than one of 6000°. This
actor also shows that we have overestimated the degree of ioniza-
tion. Using equation (2.21) with T = 3800°, we get for K for

Using 7' = 6000°, N = 10* cm™3, we get from équation (2.20):
Sy = 3.10° cm, |

which is even far less than the solar radius. This means, of course,
that we may safely assume all the hydrogen in the dis¢ to be neu-
tral. Since the ionization potentials of oxygen and nitrogen are
larger than that of hydrogen they will also be neutral.

The next element is carbon. We then have the equation:

Nog Sy = —6.17 —é—l"log a~%6x—|—;}zmlog T+

2

0 (2.21)
- 10 . 10 T
B 3 log R 3 log N,

So — 1012 cm,

where a is the absorption coefficient at the absorption edge, and
% the ionizational potential. Using a¢ = ay (yu/xc)® = 10717 cm?
(ef. (21)), ¥ = 11,22 ev, we get: /

hich is far less than the mean distance of Mercury from the sun.
. Altogether, it seems safe to conclude that the ionization due
to the solar radiation is certainly absent in the region of the major
ipianets and almost certain also in the region of the inner planets.

The next step is to investigate the degree of ionization due to
4c_ollisivons between the atoms, i. e., the ionization equilibrium of’

Sy = 10% em.

We shall finally investigate Mg, Na, K. Their abundance an‘d.

D . L s T . 1 Thi  be trae i far ultraviolet.
ionization potentials decrease in this order. Using again equation » This may no longer be true in the far ultraviole




32 Nr.3: 33
the different elements at temperatures ranging from 700° K to

The lower limit.is obtained by putting o (r) as constant. This
5° K. We use the normal Saha equation:

density will be about 3.102° em™? for a total mass in the disc of
about 0.1 M,. Then we get: '

n, 40 27 mkT\§ —X/T

n, ' T=406lp ~ 0.03,

where [ is the total path (I ~ 10 ¢m).

For the upper limit we use equation (2.17) for the density,
with g, ~ 10, corresponding to a smoothing out of the total mass
over the sphere. We then get:

where ¢ is a weight factor, m the electron mass, A‘+ the ion, and:
4 the neutral atom.

Even for potassium (low density, low ionization potential),
at 700° K (highest temperature), only one atom in 10? is ionized.
Hence, we can safely conclude that this source of ionization can
also be neglected.

Since the solar radiation is unable to ionize even potassium,
we may safely assume that the highly diluted radiation from
other stars is also unable to produce any appreciable amouni
of ionization except, perhaps, in a very thin boundary layer.

C. Optical depth; temperature of the disc. If the intensity
of the radiation passing through matter is decreased by a
factor e, 7 is called the optical depth of this matter. It is difficult
to estimate accurately the optical depth of the disc since we ought
to take into account the fact that the scattered radiation can
leave the disc obliquely so that the radiation has not to pass all
the mass before leaving the system.

We may, perhaps, obtain an estimate by smoothing out all
matter in the disc over a sphere around the sun with the same
linear dimensions as the disc. We obtain an upper and lower
limit for this optical depth by considering two cases, viz. either
a density varying according to equation (2.17), or a constant
density.

The selective absorption starts at 4.3 eV (ionization potential
of K) and the maximum intensity of the solar radiation ocecurs for
2.6 eV. Therefore, we may treat the scattering as Rayleigh scat-
tering on H atoms.

T~ 2.

The actual 7, giving us an estimate of the total scattermg of
llght in the disc, will probably be somewhat smaller than unity,
‘which means that the disc is rather transparent and that we may
assume that the energy which a gas volume receives from the
sun will be proportional to the inverse square of the distance
from the sun. A '

We can then calculate the temperature in the way already
indicated in Section A. The sun is considered to be the only source
f energy. Equilibrium reigns if every gas volume in the disc
emits as much energy as it absorbs. If temperature equilibrium
should exist, the total energy emitted by a gas volume would be
‘proportional to T* (Stefan-Boltzmann’s law), which should still
‘be valid for a H and He atmosphere because of the principle
[ detailed balancing. Since the energy received from the sun
ill be proportional to r—2, we have:

T = a-rb (2.4)

-_Normalizing T to 6000° for r = 7.10' cm (solar radius), we
et the following table for the tempe1 atures of the cloud at the
resent position of the planets:

. . . J ’ .
The total optical depth 7 is given by: Table 2. 11I.
993 Mercury Venus  Earth Mars  Jupiter  Saturn “Uranus Neptune
= \do(r) dr, (2.23) B50°K  480°K  400°K 330°K 170°K - - 130°K  90°K  75°K

where 6 is the cross section for Rayleigh scattering (6 = 10~*cm?)

- These temperatures may be lower limits in the neighbourhood
and ¢ (r) is the number of hydrogen atoms per cm?

of the inner planets (ionization of potassium giving rise to high
D.Rgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXV, 3,
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energy electrons), while the temperatures in the regions of the |
outer planets may be regarded as upper limits since there will:
be a decrease in the intensity of solar radiation due to the Rayleigh
scattering. This might perhaps glve Tise to a factor two, Table 2. 1
giving too high wvalues?. :

D. Radiative eonditions: seperation of elements. If we could
completely neglect absorption in the disc, the radiation would
be a diluted black body radiation, in as far as we may treat:
the solar radiation as a black body radiation. This mean
the energy density corresponding to a certain frequency (or:
energy) is given by the well-known Planck formula multiplied |
by a factor g, the so-called dilution factor:

the turbulent rnotlon in the disc so that it is difficult to imagine
a process separatmg the different elements. The gravitational
separation discussed by Eppineron (25), e.g., will not take
place since the centrifugal potential will balance the gravitational
potential (cf., e.g., equation (2.12)). Other effects such as thermal
diffusion, are very small and, as remarked before, will probably
be annihilated by turbulence. Even if this should not be the case,
it can be shown that this should only slightly affect the ratio of
the heavier elements to hydrogen, and since anyhow hydrogen is
the main element and the ratios in question uncertain, it seems
that- we may neglect all separation effects.

E. Molecular densities. As the last feature in the disc, we
want to give a list of approximate densities of various compounds
in the disc. Of course these densities vary from point to point,
due to the different pressure and temperature, but in order to get
a picture, we may take a density of the hydrogen of 10%¢ at cm—3
and a temperature of a few hundred degrees Kelvin.
 We are far removed from an equilibrium situation, since the
temperature of the radiation is different from the temperature -
-in the disc and the radiation is diluted. It seems therefore danger-
us to use the (quasi) equilibrium formulae of either Swings and
RosENFELD (26) or Rosseranp (27). We have instead to look
‘into the different possible processes, as was done for the inter-
stellar space by Kramers and the present author (28).

- As an example we may discuss the case of CH and use the
same considerations as in BAN 371. The numerical constants
re, however, different. We now have: T, ~ 400°, Tp,q ~ 6000°,
“as given in Section D. (We shall use the same notation as in
AN 371 and refer to that paper for this notation).

" The first processes which are of interest are the radiation
aptures (processes « and 7). The number of these processes is
iven by

8 oo
o(v) = g-— 7hv? (ekT—1> .

The dilution factor g is given by

ro\?
g = () ; (2.24)

r
where r, is the solar radius and r the distance from the sun.’

However, there will be an appreciable absorption in the ultra-;
violet region (hv>> 4.32 eV). For those wavelengths the dilution’
factor may well be as small as 107121015 In the rest of the:
spectrum, the dilution factor will probably be given by equation
(2.24), perhaps with an additional factor of the order !/, corre-
sponding to the loss of scattered light (see Section C).

Since the disc is chiefly made up of hydrogen, and sinc
Baape and Pavri(24)have shown that for hydrogen, at the surfac
of the sun, the radiation pressure is negligible as/compared with:
the gravitational force, we may safely neglect the radiation pres-;
sure, the more so since the radiation pressure will presumably
decrease more rapidly (due to the ahsorption) than the gravita-
tional force. If there were no absorption both would decrease as_‘,':
the inverse square of the distance from the sun.

In the next chapter we shall see that all particles are part of:

Ny = Quaalc+ ey Ny = Q;adQCQH’ (2.25)

where Q,,q is given by

a= 47”"8:;4 (r) r e_g"% [F(V:T)_F(V:T—k(?ﬂ dr, (2.26)

1 We quote this paper in the following as BAN 371.

1 Dr. L. Spitzer has kindly pointed out to me that the opacity of the disc.
might be larger than calculated in the beginning of this section, due to the absorp
tion and scattering by small solid particles.

3*
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where be formed thropugh a radiation capture accdmpanied by an

~electronic transition, we can use equation (2.32).
. Larger molecules will be assumed to bé formed by radiation
_capture, and we shall use for the capture cross sections (cf.

