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Among the subgroups of the modular group the congruenc e
subgroups with respect to a prime have been the chie f

subject of detailed studies during the initial development of th e
theory of elliptic modular functions by FELIx KLEIN, ADOL F

HURWITZ, WALTER Dvoi, GIERSTER and other authors . Most o f
their papers on this subject are contained in volumes X-XX o f
the Mathematische Annalen . An elaborate-exposition has been give n
in volume I of the Theorie der elliptischen Modulfunktionen by
F. KLEIN and R . FRICKE (TEUBNER, Leipzig 1890), where mor e
information about the literature on the subject is to be found .

The way in which the question of the congruence groups i s
approached in these previous investigations contains element s
of an arithmetical character, of function theory, non-euclidea n
geometry, topology, and group theory . It seems worth while t o
give an introduction to the theory of congruence groups in whic h
the rôle of these separate elements and especially the abstrac t
group-theoretical characteristics are brought out more clearly .
For all primes which satisfy a certain arithmetical conditio n
(given in section I) I shall attempt to give such a deduction
on the following pages .

I .
Let q be a prime greater than 5 . (Without this restriction som e

special reservations concerning the values 2, 3 and 5 would b e
necessary in the sequel and, on the other hand, no new fact s
of interest concerning these cases are obtained . Hence we omit
them for simplicity .)

q	

1

We put q = 2rß-1, thus r =
2
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All congruences occurring in the sequel are to be understoo d
modulo q unless otherwise stated .

For every residue class c EIE 0 the congruence

O -
c
2r -1 = (Cr-1) (cr + 1)

holds, hence

cr 	
1 or -1 ,

since q is a prime. If r is the least positive exponent satisfyin g

this congruence, we say that c belongs to r .
We restrict q by the condition that 2 belongs to r . No further

restriction will be imposed on q .
If c is not the zero class, c =~= 0, it possesses a reciprocal

class c-' defined by the congruence cc-1 - 1 . Since -2r = 1 ,
we get in particular

2 1 = - r = r +1 ,

and hence the classes of r and r ± 1 belong to r . Thus the con-
gruence

which is equivalent t o

implies
y = 0 modulo r .

Hence the expression r2' yields all quadratic residues exactly
once, if q ranges over a complete system of residue classe s
modulo r .

II .
In this section we define some simple auxiliary functions o f

an arithmetical character .

II, 1 . Let z denote the set of all residue classes e modulo
q except the zero class :

(1 )

(z) e *O .

This set z forms a group by multiplication . On this set we defin e
a function r(e), which is a residue class modulo r, by



Nr. 18

1 ,2r(O)

	

e2

	

g _I_ 0.

It follows from the last remark in section I that the residu e
class r (q) is uniquely determined by the definition (2) . This
definition of r (q) may also be writte n

(2)

(3)

It is immediately inferred that r has the following properties

	

(4)

	

r (-0) = r (0 ,
(5)

	

r (e 1 e2) = r (el) +T (e2),J modulo r .
(6)

	

r(±1)0 .

In consequence of (5) and (6) we ge t

(7)

	

r ( Le) + r (q-1) - 0 modulo r .

In particula r

(8)

	

r(r) == 1 = r(-r)	 r(r+ 1) modulo r

and hence for the reciprocal class

	

(9)

	

r (2)	 -1	 r (-2) modulo r .

11, 2 . Let Z denote the set of all "three-sets" [q, a, wj, wher e
w denotes a residue class modulo r, and q and a denote residue
classes modulo q with the additional condition that q is an
element of z :

(Z)

	

[Q, a, wj, e
=1= 0

	

modulo q
1 a arbitrary modulo q
w arbitrary modulo r .

Z comprises - q (q -1) 2 elements. We now put

(10) cp(Q,a) = (ea- 1 )

and define on the set Z a function g, which is itself a three -
set, by

(11) g [P, a, wj = [e g , ag , wg] = [-P 1 , (C, a), w + r (q)],
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T being the function defined in II, 1 ; the congruence sign refers

to modulus q for the first two numbers in the three-set and to

modulus r for the last one . Since -g -*= 0, the three-se t

g [g, a, w] belongs to Z . We can thus repeat the operation g ,

and we get

g 2 [g, a, w] = g [gg, a g , w g ] _[g, a, w] ,

since

-(- e
-1)- 1

(-g~1,g(ga-1)) _ - 6?-1 i-e 1 o(ga- 1)- l }

e
1 1ga-1 +1}	 a ,

w- z (g) 7-- z (- g 1 ) = w modulo r by (4) and (7) .

Hence g is an involutory transformation of the set Z into itself .

This transformation leaves no three-set invariant . In particular ,

the congruences
au

	

a modulo q

w g = w modulo r

cannot hold simultaneously .
In fact, if g

	

+1, then t (g)

	

0 modulo r, and thu s

w g = w +-r(g) w modulo r ;

if g = ±1, we get from (10)

co, _ a --- 1 --la- a .

The elements of Z are thus distributed in pairs by g . .