4 L gt
F(x) = —:S e x*dx. (2.27)
V“ 0

U(r) and U'(r) are the potential energy curves of the mole
cule in the two electronic states between which the radiativ
transition can take place (U(r) is an excited state and U'(r) the’
ground state). The transition probability at a certain distance
r is given by A(r) and f is the probability that the upper state is”
realized when the two atoms meet. ‘
In the case in which we are interested, the temperatures are’

so low that we can replace F(x) by

Qgqe 1071 cm® sec™; Q. = 107" ¢m? sec™™.  (2.33)

. For the processes involved in the CH equilibrium, we get the
ollowing table (we refer to BAN 371 for the meaning of the
various processes): -

Table 2. IIL

iz
Q
I

4107 ooy ogys Ny = 21072 o apyts N, = negligible
negligible ; N, = negligible 3 ONp = 2108 g oot
Ny = 2.10717 c Oy 3 No= 10716

—t

F(x)=1 —;:x-e , (2.28),

-
=
If

JT .
i om ecy  ; Ngr= 1070 o ooyt

and since U'(r)/kT < U (2)/kT < 0, we can write with fair accurac
instead of equation (2.26):

We have taken here T = 100°K.)

- Since g ~ pct ~ 0, we see that the only processes of any
mportance are # and ¢ (i. e., radiation captures leading to CH,
esp. CH,), for the determination of ocy. The concentration of
CH' will -be negligible.

By equalizing N, and Ns we finally get:

AR o T g
Qrad - VH,SOA (r) V U(r)dr. (2.29

We see that for low temperatures Q.4 is inversely proportiona
to the square root of the temperature since the integral is indep
endent of 7.

In the case of CH, we get from equation (2.29) by numerica
integration for T = 400°:

ocm ~ 2.10% cm—*,

For a few other compounds we get the following densities,
using the above values for the formation cross sections, We want
stress that all values in Table 2. IV are very uncertain and may
ell be higher or lower by a few powers of ten.

Q. 21077 cm? sect. (2.30

rad —

For CN, numerical integration gives) us:

Table 2.1V.
~ —17 . 3 —1 D) E 3 .
Opga = 1077 cm?® sec™. (2.31) ‘H, :105cm— GCH :2.10Mcm— CH,:2.10'8 cm—* C,H,,: 2.1010
. ‘ . : H,0 :10t2 CN : 101 NH,: 1018 0, : 10w
We have assumed that three body collisions can be neglected: _HCN : 10%0 CO,: 107 C, : 10w Sic - 108
as a means for the formation of molecules. For a density of 10

Ba0 : 105 SO, 12104 CO : 100 NO ¢ 10
hydrogen atoms per cm?®, we get for the Q corresponding to that '
process: :

0 ~ 108 cm® sec™. (2.32)

For the rate of formation of those molecules which cannof
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a loss of mechanical energy, a flow of matter from the disc, partly
to the sun in the centre and partly to interstellar space, and
finally a transfer of angular momentum in outward direction.
In this chapter we shall try to estimate the rate at which the
‘various processes take place.

A. Dissipation of energy. We can use here the formula
given for instance by Lams (29) for the dissipation of mechanical
‘energy due to viscous forces. We have the equation:

Chapter Il

Hydrodynamical Properties of a GaS§OLls Disc.

In this chapter, we shall be interested in the evolution of
gaseous disc in the centre of which a large mass is concentrated
We saw in Chapter II, Sectign A, that the angular velocities i
the disc follow Kepler's third law closely. We shall assume tha
we may use equation (2.12) for the velocities in the disc.

We shall treat the problem as a two dimensional problem
i.e., we shall neglect all effects in directions perpendicular to th
plane of the disc. For the height of the disc we shall assume

where # is the viscosity coefficient and where we have assumed
-that the velocity is everywhere in the plane of the disc and
_perpendicular to the radius vector. The angular velocity will still
.depend on the distance from the sun in the way given by equa-
on (2.12).

If we now consider a ring of height h, radius s, and thickness
ds, we see that the total loss of energy per sec in that ring is given

h=ar, a~1/15 . (3.1 0E = 2 hs® n(d )ds, 4 (3.3)

in accordance with equation (2.16). :
The density in the disc may be given by equation (2.17). W
shall here use p measured in g cm—3. .
In the disc we have a velocity gradient and an energy gr adlen
The energy content per unit mass is given by:

“and the total loss of energy in the disc is given by:

dE _ . 9 5
S SBL o ety Mylog ™ (3.4)

where rq is the solar radius, s, the radius of the disc, and where we
ve supposed 1 to be constant throughout the disc.

In the case of laminar motion, 5 is the normal viscosity
coefficient, but in the case where the motion is turbulent, we can

till use the above equations. The quantity # is then, however,
defined by the equation:

_rM,
2r’

giving the energy of matter, moving in a Keplerian orbit round:
: 3 5 ‘ :
mass M, at a distance r. The kinetic energy (——ICT) mayb;

neglected with respect to ¢, given by equation (3.2).

In Chapter I we saw that due to the velocity gradient in thi
disc viscous stresses will be set up which together with th
escape of matter at the boundaries in the course of time ma
bring about a profound transformation of the disc. This trang
formation of the disc is accompanied by three phenomena, v

%Q vA, ' (3.5)

Whéle A is the mean free path or the so-called ‘‘mixing length’".
B. Lifetime of the dise. We see that we have a steady loss
of miechanical energy in the disc. The energy for this dissipation
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process is provided by matter falling towards the centre and so’p
gaining gravitational energy.

We can estimate the total amount of energy available by
assuming that a fraction g of each volume element in the disc:
falls onto the central body and that the rest of the mass disappears
into space. In section D we shall see that f§ is given by:

‘We are especially interested in the angular momentum trans-
ferred from the central body during the lifetime of the disc.
If in equation (3.9) we put s equal to ry, we get the transfer of
angular momentum per sec in a situation where the velocities are
‘perpendicular to the radius vector and given by equation (2.12).
As soon as the central body is slowed down, the velocity pattern
in the neighbourhood of the central body will become changed
-and it is difficult to predict exactly what will happen.

In order to get an idea of the magnitude of the transfer, we
-might compare df/dt for s = r, with 8,/z, where 0, is the angular

B = ryfs. (3.6)

For the total energy available, we now get, using equations (3.2)"
and (3.6):

c oy M, WY M . momentum of the.central body in the case where its angular
Ey ‘\Q 2s ° 7 shds + Sgﬁ (s) rg 2 7 shds: velocity corresponds to Kepler’s third law:
. s“ ‘ N
o 49 Sm ' dt  0.00038 M (3.10)
where M is the total mass in the disc and s, the distance at which B My >

the maximum density in the disc occurs.
The lifetime of the disc, 7, will now be determined by dividing

More? 1
here we have used sy/ro~ 10%, and 0, = DT My Vrey M,
Ey by dE/dt of equation (3.4), and in this way we get: °

5
Although the above-mentioned phenomenon of transfer of
ngular momentum will slow down the solar rotation, it is clear
t first sight from (3.10) that this can hardly account for the
resent slow rotation (present 6 ~ 0.005 6,).

The present slow rotation of the sun has perhaps to be ex-

plained by an investigation of the earlier steps in the process
eading to the formation of the sun. This investigation, however,
! Is outside the scope of the present paper.
-~ D. Estimation of the inerease of the solar mass during
he dissipation process. Before discussing the possibility of
a:-Tegular system of vortices, we wish to look into the question of
e dissipation of the disc. We shall iry to estimate the quantity
s), i. e., the fraction of the mass which will fall onto the sun.
In order to calculate this rigorously one should have to solve
the hydrodynamical equations, preferably with the terms involving
the viscosity. Also, one should have to consider a velocity compo-
nent different from zero in the direction of the radius vector.
: hese calculations should give us at the same time the transfer
0 angular momentum and, perhaps, the formation of a regular
stem of vortices.

ovis, So -
1 LS P
7 90 na T log e (3.7)

The derivation of equation (3.6) is very tentative. Thus §
might easily be larger, giving rise to an estimate of v larger than
that given by equation (3.7) by, say, a factor 10 or 100.

C. Transfer of angular momentum. Due to the veloecity
gradient there will be a transport of momentum through any
area perpendicular to the radius vector. This transport of mo-
mentum will be accompanied by a transport of angular momen-
tum and energy. Those three quantities are given by:

dw dw '.

do
— — 2 — 2
P = 57 5 86 = — sy o JFE = — st oy ds (3.8)

The total transport of angular momentum per sec through a
cylinder of height i and radius s will be given by:

a6 _ 5,40 _ ki :
T 27 hs®y i 3mans® Yy M,. ﬁ(3.9)
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However, we can try to get a first estimate of the magnitude

of § in the following way.
If we consider a cylindrical ring with height h, between the

radii s and s + ds, this ring will lose per sec angular momentum :
at the rate:

‘The total mass which will fall onto the sun is now given by:

BM = Ss‘énhsgﬂ(s) ds = 20y, (3.12)

To m

The reasoning in this section is only tentative. It would be
desirable to complement it by a direct estimate of the amount of
~ matter which escapes from the boundaries of the disc.

E. Possibility of regular systems of vortices. We saw that
* voN WEizsAckER (10) introduced a regular system of vortices
.in his theory and that he was able in that way to explain the
- Titius-Bode law. In this section we should like to look very
briefly into this question.

d dw
80 = (2 7 hs? 177) ds = gnan Vy Mys ds.

The total angular momentum of the ring is given by:

6 = 27 hs® g ds = 2 map |y Mys® ds.
If a kind of over all equilibrium in the disc should reign, thi

loss. of angular momentum would correspond to a loss of mas

Of course one cannot use von Weizsicker’s treatment since
given by:

- the mean free path in the disc is far too small to allow for un-
- perturbed Keplerian orbits. However, one might hope to be able
“to deduce from the hydrodynamical equations a similar set of
rings of vortices.

The first important point is that, as we already saw in the
previous chapter, gravitational forces are by far the most im-
portant. They are not only more important than the pressure
gradient, but also than the viscous forces. (Reynold’s number

where m is the mass of the ring, and given by:

= 2xhspds.

-0

L ) .
The energy loss per sec is given by equation (3.3): = “%*, where [ is a length of the order of the dimensions of the

system), which measures the ratio of the inertial forces to the
dE, = 2mhs®y (C; ) ds = gnaqu"d , (3.3 ﬁriscOus forces is very large in our disc). This might give rise to
systems like the one pictured by von Weizsicker (cf. p. 15).

The system which we consider is different from the common
hydrodynamical systems because of the absence of a wall. But
the fact that the mean free path increases with decreasing density
may have the same effect as a wall. And also it might be that
during the development of the gaseous system which will become
a galaxy the other turbulence elements may have acted some-
what restrainingly on the whirl which would develop into the
sun and the solar system. We are thus tempted to compare this
‘with normal hydrodynamical systems although we are aware
of the danger attached to this procedure. There are, however,
some signs that this might not be as far from the actual truth as

and if a fraction § of the original mass of the ring falls oni
the sun, this loss of energy is compensated by the gain of energy

by this matter, again assuming a quasi equilibrium situatio
throughout the disc:

M, ol7) M
SE vMe _ p0U Y Mg
I3 ﬁém P ﬁ 9 m o .

(3.11

Putting 6 E; = 6 E, we can determine £, and in this way w
get: '

B(s) = rofs.
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The idea is to assume for a moment that due to the prepon-
derance of the gravitational force regular systems of vortices
might be set up. Now, we can assume that the distance between
two circles separating the various rings of vortices will be given
by the mean size of the turbulence elements. In this way we might
arrive at an estimate of the size of the turbulent elements in the
solar envelope and in the planetary atmospheres from the*
differences of the observed mean distances of the successive
planets (satellites) from the ceniral body since these planets
and satellites will probably have been formed on the circles
separating the main vortices, as we shall see in the next chapter:
In Table 3.1 we have collected the data for the sun, Jupiter,
Saturn, and Uranus, using only the data of the *‘regular’ satelli-
tes (see Chapter VI). In the second row we have taken the observed
planets and satellites only and in deriving the values for the -
last Tow we have assumed that due to some unknown reason |
there are gaps, corresponding in the series of the planets, e. g.,
to the asteroids. Finally, we assumed that the size of the turbulence |
elements is proportional to the distance from the primary:

by equation (3.14). He did not, however, compare the planets
- with the satellites. We shall follow his argumentation here with
_a few alterations.

Von Karman had remarked that for the cases which he
~ investigates the mean size of the turbulence elements is given by:

| (3.14)

with a constant ko (~ 0.4). If the velocity is given by equation
(2.12), we get for the size of the turbulence elements:

I~027r. (3.15)

If we now look at Table 3.1., we see one striking point, viz.,
that a is decreasing with decreasing mass of the primary, i.e.,
with decreasing influence of the gravitational force and that a
fapproaches the value of equation (3.15). This might prove to be
animportant point in a discussion of the hydrodynamical proper-
es of the disc and the planetary.envelopes.

- We want to point out a few more points connected with these
régular systems of vortices.

The first is that the energy dissipation in such a regular system
ight be less than in the case of an irregular turbulent sitnation.

l=a-r, (3.13)

and the values given in Table 3. 1. are the mean values of a.
If r, is the mean distance of the n-th body from the centre,

l=r,—r, 4, and 2r = r, + ry . n this way, we should get a longer lifetime than that corresponding
an energy loss, calculated under the assumption that we may

Table 3. 1. s¢ equations (3.4) and (3.5) with a 4 equal to the dimensions

fthe vortices. This might amount to as much as a few powers

Sun Jupiter | Saturn | Uranus f'ten. There are also other indications that the lifetime of the

s ¢ might well have been much longer as we shall see in

Mean value of a for “regular’” satellites 0.56 N 0.56 1 0.42 0.36 apter V. This lnight then also be an indi_cation that regular
Mean value of a with assumed gaps. 0.50 0.45 . 0.33 0.28 tems of vortices have once been established. In order to
The number of gaps is inserted between ting about a regular series for the distances of the planets
brackets ........ S €0 (€3] (2) 1) satellites it is not necessary that the system remained the same

‘:'uring the whole lifetime of the disc. As was already shewn by
on Weizsicker it is only necessary that these regular systems
ted for about 10 years, which is of the ‘order of magnitude
it the period of rotation of the outer parts of the disc. In that
riod the condensation products become so large that. they

We may compare this with von KirmAN's formula (30) for
the mean size of a turbulence element. This was. first done by
TuomiNnen (31), who shewed that the Titius-Bode law for the
planets follows within a factor 2 from the size of vortices given




can no longer be . displaced appreciably by turbulence in ¢
the disc.

The second point is that we can easily calculate the velocities
-on the outskirts of the large vortices which will form the systems
of vortices. These velocities will be the turbulent velocities, and
we may take for those the mean fluctuations of the velocities in
a gas kinetic system with a velocity gradient as was done also
by PranpTr (32) in a similar case.

If v is the mean velocity given by equation (2.12), we have
for the turbulence velocity u:

only on an average be proportional to the distance from the sun,
i.e., that equation (3.13) will only approximately be fulfilled.
We should therefore expect rather than be disappointed by the
fact that the Titius-Bode law or similar laws for the satellite

systems do not hold rigorously from planet to planet or from
satellite to satellite.

, o (3.16)

where 4 should be the mixing length which is equal to the mean |
size of the vortices and given by equation (3.14).

We see that u decreases with increasing distance from the
central body which means that if the large vortices are rotatin
themselves in a counter-clockwise direction the motion in thes
vortices will be clockwise.

Between the rings of large vortices there will be large viscous |
stresses along the circles separating the main vortices. We ma
therefore here expect secondary eddies like the ‘“‘roller bearing’
eddies of von Weizsicker. Those “‘roller bearings” will again
show direct (counter-clockwise) rotation. Since the planets wil
probably be formed in those “‘roller bearings”, as we shall se
in the next chapter, we are here presented with an explanations
of their direct rotation. It is a tempting thought to assume that}
the size of the ‘“roller bearings’” will be determined by the fac
that the velocilies at the outside will be equal to the turbulen
velocities given by equation (3.16). This would mean that w
should be able to determine in that way the size of the planetar
atmospheres since the velocities in these atmospheres are deter
mined by Kepler's third law (cf. Chapter II, Section A). W
may remark here that the considerations of this paragraph als
remain valid if there should not be a regular system of larg
vortices. ‘

Finally, we may remark that the size of the large vortices wil
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‘where M and & are the mass and charge of the oscillator, and
ip(w) the radiation density. If the particle, which is assumed to be
“small compared with the wavelength of light considered, consists
‘of i atoms, we have: ¢ = i-e (e is an effective charge), M = i-m
(m: mass of one atom), T = T; (temperature of a particle con-
'sisting of i atoms), and o = @, (fundamental frequency).

‘. On the other hand, we have energy conveyed to and from the’
particles by colliding atoms which do not stick to the surface.
’ s was.pointed out in BAN 361, these are mainly hydrogen atoms.
he energies in question are given by:

Chapter 1V.

The Condensation Process.