II, 3. Let z' denote the set of all residue classes g modulo q
except 0 and -1 :

(z' )

	

g =1=

	

O 1

On this set z ' we define a function f (o), which is itself a residu e
class modulo q, b y

(13)

	

f (g) - -(1 + e-') .

In virtue of the condition (z' ) the class 0-1 exists, and it i s
neither 0 nor -1 . Hence f (g) is neither 0 nor -1 . We can
thus repeat the application of f and ge l

(12)
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f2 (A) = f (f (A))

	

- + (1 -F- A 1 )-1
7

-(1 -i-A) (1 +A)_1+2 (1 + 0-1,

f2 (A) - - +0-1,

fa (A) = f(-(l +2) 1 ) = - 1+1+ e

ß (C) = A •

This shows that f is a one-one transformation of order 3 i n

the set z ' .

We may therefore arrange the elements of z ' in cyclical sub-

sets of three elements except when invariant under f. We repeat

for convenience the general cycle as expressed by (13), (14) ,

and (15) :

(16)

and note the special case, having regard to (1) :

(17) 1-2--->- r> 1 .

The latter is not invariant, since we have assumed q

	

3 .

It is observed tha t

(18) e . f (A)' f2 (e) = e (1 + ,g-l) (1 -{- 0-
1

II, 4 . Let Z ' denote the set of three-sets with the first symbo l

belonging to z' :

l e ~r 0 and -1 modulo q

(Z')

	

[A, a, w],

	

J a arbitrary

	

modulo' q
co arbitrary

	

modulo r .

1Z' contains

	

2) elements . On this set we define a~ q (q -1) (q-

function G, which is itself a three-set, b y

(19) G [A, a, w] = [AG' aG' °J Gi

	

[f (Q) , (A, a), co -I- i (A)] •

This three-set belongs to Z', since Re) belongs to z' . For the

same reasons as with Z, this transformation G leaves no three -

set invariant ; in particular, the second and third symbol ar e

not invariant simultaneously . By repeating this operation we ge t

(14)

(15)

A--÷ -(1-j-A 1)>-(1-}-0-1
e
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(21)

(22)

G 2 [e, a, w ] = G [eG , a G , wG] - LeG2, a G ~, w GL ]

= [f2 (e)

	

(e , a), w + T (e) + T (f (e))] ,

~P2(e, a) = f(e)~f(e)(e,a) -1 }

-( 1
ff
+ e 1)l- ( 1 +e 1)e(0a-1)--1 }

	 ( 1 +0)l( l + e 1)(ea -1)+o 1}

(l+e)i(l+e)a --1} ,

and with one more repetitio n

1 G 3 [e, a, co] = G [e Gs , aG,, w Gz ] = [e, a, w], since

f3 (e) - e by (15) ,

(e, a)

	

A (e) ßf2 (e) T2 (e ,, a) - 1 }

- (1+0)-11-(l+e)-1(l+e)((l+e)a-1)-1 }
( 1 +e)-1 {( 1 +e)a-l+l} = a,

co + (e) + (f (e)) + i (f2 (e)) 	 w modulo r by (18), (5) and (6) .

Thus G is a one-one transformation of Z' of order 3 without

any invariant element, and it distributes the elements of Z' i n

cycles of three each, the explicit scheme bein g

[e , a , w]

	

[- (l + e 1 ) , e (ea - 1), w + T (e) ]

-- [-(1+e)-1,(1+{(1+e)a-1},w+v(e)+T (1+e1)]

[e, a, 0j] .

III .
Lei r (q + 1) simple, oriented polygons be given, each of whic h

has q sides. We intend to combine these polygons into a two-
dimensional, closed, orientable manifold Ø by certain identifi-

cations of pairs of sides . This is done in an abstract, purely

topological way so that (in this section and the next two) no

question of metric comes in .
As in section II, the symbol w denotes residue classes modulo r ,

while e and a denote residue classes modulo q. Let r of the polygon s

(20)
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be denoted by P(w) and called "central polygons", the remainin g
qr polygons being denoted by P (a, w) and called "peripheric
polygons"; here w ranges over all residue classes modulo r an d
a over all residue classes modulo q . Let s(ow) denote the sides
of P(w), the numbering a of these sides proceeding in the positiv e
sense of the oriented polygons, and s (q, a, w) the sides of P (a, w) ,
the numbering e likewise proceeding in the positive sense . With
these denotations we define the following identifications :

(A) For all values of a and w the side s (a, w) of P (w) an d
the side s (0, a, w) of P (a, w) coincide with opposite senses .

This disposes of all sides of all central polygons and of th e
sides s (0, a, w) of all peripheric polygons . So we are left with
all sides s (o, a, w), o =~= 0, of the peripheric polygons, and thes e
sides thus correspond to the set Z of three-sets . For these sides
'we define :

(13) The coincidence of these sides in pairs is given by th e
involutory transformation g : The side s (e , a, w) coincides with
s (qg , ag , w ,) ) with opposite senses .

Since the two last numbers of the three-set are not left inva-

riant simultaneously, no side coincides with a side of the sam e
polygon .

We now establish the cycles of vertices resulting from these
identifications by turning around these vertices in the positive
sense. Starting in the central polygon P (w) we leave it over the
side s (a, w) and enter across the coinciding side s (0, a, w) accord -
ing to definition (A) into the peripheric polygon P (a, w) . The
preceding side of this polygon is s(- 1, a, w), which coin-
cides with the side s (1, o-+ 1, co) of the peripheric polygon
P(a+1, w) according to definition (B) . The preceding side o f
this polygon is s(0, a +1, co), which coincides with the side
s (a + 1,w) of the central polygon P(w), and the preceding sid e
of this polygon is s (a, w), with which we started . So we get a
cycle of vertices as illustrated by fig . 1 .

In this process a and w are arbitrary within their range .
Therefore all vertices of central polygons are involved . We may
also remark that, if we leave an arbitrary peripheric polygo n
P (a, w) by crossing its side s (-1, a, w) and turn in the positiv e
sense, we get the cycle of vertices just now established . Like -
wise, if we leave P (a, w) by crossing its side s(0, a, w) and
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turn in the positive sense, we get a cycle of vertices of the sam e
type, a being replaced by a-1 .

In the remaining cycles of vertices, therefore, only peripheri c
polygons are involved and, turning always in the positive sense ,
we have to leave P(a, w) by crossing a side s (o, a, w), where

Fig. 1 .

e belongs to the set z ' , (o =-~= 0 and -1) ; thus the three-set [o, a ,
belongs to Z' . This side coincides with s (ea , aq , wq) = s (-E 1 ,

q (o, a), co + r (o)) of P (q) (e, a), w +x (o)), and the preceding side
of this polygon, which we have to cross in leaving the polygon, is

s (- o 1 -1 ,'79 (o,6),w-F-r(o)) = S(o G ,6G,wG )

Therefore we leave the next polygon by crossing the side
s (e Ga , 6 Gz , wG2), and again we leave the next polygon by crossin g
the starting side s (o, a, w) in virtue of (21) . So again, we have
a cycle of three vertices, as illustrated by fig . 2 ; compare (22) .

In both cases the three polygons arranged round a vertex
are different .
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It follows from this construction that Ø is a closed surface .
Moreover, it is orientable, since the orientation of any two neigh -
bour polygons are in accordance, the common side being oppo-
sitely sensed .

We conclude this section by computing the genus p of O .

Fig . 2 .

The number of polygons is a, _ (q +1)r. Thus the number o f

different sides on Ø is a

	

1= 2 q (q + 1) r, and the number o f

vertices on Ø is a

	

1o = 3 q (q + 1) r . From this we get by Euler' s

formula

and hence

2 - 2

p (23) p = 1 +24 (g 2 - 1)(g - 6 ) = ~~(g +2)(g- 3)(q -5) .
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We list the smallest values :

q=3 5 7 11 1 3

p = 0 0 3 26 50

(23) also holds for q = 3 and q = 5, which might have bee n

included in the preceding considerations by adding a few specia l

remarks. In these cases the structure of is that of a tetrahe-

dron or dodecahedron, respectively .

Iv.
In this section we establish by a well-known process' the

fundamental group (Poincaré group) of by generators and

generational relations in a special form derived from the construc -

tion of Ø. Inside each polygon we select a representative point ,

which may be denoted by the same symbol P(w) or P(a, w)
as the polygon itself. From each representative point we dra w

an oriented path, called "elementary path", to the representativ e

point of each of the q neighbouring polygons and denote it b y

a (----), the paranthesis including the same symbols as th e

side s(---) which we cross in leaving the first polygon . So,

according to definition (A), a (a, co) leads from P(w) to P (a, w) ,

and a (0, a, w) leads from P (a, w) to P (w) . We therefore hav e

(24)

	

a (0, a, co) = a (a, w)-1 .

Similarly, for A =~ 0, according to definition (B), a (q, a, w) leads

from P (a, w) to P(y (o, a), w+r (e)), and we have for its invers e

(25) a(e u ag ,wg) = a(- A 1 , 9'(o,a),w+z(P)) = a(e,a,w)-1

	

0 .

These paths form on a network N of triangles as indicated i n

fig . l and 2 by dotted lines, and this network N is dual to th e

network of polygons (e . g . the dual of the dodecahedron network
is the icosahedron network) .

Every path on the network N between two representativ e

points is a chain of elementary paths . We choose the point P(0)

Nr . 1 8

1 See for instance H . SEIFERT and W . THRFLEALL, Lehrbuch der Topologie, § 46 .
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as starting point . Next we define for each representative poin t
an individual path on N connecting P(O) with that point in the
following way : First, let the point be a P(w) and let the path
envisaged be called h (w) . For w = 0 we take the path h (O )
to be empty . Then, by induction, when h (w -1) is defined ,
we pu t

(26) h(w) = h (w - 1 ) a ( O , w - 1)a(r,0,w-1)a(O,-{-1,w) ,

w = 1,2, •- •,r-1 modulo r .