* Condensation processes in astrophysics™can be divided into
two different phases. The first phase is the formation of nuclei
on which the further condensation can easily take place. The
second phase is this subsequent growth of the nuclei. These
nuclei will grow in the beginning because impinging atoms or
particles will stick to them, but later this growth will be much
more rapid because of the possibility of gravitational capture,

E,_ = c,o00i* kTy, E 5 = cyo0vitkT,, (4.2)

“where ¢, and ¢, are numerical constants of the order 1, ¢ the
urface of one atom, v the mean velocity of the colliding atoms,
and ¢ their density.

~ We have now the following equilibrium condition:

A. Formation of nuelei for econdensation. We shall use Bont Eppy = Eopt Een (4.3)
here a model given in an earlier paper (33), in the following Hos . s
quoted as BAN 361. Ao T1i% + Byi (e KT _ 1) = CoT, iS+ Die T, (4.4)

If we want to investigate the possibilities of condensation, it
seems to be a fair approximation to treat the condensed particles
as heteropolar crystals. We are interested in the condensatioh
in a gas with density ¢ and kinetic energy corresponding to a
temperature 7T,, while the radiation density .is assumed to be a

diluted black body radiation with temperature T, and dilution
factor g¢. (

For given values of g, 73, Ty, and g, we can determine from
equation (4.4) the temperatures of the particles, T;.
. Inserting numerical values, we have (c¢f. BAN 361):

A~ C ~ 4.107% erg degree ! 'cm?; l
} (4.5)

. ;i A
B~ D~ 21071 erg; -2~ 1400°.
The first question to be investigated is the temperature of the » : k ,
ndensed particles. We can find this temperature from the ener . . .
iilanfje part o ! peratn & ~In all cases, the term with 4 is large as compared with that
) . .. . ith B, but according to whether the term with C is small or
In as much as there are only slight deviations from harmonic S . ) .
1 : . . . ge as compared with that with D, we have the following two
binding between the atoms in the crystal, the particles will emit dses -
- [SES © -
‘b radiati tically as e large ha nic oscillator, i . . . L.
and absorb radiation practically as one larg . room SCI. A (e) C D, which will be realized in interstellar space, where
and only the fundamental frequency contributes. If w is the . o R
. . _ . e have low gas densities and low radiation density.
frequency of the oscillator and k7 {{ hw, we have for the emitted , ) . . . S
. ~(f) C>> D, which will be realized in all other cases in astro-
and absorbed energy of the particle ny - . L .
hysms such as condensation in nova shells, condensation in
he corona, or condensation in a gaseous disc such as we consider
the present paper. -
Kgl. Danske Vidensk. Selskab, Mat.-fys, Medd. XXV, 3. . ’ 4
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Eabs:ﬁg(w)’ Eem_ Mc3 s e ’ ( '




.50 ' o Nr.

51

In case e, equation (4.3) reduces lo wvhere n lies between 2 and 10 and depends on the number of

& atoms for which the capture in the “‘crystal” is difficult; K is a
on — Fem “numerical constant. '
or This possibility is realized for extremely low densities. In that
T, = log(zb 5 (4. case, the energy conveyed to the particles will be very small so
. t .

hat their temperature will be low enough to allow for an easy
condensation.

1 se f, uvation (4.3) reduces to .. . .
n case f, equali (4.3) For higher densities which are still so low that we are in case o,

B, = | E g the temperature of the small partieles will be higher than corre- -
or N *E sponding to a vapour pressure equal to the gas pressure. How-
T, = T,. (4.1 ever, the temperatures of larger particles will be low enough.

However, since the temperature of the particles increases with
increasing density - (c¢f. equations (4.4) and (4.8)), the critical
size, 1. e., the size for which the temperature corresponds exactly
tota vapour pressure equal to the gas pressure, will increase with
jn‘creasing density. The rate of precipitation will correspondingly

The formation of nuclei can now be calculated in the way
first indicated by BeckEr and DoEerinG (34).
The main feature of the condensation is that in order to gl
an appreciable precipitation it is necessary that the vapour
pressure of large particles is less than the pressure in the gas
because in that case there will be more atoms condensing on
than evaporating from the particles.
In case 3, which is also the normal case in chemistry (where w¢
have T; = T,, ¢ = 1), the vapour pressure of the parﬁcles w
decrease with increasing size due to the influence of surface f
energy. Finally it reaches the value of the saturated pressure for
infinite size at the temperature present. Thus, if this saturate
vapour pressure is smaller than the pressure of the gas, we ¢
expect condensation. This is the well-known phenomenon
precipitation (or condensation) in a supersaturated vapour.
In case «, the decrease of vapour pressure with mcreasm‘
size is due to the decreasing temperature (cf. equation (4. 6))
There are two possibilities, viz. that the temperature is alread
low enough for particles consisting of only a few.atoms in wh
case the rate of precipitation depends only on the rate of forr
tion” of molecules of, say, 10 atoms because smaller particle
cannot be considered to behave like crystals. If we denote i
rate of precipitation by j, we have:

j~ Kete " ' (4.9)

~ The so-called characteristic density, i.e., the density at which
e ransition between the two above-mentioned possibilities occurs
d which also marks a maximum in j, is much lower than
e density marking the transition from « to .

In case f there will only be appreciable condensation if there
-a state of supersaturation, i. e., if the gas pressure is higher than
e saturated vapeur pressure.

The vapour pressure of a crystal is given by:

byt

Py e ) C(4.10)

‘}here m and 'y are the mass and sublimation heat (in ergs) of
I atom of the crystal. If the density of the gas is ¢ atoms per
m®, its pressure is given by the ideal gas law

g = 0kT. (4.11)

‘"The necessary condition for condensation is now

y

1 This case has been extensively discussed in BAN 361, We only g,lve the
results here, and refer the reader to BAN 361 for details.

j~ Ko,

= (4.12)

4%
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Comparing Tables 4.1 and 4. 11, and remembering that the
emperature in the corona or nova shells is at least a few thousand
egrees, we may safely conclude that in those cases there will be
o condensation. This does not, however, exclude the possibility
{ the presence of molecules (ef. (35)). We also see that it is
ecessary to have & temperature which is at most 1000° in order
0 have an appreciable condensation. This is another difficulty
ncountered by theories like the one proposed by HovLe (14).

B. Second and final stages of the condensation. After the
irst stage, the formation of nuclei for condensation, there are

For a given temperature and density we have a critical sublim
ation heat y determined by equation (4.12) with the equal sign
Compounds with a larger sublimation heat will condense, thos
with a smaller sublimation heat will not condense.

From equation (4.12) with the equal sign we can calculate
for different values of T and p, and we get the following table
We have given y in eV and (between brackets) in Cal/mol

Table 4. L
Values of the critical sublimation heat.

5 wo more stages. The second stage is the normal condensation
) 50° l 100° ‘ 200° :  400° 1000° where the particles grow because impinging molecules stick to

) l ] } hem. The final stage is that of the gravitational capture.
100 0.14 ] 0.29 * 0.60 1.95 3.93 35 We may draw attenti'on here to th'e f.act that as soon as th.ere
(3.3) (6.8) (14) (29) (75) (810) s & state of supersaturation the nuclei will be formed in sufficient
0 A1 o012 0.25 0.53 1.09 2.84 31 jumber (34), so that it is- not necessary to consider that stage of

(2.8) (5.8) (12) (25) (63) (720) the condensation process in any more detail.
0% 0.10 0.21 045 4 093 2.44 27 The second stage closely resembles the process proposed by
(24) (4.9) (1(3),)/, (()271; ;53 | (6;3) NpBLAD (36) for the formation of interstellar smoke particles.
W ?1098) ?4-107) i 0(.8) ‘ (i8) ‘ (4-17) (540). - r the sake of simplicity we shall assume that the particles are
| - !

spherical with radius r and specific density p,.
We see from Table 4. I, and equation (4.12) that x depends I? the d.en.sity of the matter imping:ing on the Particle al'ld
only slightly on lQ, but is mainly determined by T. ‘ sticking 'to it is degotecl' b3‘r 01 anld their mean 1felat1ve velocity
In the next table we have for comparison collected the by v;, we have for the increase of mass per sec: |
sublimation heats (in Cal/mole) for a number of inorganic an '

. . " dn . U1 .
organic substances, and also their specific densities, o. T 4y Lo (4.13)
Table 4. IL ) |
Com- l éom— Com- \ m = 5 7o 3, (4.14)
: x o i ¢ ound x
pound v \ pound pour
] g1, o
CO ...otn. 19 | 09 | HNO, | 87 29 Mg 34 r(—ry) = Q_ 1 ‘. (4.15)
CH, ...... 2.3 | 05 | S0, 8.5 2 Ba 41 0
NO.......| 38 | 16 | HCN 8.5 ;‘; }C;‘O | 32 This is correct as long as gravitational effects can be neglected.
J 5 : 11.3 - a ! : -
N0 e Zf é'g‘, ;Izg 19.6 2.0 Fe i 97 ; however, we have reached the last stage, we get a much faster
(o3 A ? 97| N0, . . | Al
cozr ...... 6.3 | 1.6 | NO, 13 1.5 C 125 owth?!. ,
C,H 7? 0.9 | 80, 12—16 | 2.4 Si large We can introduce a distance R (by Chandrasekhar called the
at21p. - - : - ; .
NH;...... 7.5 0.8 K 21.8 0.9 Si0, large L For-an extensive discussion of this stage of the condensation, we may refer
) 26 1.0 SiC large
(9 T 7.8 | 1.4?7| Na L .