[To control this, h(w-I) leads from P (0) to P (w - 1), a (0,w-1 )
leads from P(w-1) to P(0,w-1), a (r, 0,w-1) leads from
P(0, w -1) to P (r +1, w) by (10) and (8) and, finally, a (O, r+1, w)

leads from P(r + 1, w) to P (w) .] Next, if the representative poin t

is a P(a, w), we put for the path h (a, w) leading from P(O)
to P(a, w)

(27) h (a, w) = h (w) a (a, w )

for all values of a and w .
The fundamental group of is the group of homotopy classe s

of closed curves issued from a fixed point, for which we her e
choose P(O) . Every closed path on N issued from P(O) can b e
composed of certain closed paths depending on the single elemen-

tary paths, namely the h 1 leading from P(O) to -the starting poin t
of the elementary path a followed by this path a itself and the n

by the /IV- leading from its end-point back to P(O) . We denot e

the homotopy class of such a path by k (----) with the sam e
symbols in the parenthesis as for the corresponding elementary
path a ( ). This finite set of k's then generate the funda-

mental group .

If a general closed path issued from P(0) is written down
as a composition of the a's, then its homotopy class is the
product of the corresponding k's, as is seen by inserting betwee n
any two consecutive a-factors the corresponding h 1 h of their

common point . Any equation between the a's therefore yield s
a relation between the corresponding k's . So we get from (24)
and (25) for all values of e, a, w, for which these equations hold ,

(28) k (a, w) k (O , a, w) = 1,
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(29) k (e, a, w) k(-e

	

99 (e,a),w-1 - -c (e)) = 1,

	

-17 0 ,

the symbol 1 indicating the identity of the fundamental group .
(29) may also be written

(29)

	

k(e,a,w)k(eg ,ag ,cog) = 1 .

The homotopy class derived from the elementary path a (a, w)
is according to the above definition the homotopy class of th e

product

h (w) a (a, w) h (a, w)-1 ,

h (w) and h (a, w) being abbreviations for certain products o f

the a's as defined above . Inserting h (a, w) from (27) we fin d

that this reduces to the empty product . Hence

(30 )

and then (28) yields

(31)

k (a , w) = 1 ,

k(0, a, w) = 1 .

Consider the product of a's making up h (w) . The corre-

sponding product of k's is the homotopy class of

h (0) h (w) h (w)- 1 ,

which reduces to the empty product . Thus the product of th e
k's corresponding to the a's in h (w) is 1 . (27) together with (30 )
then shows that this also holds for the h (a, w) .

This fact together with (30) and (31), when applied to (26) ,

yields the relation k (r, 0, w -1) = 1 for the values of w indicated

in (26). We prefer to write this relatio n

(32)

	

k (r, 0, w) = 1, w

	

0, 1,

	

, r- 2 modulo r ,

and we emphasize the fact that the value w =

	

1 modulo
r is nol included in this relation (32) .

Finally, the homotopy class derived from the elementary path
a (e, a, w), e -k 0, is the homotopy class of the produc t

h (a, w) a (e, a, w) h ((P , a), w -f-i (e))-1
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in consequence of the definition (B) of coincidence. This only
yields the identical relation k (e, a, w) = k (e, a, w), since the

h's do not contribute .

To these relations we have to add the relations derived fro m

the fact that the cycle of three a's surrounding a vertex o f

bounds a simply connected piece of

	

and thus belongs to th e

homotopy class of identity . For a vertex of the type of fig . 1

this yields the relatio n

(33) k(a,w)k(-1,a,w)k(O,a+1,w) = 1 ,

and for a vertex of the type of fig . 2 the relatio n

34) k(e, ,G,(0) k (f (e) , 99(e, a), a-) + (e)) k (A (e) , q (e, a), w +T (e)

+ r (TO) = 1 ,

in which e =~- 0 and-1 . With the use of the symbol G thi s

relation reads

(34) k (e, a, w) k (CG, aG , w G) k (PG2' G Gz , w G2) = 1 .

This completes the establishment of the generational relation s
of the fundamental group. Looking over the result, we see tha t

we may omit the k (a, w) and their reciprocals, the k (0, a, w) ,

since they are identity according to (30) and (31). Then relation

(28) disappears, and (33) reduces t o

(35) k(-1,a,w) = 1 ,

while (29), (32), and (34) remain unaltered . We thus have the
following result :

The fundamental group of Ø may be generated by the element s
k (e, a, w) , e * 0, with (29), (32), (34), and (35) as generationa l
relations .

One might suggest the elimination even of the k (r, 0, w) fo r

w -1 modulo r and of the k (- 1, a, w) in consequence of (32)

and (35), and at the same time of their reciprocals k (2,r +1, w+ 1)
and k (1, a + 1, w) . This would, however, destroy the full generality
of relation (34), into which some of them enter for special value s
of e, a, w . We therefore prefer to keep them, but we may note
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at once the consequences as to the reciprocals . We put them
in the form

(36)

	

k (2,r+ 1, w) = 1, w

	

0 modulo r ,

(37)

	

k(l,o-,uw) = 1 .

If we put o = r, o. = 0 in (34), we get by (10), (17), (8) ,
and (6)

k (r, 0 ,w)k(1,r+1,w-}-1)k(-2,r,w-r1) = 1 .

Here the central factor drops out in virtue of (37) . The recipro-

cal of the last factor is k (r+1, 0, w) by (29), (10), (1), and (9) .

Thus, if w -1 modulo r, the first factor drops out in virtu e

of (32), and we get

(38) k(-2,r,w) = 1, w a 0 modulo r ,

(39) k(r+1,0,w) = 1, w =I_ -1 modulo r .

If co = -1 modulo r, we ge t

(40) k (r,0,-1) = k(r+1,0,-1) ,

and for their reciprocal s

(41) k(2,r + 1,0) = k(-2,r,0) .

These last six relations (36) to (41) need not be included i n

the generational relations of the fundamental group, since the y

are consequences of the generational relations (29), (32), (34) ,

and (35) established above .

V.

Let F denote the abstract group generated by three element s
S, T, U subject to the relations

Sq = 1 ,

	

T 2 = 1,

	

U 3 = 1,

	

STU = 1 .

Eliminating U by means of the last relation we get for F a re -
presentation hyg two generators S and T with generational relations
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(42) S q = 1

(43) T 2 = 1

(44) (STY = 1 .

We use this latter form and pay attention to relations (42) and
(43) by only regarding exponents of S and T as residue classe s
modulo q or modulo 2, respectively . So (44) is the real workin g
relation and, for convenience, we write it in different, but equi-

valent forms :

(45) (ST) 3 = 1 , STS = T S 1 T, TST = S 1T.S1, (TS-1 ) 3 = 1 .

As a consequence of (45) we ge t

(46) TS 2 1' _ (TS-1T)2
= (STS) 2 = STS2 TS .

We now take q to mean a prime q = 2r + 1 subject to th e

same restrictions as in section I and define the functions r(e) ,

f (e) and (e, u) and the transformations q and G as before .

Moreover we introduce a function r(w) the smallest non-
negative residue of w modulo r :

z (co) = w modulo r,

	

0 < (w) < r .

We denote by W the following element of F :

(47) W = TS r TS-2 TSr = TSr+1 TS 2 TSr +1 ,

these two products being equal in virtue of (46) . We also note
the reciprocal of W :

(48) W 1 = Sr+ 1 TS 2 TSr+1 T = SrTS 2 TSr T.

Regarding as before e and a as residue classes modulo q
and w as a residue class modulo r, We introduce the subgrou p
H of F generated by the following elements :

(49) k , a, w) = Wn(L0) SG TS9 TS° TS-`p(~,r,)

	

(w+z(9)),
o =~=

O .
D . KW . Danske V idensk. Selskab, Mat.-fys . Medd . XXV, 13 .

	

2
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We set out to prove that these elements satisfy the relation s
(29), (32), (34), and (35) established in the preceding section
for the fundamental group of Ø .

If in (29) we insert the values given by (49), we ge t

jv (w) SG TS 9 TS 9 1TS-`o(9,0 W-n(w+r(p))

jhua(w+z(P))S`p(°,G)TS-9-1TS-9TS-GW-Th(w)
= 1 .

Here we have made use of (12) in the last two factors .
In (32) we have with w -~- -1 modulo r :

k (r, 0, w) = LI'n (w) TSr TS
2 TSr w-m (w + 1)

	

1

by (8) and (47), for n (w + 1) = r (w) +1, since w =I- - 1
modulo r .

In (34) we get by inserting from (49)

W~ (w) SG TS°TS° 1 TS-(p(~ .G)W-7t(w+T(e))

•
W7c (w + T (p)) S(P (9,0 T Si (P) TSf(P) 1 Ts-(P2 (p, 6 ) W-7t (w + T (~) + T(f(9)) )

• j,V7c (CO + T (P) + T (t (a) )) S CPS (c> , °) T Si z (9) T,Jf2 (9)-1 TS- 6 W-7 (w )

since by (21 )

(f2 (o), 9) 2 (P, a)) = 9'3 (P, a) =- a modulo q
and

z (~) + (f (C)) + z (f2 (a)) = 0 modulo r .

Here the underlined parts cancel . Moreover we have by (13 )
and (14) for the exponents of those powers of S which thereb y
become neighbour s

	

e +f (e)	 1 -(1+ß1) = ,
/

	

/ (0)-1 + f2 (e)	 -- (1 + 1 ) 1 - (1 + e)-
1

We therefore ge t

117Th(w) SG TS 9 (TS -1)3 S1+f 2 (0 -1 TS-GW-7T(w)
= 1

by using (45) and (14) .

-(1-E-ß)-1(1+e) ==n - 1 .
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Finally, in (35) we find by (45)

Ie (- 1, 6, co) = TV" (`0) S' TS-~ TS-' TS-" 1) W-"(„ + o) = 1 .

The elements (49) therefore also satisfy relations (36)-(41) ,
since these are formal consequences of the four relations jus t
proved . Especially we remark concerning the elements occurrin g
in (40) that by (49) and (1) and (47 )

(50)

	

k (r, 0, -1) = Wr-1 TSr TS-2 TSr W7-- (0) = Wr.

Thus Wr is an element of H .

VI .