' paper by EaxiN and McCrea (37).




54 Nr. 3 T 55
- "As we mentioned in the previous chapter, condensation is
‘more likely to take place in the “‘roller bearings’ than in the large

to its kinetic energy: ‘vortices, as was first shewn by von Weizsicker, whose Teasoning

R= 2ym : (4.16) we follow here in the form presented by CumanprasexmAr (10).
oy ‘ ) This preference for the ‘‘roller bearings’ is due to the fact that

the mean -free path for larger particles is greater than the size
0fthe “roller bearings”. The mean free path is in this case defined
s the distance travelled through by the particle before its loss
f momentum is of the same order of magnitude as its original
omentum. This means that these particles will no longer be
arried- along by the “‘roller -bearings” even though the large
ortices are able to carry them along. Therefore the number of
ccollisions between such particles and gas atoms or smaller con-
-densation products will be enhanced in the “roller bearings™.
The mean free path of a particle can be estimated in the foll-

wing way. If p; is the gas density, m the mass of the particle
F(for m we have equation (4.14)), r its radius and u, its velocity
clative to the medium, we have for the loss of momentum in an
nterval dt:

where p, is the mean velocity of the matter in the system and m
again the mass of the growing particle.

The cross section for gravitational capture is now = 42R?
where § is of the order of magmtude 0.1. For the growth of th
particle we have now

dm

= 47;5232%2@2, (4.17

or, using equation (4.16):

dr . 16 27 9092 E
— = pr = 4,18)
dt ﬂ -, ﬂ 9 (S U9 ( )
with the solution:

1

mdu, = —mrfp uddt. (4.23)
3 (e—pt’ o N ‘ T
Using the definition of the mean free path, 4, given above,
where ¢ is an integration constant to be determined by r = ry e get for 4,:
for t = 0. The quantity rqy; is the radius of a particle for whic
the gravitational cross seclion = §2 R? equals the geometric cro

section 7 r?:

g 4 g, - ’
= —5——-u, = —>r, 4.94
f =y U% U 3 91" ( )

N

ich gives us with 0o = 3gem™3, pp = 107 gem™3

 R)

Py = i (4. |
o | . Ay = 410 1. (4.25)

If there should be no exhaustion ol the gas, the lumps wou

“As long as 4, is smaller than the size of a vortex, this vortex
become infinitely large in a finite time, given by:

Il carry the particle along. We see that hence there will be a
range of par’ucle sizes such that the large vortices can carry them
& along, but such that the ‘roller bearings” can no longer carry
them lellf’ Therefore, the probability of finding a condensation
product is largest at the “‘roller bearing” circles in the regular
system of vortices—if such a system has ever existed. It has not
L Deen proved that only one planet is formed on each’circle. We
" ay, perhaps, be allowed, as far as that is concerned, to express
~optimism similar to von WElzsicker’s (10).

3 4
o= tcri1+_ =t

[3 3 crit? (42

where f. is the time necessary to reach dimensions of the o1d
rest, and given by (cf. equation (4.15)):

4 . vy [Bpg\E -
tcrit = e Lot T — (_&))7. (4-
SU 0301 \7wyd »

o
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The time necessary to reach such dimensions that even th¢
largest vortex is unable to move the particle essentially is fount
by combining equations (4.15) and (4.25). ]

As soon as the last stage, i. e. the stage of the glav1tat10nal~f g
capture, is attained, the bodies will collect an atmosphere around}
them. We can estimate the dimensions of these atmospheres in
two different ways. Either in the way indicated at the end of the
previous chapter, viz. that the velocities on the outskirts of the
atmosphere should be equal te the turbulent velocities, or by
using for the radius of the atmosphere the *‘gravitational radius™
In formula we have, using equation (3.16) for the turbulent velo:
cities and putting ¢ = '/, in equation (3.15),

Chapter V.
-The Planetary System.

In this and the next chapter we shall try to apply the results
of the foregoing chapters to the solar system and the satellite
. systems of the major planets.

A. Densities of the planets. In Chapter Il we saw that the
-~ lemperature in the disc decreased with increasing distance from
the sun. If we assume that the planets were formed at essentially
those distances from the sun at which they are observed now,
each planet corresponds to a certain temperature, as shewn in
Table 2. II. According to the previous chapter, however, a given
temperature corresponds to a certain critical sublimation heat
given by equation (4.12). So we can assign to each planet a
sublimation heat telling us which compounds will have taken
-part in the initial condensation process leading to dimensions of
Horgy (see previous chapter). In Table 5.1 we have given these
sublimation heats. We have taken an average density of 10%*
at- em—®. 1 Of cpurse, we should for every compound calculate its
‘density in thé disc (cf. Chapter II, Section E) and investigate
‘whether its sublimation heat is higher or lower than the critical
sublimation heat for that density and the given temperature. So
‘we should find for each temperature which compounds would

M - y
= —— = S s
Ry = 16550 7.10% ms (4.26)f

or
2yM . M . - :
= —g 2 9MO 108 ms, (4.27‘

where M and m are the planet’s mass in grams and in the earth’
mass as unit, and § its distance from the sun in astronomical
units. For v, we have used again equation (2.12). We see that hoth

equations, apart from a factor §, give the same result. In th
following chapters we shall use equation (4.26).

Table 5. 1.
- - Nep-
. Mer Venus | Earth ' Mars ‘J upiter | Saturn Uranus\ b
cury ‘ i ‘ tune
£ 650° | 480° | 400° | 3830° | 170° | 130° | 90° 75°
»yin Cal/mole 42 30 25 20 1w | 8 5 4

. "1 This corresponds to about.0.1 per cent. of the gas condensing, and an average
ensgity. of 101 at em—? in the disc.
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condense at the given temperature. Fortunately, however, the
critical sublimation heat does not depend very strongly on the:|
density, as we saw in Chapter IV, so that we can calculate the
sublimation heats for an average density and we need not worry:3
about the variation of density for various substances. :

If we compare this table with the sublimation heats given in*
Table 4. II, we see that while in the outer regions compounds
like HCN, H,O, NH; can condense, in the regions of the inner
planets only metals and other inorganic compounds can condense,
This has two consequences. The inorganic compounds are less

a moment the discussion of the problem why this gravitational
capture has not been active in the case of the inner planets, we
can try to estimate the masses of the planets under the assumption
that a larger fraction of the matter took part in the building up
of the major planets than in the case of the inner planets.

For the mass of the n-th planet we may write:

M, = A,0(r)A R, (5.2)

* where 4,: fraction of the gas taking part in the condensation

frequent and are heavier. Therefore, the first stage of the con-'§ : procesz;. ¢ f the planet from the sun:

densation will end in heavy bodies in the inner regions and . o meag 1§tan'ce fh disf siven by ¢ ua;tibr; (2.17);
A - g - 3

Lighter bodies in the regions of the outer planets. Since the dimen- e (r): gas oustty i the » 81V y equ .

; : . . . . A, : area in the disc, involved in the building up of the

sions of the inner planets are hardly larger than r,y, we can n

planet; we may take 4, = c-rs (¢ will be of the order
of magnitude one); ‘

o height of the disc at a distance r,; h, is given by
equation (38.1).

expect higher densities for the inner planets- than for the outer’
planets. The initial condensation stage brings this difference
about, and the gravitational capture, practically only -acting .in
the case of the outer planets, accentuates this difference. The
dimensions of the inner planets are only just larger than r
which is given by Equation (4.20), and gives us:

h

erit Equation (5.2) can now be written in the following form:

— 44 ()t = BA 1} e raismt, (5.3)

crlt

3 vl 9 ‘
= l/g m’ng‘ ~ 10%em, (5.1) “where A and B are constants. We now, for the sake of simplicity,
take A to be constant throughout the regions of the inner planets,
and also constant throughout- the regions of the outer planets.
For the ratio of 4 in the two regions we shall take 100, which
takes into account the fact that gravitational capture has played
a part-in the formatjon of the outer planets, and the fact that
lighter elements are more abundant than the heavier elements.
We then get Table 5.11. '

We see that the general agreement is qulte good, espemally
in view of the fact that we have simplified the problem very
fuch. We could probably get an even better agreement by a
variation of s, and the ratio of the 4.’s in the two parts of the
blahetary system, but it does not seem worth while to do that.
The only point is that the condensation picture presents us with
“mass distribution in. the solar system which ‘agrees as well
ith the observational data as we can expect from necessarily
odugh considerations.

with § ~ 0.1, gy~ 3 g em™>, v, ~ 10¢ cm sec™ (corresponding to
Jupiter’s distance from the sun). We see from this equation that;
indeed, gravitational capture can only have played a minor 4
part in the growth of the inner planets.

It seems even possible to account for the smallel difference
in densities of the various planets, as was also shewn by BrowN
(1). We shall not, however, enter into this question here.

B. Masses of the planets. The second consequence of th
condensation picture is that there will be more condensation
nuclei per cm?® in the regions of the oufer planets than in th
inner regions because there are more compounds which can
condense. This means that a greater fraction of the gas wil
take part in the condensation in the outer regions. This again i
accentuated by the fact that gravitational capture has played
part in the building up of the outer planets. If we postpone fal
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Table 5. IL. Using equations (2.17) and (3.1), we get for the maximum
« dens1t the condition:
z_ln 0 r, Mcalc ~ Mobs Y Onm
Aearth Qearth Tearth Mearth , Mearth m > .10% at em™® and Om > 3.10%* at cm—
Mercury . . 1 1.9 0.4 0.11 0.05 This tallies very well with our assumption of g, = 2.10%
Venus. . .. 1 1.4 0.7 0.5 0.8 at-cm—3, corresponding to a total mass of the gaseous disc of about
Earth. ... L 1 1 1 1 one tenth of the solar’ mass at the stage where &quation (2.17)
‘I;Jar.st ..... 10(1) 8.g45 ;.o 64(2)_1 31;)_1 is valid. ’
upiter. .. . : N . . _ ) _
3 3. nd (4.22), we can calculate the
Saturn .. 100 0.005 10 450 05 . (.b) From eql}a_nons (3.7) a ( )
Uranus. . . 100 1,4.10* 19 100 15 lifetime of the disc and {4 . .
Neptune. . 100 6.107¢ 30 * 16 17. If we should assume a laminar motion in the disc, equation
(Pluto..... 100 6.107 40 4 0.9) (3.7) would give us:

T = 3.10'* years,

The only serious disagreement seems to be a too small mass
of Mars and the absence of a planet in the neighbourhood of the
asteroids. We shall return to this point at the end of this’
paper.

There are, hO\VGVGl a few points which we still have to examine
before we can accept the above considerations as giving us really:
an estimate of the planetary masses. These are the following:

shich is obviously by far too large.

Even if we take into account the uncertainties involved in
“the derivation of equation (3.7), it will stay too large. We should
\in .that case expect still to see the remnants of the disc at the
present time.

However, if we assume turbulence, equation (3.7) presents

us with a lifetime given by:

(a) How great has the density to be in the disc in order to
provide us with sufficient mass for the planets?

(b)" What is the lifetime of the dise, and how does it compare.
with £ ? ;

(¢) Why has the gravitational capture not played a role in
the building-up process of the inner planets?

111

v

yrs ~ 10% yrs, (5.4)

~
/

—3, v~ 10%cm sec™!

: 1 B
where we used 7 = *Qvl o~ 107" gcm
A~ 102 cm.

On the other hand, {, as glven by equation (4. 22) gives us:

—3
o2 (69")2 107 16 ~ 10% yrs, (5.5)

a) If we assume that a fraction 10~* has taken part in thé} orit — vy 01 \ 7S 014
p .

building-up process of the inner planets and a fraction 10— in:
the building-up process of the outer planets, we have the following:
conditions, if there has been enough mass available to build up"
the inner, respectively the outer planets: :

with 4 ~ 1072, o~ 107°g cm—>.

- Before looking into this question more carefully, and taking
into account the change of f, with distance from the sun, we see
immediately that ¢.; is much larger than v. This means that the
fetime of the disc should be too short to allow for even the
ulldmg up of the inner planetb We may remark here that these
onsiderations are not restricted to the gaseous disc which we
re considering, but may also play an important part in -the
iscussion of whatsoever other theory one wants to propose.

5 Mars

107 Sg 2ms-hds>10%g.,

and

-}

107" SQQns hds<2.10% g.
3 Jup
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If, however, some kind of regular system of vortices has
existed, the dissipation of energy might well have been far less,
perhaps even so much less that v in that case should have been”
of the same order of magnitude as ¢, ;. In that case, it will not be
unreasonable to assume a density distribution like the one given:
by equation (2.17) for the estimate of the planetary masses. The'
last part of the growth of the planets which is at the same time
the part of the rapid growth happened just at a time when the
dissipation of the envelope began to be felt. That dissipation,
which will be strongest on the outskirts of the systein is taken into
account by the decreasing density given by equation (2.17).

(¢) If we compare the ratio of 7 and {, 4 for the different
planets, we get

Chapter VI.
The Satellite Systems.

" In this chapter we shall discuss the properties of the satellite
‘systems and the rotational periods of the planets.

. We want to stress the point that we cannot expect here a too
“close agreement with observational data. On the one hand, the
:'observational data are not too accurate, and on the other, the
“situation in the planetary atmospheres will have been even more
complicated than in the solar envelope. For instance, the fact
“that the dimensions of the atmospheres are of the same order of
magnitude as the height of the disc will cause our two dimensional
‘considerations to be certainly only rough approximations.

A, “Regular” and “irregular” satellites. If we look into the
data about the satellites of the solar system (see Tables 11—V),.
we see that we can divide them into two groups. The first
roup is made up of the first five Jovian satellites, the first
eight Saturnian satellites, the four Uranian satellites, and Triton,
Néptune’s satellite. This group has orbits which are all approx-
mmately in the equatonal plane of the primary and whose eccen-
tricities are small. We shall call these satellites the ‘‘regular”

Now, v is proportional to s72, 4 to s (cf. Equation (3.14)) so
that the numerator increases by a factor of the order 5 from the
inner to the outer planets. The denominator, however, increases
by a factor of the order 100. This means that it is possible that
terit can be of the same order of magnitude as 7 in the regions of the’
inner planets while being appreciably smaller in the regions of the
outer planets. This entails that it is very possible that the size of
the inner planets was restricted to r.;; because of the dissipation
of the disc before they could grow larger. But the outer planets
grew faster and were able to grow beyond the critical dimensions
until also there the supply of matter ran out.

We are quite aware of the fact that the above considerations
are very incomplete but in view of the many uncertain facto
entering, it seems hardly worth while to start a more detailed
investigation. It is, for instance, easy to see from equation (4.17),
taking into account the decrease of ¢ with time (g ~ ¢~47), that
if t.4 > 7, the condensation products will not reach even the
critical dimensions. However, if ) £, the growth of the bodies,
can go on until all matter is used up. A change in the ratio i‘mt/t1
of only a few per cent. changes the picture completely in the:
region where. that ratio is about 1. It also seems to be very dificult’
to take the exhaustion of the gas due to the condensation proces's_:
itself adequately into account. ‘

¢

) 'The second group, that of the “irregular’ satellites, consists
of the moon, the two Martian satellites, the six outer Jovian
§atellifes, and the outermost Saturnian satellite. Apart from the
Maftian satellites, the “irregular’ satellites have orbital planes,
highly inclined to the equatorial plane of the primary, and great
bital eccentricities’.

We shall show here that there -is also anothe1 difference
tween the two groups, viz., that the “‘regular” satellites may
haﬁe been formed inside the planetary atmo_spheres. The ‘“ir-
" 1'We tollow von Weizsicker's classification (10). The origin of the moon is a

problem lying outside the scope of the plesent .paper. The Martian satellites are
perhaps wrongly classified. See, however, the discussion on p. 68.
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regular’’ satellites, however, are probably condensation products
captured at a later stage by the planets.

In order to prove the probability of this point, we have col-
lected the next table. In the first row we have the mean distances
of the outermost “‘regular’’ satellite. In the second row we have
inserted the radius of the planetary atmosphere as given by equa
tion (4.26). In the third row we have inserted the mean distance
of the first “irregular’ satellite. Finally, in the last row, we hav
given the ratio between the radius of the atmosphere and th
tadius of the planet itself. '

he outer planets, since the outer planets have been able to pick
p light gases during the stage of gravitational capture. This
agrees within the observational uncertainties with the observed
data. :

~ We shall not estimate here the masses of the satellites in the
ame way as we have done in the case of the planets. We can,
however, use equation (5.2) the other way round, and try to find
the density function in the original planetary atmosphere from
the observed masses -of the satellites. We take the fraction of the

matter taking part in the condensation, 4, to be constant in each
atmosphere.