It is inferred from what has just been proved that the sub-
group H of F defined in the preceding section is one-one iso-

morphic either with the fundamental group of Ø or with a facto r
group of that group. We set out to prove that the first case
occurs . This is done by constructing from the group F a set of
polygons and of identifications by the k (e, a, co) which corre-
spond to the construction of in section III . (This construction
is based on a procedure indicated by W. Dvcic in a footnot e
on pages 41-42 of Mathematische Annalen, vol . XX . Instead of
the pair -2 and r used in the present investigations, Dyck uses
a general pair of mutually reciprocal primitive roots a and ô
modulo q, thus without imposing any restriction on q.)

2
Let a triangle stu be given with angles equal to -, 2 an d

q
respectively ; see fig . 3 . As we assume q>7, the triangle is

situated in the non-euclidean plane . A reflection in st followed

by a reflection in su is a rotation about s through an angle 2
z

q
in the positive sense . We denote this rotation by S, and hence
Sq is identity . Similarly, T is a half-rotation about t, and U is
a third of a full rotation about u, if they are taken to be th e
product of two analogous reflections . The product of reflection s
shows that STU = 1 1 Hence S, T, and U generate a group o f

1 A product is read like a composed function : First carry out U, then T, finally S .

gt

3 '

2*
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motions in the non-euclidean plane, which is our group F, an d
which we now generate by S and T with relations (42), (43) ,

and (44) . The shadowed triangle slup of fig. 3 being derived
from stu by reflection al st, the triangle suo u is a fundamenta l

domain for the group F. In fig . 3 this triangle is inscribed with
the symbol of identity . Let the triangle derived from it by a n

arbitrary element e of F he denote d
with the symbol e . If e ranges over

the whole of F, these triangles cove r

the entire non-euclidean plane . This

is illustrated by fig. 4 for the casei
of q=7 . ~

The triangles 1, S, , S q
1

form a polygon P(0) with center

at the point s, which will also b e

called the representative point P (0) .

In the triangle S G the side opposite

P (0) is called s (a, 0) . Then S` TS G

2Lo

		

Zl. is a half-rotation about the cente r
t

of this side, and it carries the "cen -

tral" polygon P(0) into the "peri-

pheric" polygon P(a, 0), which has its side s (0, a, 0) coincidin g

with s (a, 0) with opposite senses conforming to the orientatio n

of the plane . The other sides of P (a, 0) are numbered s (O , a, 0)

in the positive sense .

This star of q +1 polygons, each consisting of q triangles

(each triangle being half white, half shadowed) is shown b y

fig. 5 for q = 7 .

The triangles of the central polygon P (O) bear the signature

Se , those of P(0, 0) consequently TS !, and those of P(a, 0) conse-

quently SG TSe. The side of the latter opposite the center P(a, 0)

is s,(O, a, 0) . The triangle adjacent to S GTS' along s ( O , a, 0)
is SG TS e T, because the triangle T is 'adjacent to the triangle l

along the corresponding side uo u . In order to make the side

s(-2, r, 0) of the peripheric polygon P(r, 0) coincide with the

side s (r -{- 1, 0, 0) of the peripheric polygon P(0, 0) with opposit e

senses we must carry the triangle Sr TS-2 T adjacent to s (- 2, r, 0)

r The figures 4 and 5 have been reproduced from KLEIN-FRICKE, Elliplisch e

Modulfunklioneu, vol . 1 .

Fig . 3 .
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into the triangle TSr+1
and this is done by the motio n

TSr+1 (Sr TS
-?

T)-1 = TS
r+1

TS2 TSr+1 =

see (47) . The saine motion W carries s (2, r-f- 1, 0) into s (r, 0, 0 )

for analogous reasons :

TSr(Sr+1TS2T) 1 = TSr TS 2 TS' = W.

Thus W can be thought of as a translation sliding the whol e

star downwards along the vertical diameter of fig . 5 at a distance
equal to the length of that diameter . If this displacement is
repeated w times, we get a star composed of a central polygo n
P(w), whose triangles are WW S°, and q peripheric polygons ,
P(a, w) , whose triangles are W" S" TS° . Take w < r, thus w = .r (w) .
If for P =I_ 0 we want the sides (q, a, w) of this last triangle to coin-

cide with the side s (Q q , ag , co g) = s (- q 1 , rp (q , o-), (w + z (q)) )

S~â (e, ")

	

1
of the triangle W'' (" + ' (0)

	

TS-&

	

with opposite senses ,

we make the adjacent triangle of the latter, thus urn (w+ r(o) )

S'P((',
c) TS-P_1 T coincide with the triangle W' (w) S" TS R . This is

evidently done by the element k (e, a, w) defined in (49) .

The r stars derived from the first one by W 01 , w = 0, 1 ,

• • • • , r - 1, form a singly connected piece Q of the plane, bounde d
by a polygon, whose sides correspond in pairs by those element s
k (O, a, w) which are not equal to 1 . This shows that the con-

struction of the subgroup H of F is a materialization of th e

fundamental group of the two-dimensional manifold Ø define d

in section III by abstract identification . The group H is here

realized as a group of motions in the non-euclidean plane, whic h

is a model of the universal covering surface of O .