Table 6. 1. The result is that we find a density function resembling very
Mer. i , f N . ; I Nep. clo‘\"s_el'y the‘ density .distribution -in;the solar envel-ope, i.e, a
cury f Venus | Earth | Mars Jupltel" Saturn lUranuS tune functmn Wl‘th a maximum at a distance from the primary equal
| ‘ : to about 10 planetary radii. However, it is impossible to arrive

Sregurin om. | . 1 N \1 1‘ t{ o 101 4'1011]] 6.1010 any more definite conc]us’ions. . ‘ .
Ryinem ... | 107 4.10% 0 7.10° | 10° 120101 | 7101 204 We may draw the reader’s attention to one more point con-
Siprincm. .. - o 4101 9100 12,101 13.10M | ected with the condensation process of the satellites, viz. that
Bo/BRplan - - | 0.06 1 0.6 ‘ 11 ‘ 0.3 ] 170 4 120 \ 80 160 ¢ have to assume that the building-up process of the satellites

arted before the planets with their atmospheres were left in
e regions of the solar system like islands in an empty space.
he lifetime of the planetary atmospheres as given by equation
3.7) is at least 100 times smaller than the lifetime of the solar
nvelope, but the dimensions of the satellites are of the same
rder of magnitude as the eritical dimensions so that we see that
y could not have been formed during the time when the
ospheres were left to themselves.

‘This means that we have to imagine the following picture of
complete solar system, accepting for a moment the idea of
ular systems of vortices. In the initial stages of the process,
‘hen the central mass had just become of the order of magnitude
f-the present solar mass, the concentration of matter in our
dlaxy in the neighbourhood of the solar envelope was still
arge enough to regulate to some extent the motion in the solar
nivelope. The result was a regular system of vortices, and between
hem ‘roller bearings”. Originally these “‘roller bearings’” were
robably much smaller than the large vortices. However, after
s planets had grown considerably they could keep larger gas

asses -around them. In that way the planetary atmospheres
5 Kgl. Danske Vidensk. Selskal, Mat.-fys. Medd. XXV, 3. 5

We see that, indeed, the values of the second row are every
where between those of the first and third row in agreement with?
our assumption of the origin of the ‘regular” and ‘‘irregular’i
satellites.

We note here finally that for the mean distances of the ‘‘regular’

satellites from their primaries exponential laws like the Titiu
Bode law seem to exist:

r, = roe". (6.

The value of ¢ decreases from 1.78 for Jupiter to 1.44 for Ur
nus. The value for the solar system is 1.86 if we exclude Plu
as an ‘‘irregular’”’ planet. We have commented on these expone
tial laws in Chapter 1II and shall not discuss them here.

B. Densities and masses of the satellites. Since all sate
lites are smaller than the critical dimensions, gravitation
capture has not played a role in their building-up process. Sin
(apart from the moon) all satellites are formed in the regions
the outer planets, we should expect densities of the satellit
lower than those of the inner planets, but higher than those
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started. In the first stages of their development, there was still a disc
of matter present which in its turn regulated the motion in the;
planetary atmospheres, resulting in a regular system of vortices:
in these almospheres. In the ‘‘secondary roller bearings’ th
satellites started to grow.

Finally the whole disc started-to disappear, and we were left:
with the system as we observe it at present. Of course, as soon
as the dimensions of the atmospheres had beeome so small that’::
there was no longer any turbulence, the planets were able to retaid
the atmospheres. These almospheres are the ones we can observe
now. Their lifetime is much longer than the probable age of the;
solar system.

C. Rotational periods of the planets. We have seen th
there are so many features which are the same for the planetary
system and the systems of the ‘“‘regular’ satellites that it seemed
unavoidable not to arrive at the conclusion that their origin w
analogous, These features were the nearly circular orbits lying

In the case of the outer planets tidal action seems to have
<been negligible. We want to investigate how the atmospheres of
“the outer planets could have influenced their rotation. At the
beginning, the large vortfices will have supplied angular momentum
to the planetary atmospheres. The result was probably that the
angular velocities in these atmospheres corresponded to Kepler's
- third law (ef. Chapter II, Section A). In particular, the rotational
elocities of the planets will have been given by that law.
However, as soon as the disc started to dissipate, the same
rocess started for the planetary atmospheres, and the planets
were decelerated because of the transfer of angular momentum
ccompanying the dissipation.
‘In the next table, we have inserted the rotational periods
~corresponding to Kepler's third law, the observed rotational
periods, and the percentage change in angular momentum from
e first to the second:

practically in the equatorial plane of the primary, the distribution’ Table 6. IL
of mass in the system, viz. the largest bodies in the middle of the: T

. - . . . Kepl Tohs ‘{9/9
system, and exponential laws for the mean distances from t
primary. Also the ratio of the total mass of the planetary system, 88 jupiter. .................. 3 hrs 10 hrs 0.70
respectively satellite systems to the sun, respectively mother pla Saturn . ... 4 hrs 10 hrs 0.60
els, is about constant, i. e. about one thousandth. The question JPanUus. - veee e 3 hrs 11 hrs 0.73
we are interested in now is why the outer planets have still R EERREE , 2 hrs 12 hrs 0.83

fairly rapid rotation while the sun is rotating so slowly.

Before considering the outer planets, we shall devote a few
sentences to the inner planets. There are two reasons why we
should expect low rotatiomal velocities for the inner planets.-
First, they have had practically no atmospheres around them
during their growth (see Table 6. I). This means that the inter:
action with the gas in the disc could not have followed a regulat
pattern. Secondly, the tidal action of the sun has been much
larger for the inner planets than for the outer planets, as was
shewn by StratroN (38). This easily accounts for the fact thai
Mercury’s rotational period is equal to its period around the sun;

Altogether it seems that the low rotational velocities of the
inner planets constitute no serious difficulty. It is not, perhaps;
irrelevant that the earth with the highest rotational velocity h
also had the largest atmosphere.

We see that though the rotations of the planéts are still
irly fast, they prébably must have been slowed down consider-
ly. '
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hat the temperature of the central star has to be below a certain
alue. Otherwise condensation will be out of the question. This
~can, for instance, be seen from equation (5.6). If the temperature
n the disc is much *highér than in the disc considered in this
- paper, the fraction of the gas taking part in the condensation will
' be much smaller and trit Will be larger than the lifetime of the
“dise, thus leaving us without condensation products. A higher
emperature of the central star results not only in higher temper-
atures in the disc because of greater energy output, but also in a
higher temperature because of a higher degree of ionization.
Although the actual figures given by Jeans in the following
quotation. will not be the right ones if the theory given in this
paper should be correct, we still think that this quotation will
give us an adequate ending for this paper:

“The contrast between the slowness of cosmogonic events
and the rapidity with which events on our earth move leads to
some interesting reflections. Let us suppose that civilisation on
earth is 10000 years old. If each planetary system in the universe
contains 10 planets, and life and civilisation appear in due course
each, the civilisations appear at an average rate of one per
0 million years. It follows that we should probably have to
sit 50000 galaxies before finding a civilisation as young as our
wn. And as we have only studied cosmogony for some 200 years,
e should have to sgar'ch through about 25 million galaxies, if
ey exist, before éncountering cosmogonists as primitive as
selves. We may well be the most ignorant cosmogonists in
e whole of space.”

Final remarks.

In the last two chapters we saw that we could explain th
differences between the outer and the inner planets as far a
mass, density, and rotational velocities are concerned by lookin,
carefully into the condensation process. This then presenfs u
with an explanation of group C.

There are also indications given in Chapters III and V thg
the motlion in the dis¢c has once shewn regularities which migh
easily account for both the orbital regularities (A) and the ex
ponential laws like the Titius-Bode law (B).

We have not entered into a discussion of the many irregu
arities which can be observed in the solar system. Some of the
have been commented upon by von WEeizsicker (10). For in
stance, the fact that the eccentricity of Mercury’s orbit is so larg
may well have been due to the regularity of the vortex systes
being disturbed in the immediate neighbourhood of the sun.

We want to remark here that there is one point which seemyji
to deserve a thorough investigation. It is the fact that Mars is sof
much smaller than the earth, that Mars has only two very sma
satellites, and that instead of another planet between Mars and
Jupiter we find the asteroids which together possess only a ver
small mass. This is an especially interesting point since there is also §f
other evidence that in that neighbourhood some catastrophe h
oceurred. Recent investigations by Brown (1) indicate that th
meteorites might be the remnants of a planet of the size of Ma
which was broken up by some unspecified process.

A question which might be asked is how much chance
there to find a planetary system surrounding a certain star.
seems that planetary systems will be much more frequent thany
corresponding to e. g. Jeans’ tidal theory. However, there a
still a few requirements which have to be met. One of them
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Table II.
Jupiter’s satellites.

Eu- | Gany-| Cal-

5 | 1o
2 0 ropa | mede | listo

Observational data.
Earth’s mass: 5.975-10% g.

Moon’s mass: 7.35-10% g, st. from Jup. in ‘
Sun’s mass: 1.992-10% g. e 1.8 4.2 6.7 11° 19 115 118 | 118 | 225 | 235 | 237
Sun’s mean radius: 6.965.10%° cm. ] st. in planetary
Sun’s rotational period (at the equator): 24.65 days. AR 25 | 5,9 9.4 15 26 | 161 | 165 | 165 | 315 | 330 | 332
i jon of orbit to :
Table I. ’ equat. plane. .. | 277 | 1/ 28" | 117 | 157 | 181°)243°| 82° |232°(208°| 61°
Elements of the planetary system. ity . ... 0.0028| 0.0000 0.0003] 0.0015 0.0075/ 0.16 | 0.21 | 0.08 | 0.21 | 0.38 | 0.27
. : =1).... .. 099t 0.64 | 2.11 | 1.32
i . e .
Ig/flelr\; Venus | Earth | Mars ;;]iltle-er Saturn Irjlf;: Elerﬁ; e o 27 29 122 13 :
Mean dist. from
sun in 1012 cm. | 5.8 108 115.0 1228 77.9 143 287 450
. . Table III.
Sidereal period | 88d |225d|365d687d| 12y | 29y | 84y | 165y . s N
Eccentricity .. | 0.206 | 0.007 | 0.017 | 0.093 | 0.048 | 0.056 | 0.047 | 0.009 Saturn’s satellites.
Inclination of
orbital plane to Mimas Ence- Tethys| Dione| Rhea | Titan Hy- Ia- | Phoe-
e .| ladus v perion | petus| be
ecliptic....... 7°0° | 3°247 | 0° 1°517 | 1°187 | 2°29° | 0°467 | 1°47/
Mass in earth’s . -
mass as unit.. | 0.05)| 0.8 1 0.1 |318 |95 15 17 dist, from Sat. in [ ¥
Density in g Rcm L 1.9 2.4 2.9 3.8 5.3 12 15 36 130
s ..., 41 | 49 | 55 | 39 | 1.3 | 07 | 1.3 | 1.6 | 5.5 it from Sat. in
Rad.in 10® cm. .5 6.2 6.4 3.4 [ 69.8 |57.6 255 | 250 6.4 radii ,....... 3.11 | 3.99 | 494 | 6.33 | 8.84 | 20.5 24.8 59.7 | 217
Number of on. of orbit to ]
satellites . . . .. B o 9 |11 04| 4 1 ) © equat. plane ... 19817 | 17 | 1°8 | O’ | 217 | 18/ | 1756’ | 14° | 149°
Inclination  of rings : s ity........... 0.0201{ 0.0044  0.0000{ 0.0022( 0.0010| 0.0289  0.1043 10.0283 0.166
equater to or. oon = 1)...... 0.0005| 0.001 |0.009 {0.614 |0.03 |1.9 [<0.0008 |0.019
bital plame ... | .. | .. |23 |=25° | 3o |26° |ose |1a10 | . Ay ingem.. ... 0.8? (132 [102 [15? [1.0? [36? | 132 122
Axial rotational
period........ 88 d .. 24h| 25h| 10h | 10h | 11 h | 12 h?
inner or terrestrial ouier or major
planets planets

1 All data are taken from Russein, DuGaN, STEWART (3). L
2 I am indebted to Prof. Lundmark for giving me his new data about Neptune]
rotational period before publication.
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Table IV.
Uranus’ satellites.

Nr. 3

References.

Ariel Umbriel | Titania |{ Oberon 1) H. S. BRown, Astrophys. Journ., in the press.
2) R. A. LyrTtLETON, M.N.R.A.S., 98, 634, 1938.
. “(3) H. N. RusseLr, R. S. Ducan, J. Q. Stewart, Astronomy I, revised
Mean distance from Uranus in 101° ¢em 1.9 2.7 4.4 5.9 edition, New York 1045,
Mean distance from Uranus in pla- (4) F. N6LkE, Das Problem der Entwicklung unseres Planetsystems,
netary radii ........... ..o L 7.4 10 17 22 : Berlin 1919,
Inclination of orbit to Uranus’ equa- - (6) H. N. RusseLy, The solar system and its origin, New York 1935.
torial plane. .. ............... . ..., 0° 0° 0’ 0’ " (6) K. BIRKELAND, C. R., 155, 892, 1912.
Eccentricity L.t 0.007 0.008 0.023 0.010 :(7) H. P. BErRLAGE JR., Erginzungsband zu Gerlands Beitrige zur
Geophysik 17, 1927; Proc. Koninkl. Ned. Acad. Wet., Amster-
dam, 38, 614, 719, 1930; 85, 553, 1932; 87, 221, 1934; 88, 857,
1935; 43, 532, 557, 1940.
(8) H. AvrvEN, Stockholms Observatoriums Annaler, 14, nrs 2, 5, 9,
Table V. 194219486,
Other satellites. (9 H. Avrven, Arkiv f. Astr.,, Mat och Fys., 28 A, nr. 6, 1942,
10) C. F. von WEIZSACKER, Zs. f. Astroph, 22, 319, 1944. S. CHANDRA-
. . ) SEKHAR, Rev. Mod. Phys., 18, 94, 1946.
Moan | Phobos | Deimos | Triton 11) L. Serrzer, Astroph, Journ., 99, 675, 1939.
12) R. A. LyrrieroNn, M.N.R.A.S., 96, 559, 1936; 98, 536, 1938.
Mean distance from primary in 10'° cm 3.8 0.9 2.4 3.5 13) R. A, LyrrLETON, M.N.R.{X.S., 101, 216, 1941.
Mean distance from primary in planet- | 60 2.8 6.9 14 14) F. HovLE, Proc. Camb. Phil. Soc., 40, 256, 1944; M.N.R.A.S., 105,
ary radil. .. ... .. .o il 3 175, 1945; 106, 406, 1947.
Inclination of orbit to primary’s 15) J. B. S. HaLpang, Nature, 155, 133, 1945.
equatorial PIANe .. .....oeinoio ... ~ 20° 10 2° 20° 16) F. L. WuirpLE, Paper read before the A.A.A.S. on Dec. 27th 1947,
ECCENTIiCity «« v veeerieennens 0.055 0.021 \ 0.003 0.000 17) H. JEFFREYS, Nature, 163, 140, 1944.
Mass (moon = 1), ........oovnuen. 1 extremely small 1.8 18) C.F. voN WEIzZSACKER, Zs. f. Astroph., 24, 181, 1947.
Density in g em . .. ............. 3.34 ] 28 . 19) A. S. EppiNgToN, Internal Constitution of Stars, Cambridge 1926,

Ch. X111,
20) B. STROMGREN, Astroph. Journ., 89, 526, 1939.
(21) M. Rubxyosing, Kgl. Danske Vid. Selsk., Mat.-fys. Medd., 18,
©onr. 2, 1940, :
22) E. O. LAwReNCE, N. E. EpLEFSEN, Phys. Rev., 34, 1056, 1929.
(23) R. ToUsEY, Paper read before the Am. Phys. Soc., Dec. 29th 1947,
(24). W. Baspr, W. PavLr Jr., Naturwissenschaften, 15, 49, 1927.
(25) A. S. EppineToN, Internal counstitution of the stars, Cambridge
1926, Ch. X.
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(26) P. Swinas, L. RoseNFELD, Astroph. Journ., 86, 483, 1937,

(27) S. RosseEranD, Theoretical Astrophysics, Oxford 1936, Ch. XXI

(28) H. A. Kramers, D. Ter Haar, B.AN.,, 10, 137, 1946 (nr. 371).

(29) IH. LamB, Hydrodynamics, Cambridge 1932, 6th edition, p. 58

(30) TH. voN KARMAN, Géttinger Nachrichten, 1930, 58.

(31) J. TuoMmINEN, Ann. d’Astroph., in the press.

(32) L. PranDTL, Abriss d. Stromungslehre, Braunschweig 1931, p. 9

(33) D. Ter Haar, B.AN., 10, 1, 1943 (nr. 361); Astroph. Journ. 10
288, 1944,

(34) R. Becker, W. Diéring, Ann. d. Phys., (V) 24, 719, 1935.

(35) D. TeEr Iaar, M.N.R.A.S., 106, 283, 1947.

(36) B. LinpBrap, Nature, 185, 133, 1935. _

(37) W. C. H. Eaxin, W. H. McCrEa, Proc. Roy. Irish Acad., 46, 91 :
1940.

(38) F. J. M. StraTToN, M.N.R.A.S., 66, 374, 1906.

(39) B. J. Bog, M.N.R.A.S.; 106, 61, 1946,
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