The fundamental domain Q of H consists of r (q + 1) polygons

containing q triangles each . This shows that

(51)

	

i= r (g + 1)q = 2 g (g2 - 1)

is the index of H in F.
If the non-euclidean plane is denoted by D, we may spea k

of Ø as D modulo H, which means that points of D corre-

sponding by elements of H are considered as identical. In the
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same way, D modulo F evidently is a non-euclidean manifold
of genus zero, three points of which are singular with respect

to the metric, namely those corresponding to s, t, and u . They

may be called conical points . D modulo H is a closed manifold ,

which covers D modulo F with j sheets, and which possesses

no conical points . Accordingly, H possesses no elements of a

finite order.

VII .
We now want to prove that the covering of D modulo F by

D modulo H is regular . This is equivalent to the assertion tha t

H is self-conjugate in F. In order to prove this it is sufficien t

to prove that the generators k (e, a, w) of H are transformed

into elements of H by the generators T and S of F.

In preparation for this proof we state the following fact s

beforehand :

(52)

	

TWT-1 = W-i.

This is immediately seen from (47) and (48). Also the definition

of z (x) implies :

(53) 7r (5l (x)) = 7r (x) ,

(04) 7r(x)
+ z (

10 if .x

	

0 modulo r
x) =

(55)

r if x

	

0 modulo r ,

r' 7T (x)

	

r2x modulo q,

since r2r --= 1 .

We now transform k (e, a, w) (where it is remembered tha t

e =~= 0) by T and get by (49), (52), and (10)

Tk(e , , w) T 1 = TWn" S 0 TS(' T& 1 TS-rF (o, 0 W-7c('°+a( 2
p T

(56)
= j~~ -n(w) TS' TS(' TS('-l TS-('

(~°-1)TW'(o + z(
0)



On the other hand, suppose a -* 0 and a =~= e-l and consider the produc t

k(a,0,-w)k(a1(ea--1),-a,T(a)-w) k(-e- (ea-1)-1,-o(oa-1),T (a ) T(a 1((ß)a-1))-a) )

= IV" (-")) S° TS' TS"-1 TS' W-7' (T(0-w
)

. W71 (z((T)-w)S-
TS"

1(()G_
TS C. (()G-1) TS° ( od- w-71(r(Q)+r(CI 1 (()G-1)) co)

. wTC (z(a) + r (u-1 (PQ-1))-a)) s- f? (('6- TS-p 1 (2 r 1)-1TS-('(O"-1) TS°w-n(r(a)+r(G-1Qr-1)) +r((') 1((Ar-1) 1)-
°)) .

It should be noted that all reciprocals occurring herein exist owing to the assumptions fore and a ,

and the first argument for all three k's is =~= O . Now the underlined parts in the product cancel . More-

over we get for the exponents of the powers of S which thereby become neighbour s

a 1 -f-cs 1 (ea -1) = a-lea = P ,

a(ea-- 1)-1 -ô 1(°a-,1)
1
= (ea-1) 1 (a°e-1 - P 1 )

	

(ea - 1 )-1

Finally, with the use of (5) and (7) ,

T (a) -f- z (a l (Ca - 1)) -I- T (Q 1 (ea - 1)-1)

0 -1) -= ~ 1 .

--- Tla 6' 1 (ea-1) . e
1
(ea-1)-

1J

	

T0-1)

	

-T (o) modulo r .
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The above product therefore is equal t o

1TS-o(pa-1)TW-(-'T(°)) .

Comparing this with (56) and slightly reducing the last argumen t
of the third k we ge t

Tic (O, a, w) T

	

= TV-'T(w)-iz(_(o )

k(a,0,-UJ)

7)

	

k(a 1 (ea- 1),-- a,Z'(a)-w)

.k(- o
- 1 (ea -1) 1, -o(ea-1),~c(o

~Tl7L (CU+ T(O)) +7L(-û1 -Z(`O)) .

In consequence of (54) the first factor of the right hand pro -
duct is either 1 or W- r, and the last one is either 1 or W r.
Hence, by (50), the right hand member is an element of H .

We still have to supplement this result by a consideratio n
of the cases a == 0 and a = (2 - - 1 , which were excluded in th e
preceding computation . The two cases' exclude each other . As-
suming a = e 1 , we ge t

Tk(e, e-1, w) T -1 = Tijr~ (ro) S° 1 TS f2 TS° 1TS°W-' (w +T(v)) T

=

	

(w) TS° 1 TS°TS 1 Wn( "' +(e) )
= W- ;T(w)-~c(-w)k(ô l , 0,-(0)Wz(w+z(e)) +n(--(o))

Thus except for powers of tŸr all the generators of the typ e
a -- 1

are transformed by T into all generators of the typ e
a = 0 . Therefore the inverse is evidently also true . The explici t
formula i s

i7 " ) Tk(e, 0, w) T1= w i[(w)-T
-`o) k (o"1,o ,-w)W7(

(w+(e))+ (-w-T( ;~))

We have thus proved that THT = H.
In order to prove that SHS

1
= H we start with generators

of the following form :

'')
~
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k(r, r2x , x) = W~(Y) Sr2`TSrTS-2TS-r (rr2'-7) W-,,(,.+ 1 )

= W7, (x)S r2` WS_ r2 ('
+1) W- rc ( as -r1 )

(by (49), (1), (S), and (47)) . We form their product for increas-
ing values of from x = 0 to = n-1 and denote this produc t
by T(n) :

(58)

	

Ÿ1(n) = k (r, r 2 ', 0) k (r, r 2 1 , 1)

	

k (r, r2(n1), n-1), n > 0 ,

and remark that T(0) means the empty product. We then ge t

T (n) = SW n S-ren W- oo

and from this we get some sort of commutation formula fo r
S and W :

(59)

	

SW" = T (n) W"(n)
Sr' n

This. is applied to

Sk(e,a,w)S- =SWn('") S" TStTS~ 'TS--°(P'-1)W-"(w+i(0)S--1 ,

and we get for the first two factors of the right hand produc t

Bleir(w)
= T(g(w)) W 2 ) Sr2 w

in consequence of (59), (53), and (55) . Similarly, for the las t
two factors : -

W-21(w+T( 0)S-1 = [Siva (w+r(N)) -1 =

= [ T (TC (w + Z (e))) W'Tr.(w+z(o)) sr 2 (t o + 1 (0)1-1 ,

where we note that r2`" - o z according to (2) . Hence

Sk(o, a ,w)S-1 = VI(g (w))W
"(w) S"+r2w TS()TS e iT,S-ô ("+ r 2w)+ w

W-;r + z(P)) Ÿl(g (a) + 2 (P)))-
1

=

	

(7G (co)) k (e , a + r2 (''w) T (Z (w + r (0))-1.
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Since the T's are elements of H defined by (58), this complete s
the proof of the invariance of H in F. The last formula together
with (57), (57'), and (57") states explicitly the elements of H
into which the generators of H are transformed by the gene-
rators of F.

VIII .

Let M ' denote the set of all matrice s

(a ,8'

	

l a ß

I Y s

with integer elements and determinant 1 . This set M' forms a
group by multiplication . The- matrice s

E _ (0 l ),

	

E
= \ o

constitute a self-conjugate subgroup M" of M' . The quotient group

(M)

	

M = M'/M"

is the modular group, the group of all linear fractional substi-

tutions with integer coefficients .
The (principal) congruence subgroup modulo q of M means

the set C of elements of M represented by those matrices whic h
modulo q are congruent to an element of M" :

(C)

	

l
y

å) =7- + modulo q .

It is immediately \ seen that this set C forms a group and ,
furthermore, that this group is self-conjugate in M .

Usually, the two matrice s

S(1 1
1
)' T=

(o -lh)

are taken as generators of M . Sinc e

T2 = -E, (ST)3 = -E ,

(M' ) = 1 ,

(M")
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they satisfy the relation s

(60)

	

T 2 = 1, (S T)3 = 1

as generators of M, and it is well known that (60) is a com-
plete set of generational relations for M . Since

St'?=(1 /
301) '

all powers of S are different in M, but

S q - 1 q
0 1~

F modulo q ,

and hence Sq belongs to C . The same then is true of the trans -
forms of Sq with arbitrary matrices In from M

`
(61)

	

n1-1
_ /a /~31

(~

1}

`_ å

	

~ /

Y

	

\

	

/

1 -a,vq a2q

	

l~ -y"q 1 ~-cryq/

Here a and y range over all pairs of relatively prime integers ,
and the resulting matrix does not depend on ß and 8 .

We can now form a subgroup Q of C, namely the one gene -
rated by all elements (61) . Evidently Q is self-conjugate in M
(and thus also in C), and the quotient group M/Q is obtained
by using S and T as generators and adding to the relation s
(60) of M the single relation

S q = 1 .

Thus M/Q is one-one isomorphic to the abstract group F o f
section V, and we write

(62)

	

M/Q = F.

We now take the modulus q to be a prime subject to th e
conditions of section I and use the notations introduced in th e
previous sections . It is remembered that all congruences are
understood modulo q unless otherwise staled .

It turns out that (on account of the assumption q> 5) the
group C contains more elements than its self-conjugate subgrou p
Q . We want to find a set of generators and generational relation s
for the quotient group C/Q and to establish the quotient group
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of C in M, for which, by a well-known theorem of group theory ;

we have
M/Q

MC C/Q '

When speaking of matrices (a J as representatives of th e
Y /

quotient group MX, the integers a, ß, y, å may be freely replace d

by other members of their residue class modulo q and, more -

over, the sign of all four numbers may be changed simultane-

ously. Under such operations the determinant remains =-= 1 mo-

dulo q . We apply this to the following products :

\0 1 !

(0 -1 \

1

	

r '

-1-2r1

r

	

J

TS-? TSr
_

	

- r 1

-2 0)

S r TS_'TSr
= (_ 1-2r O l

W = TSr TS 2 TS ' 	
(O - O /

	

(O

0
-1) .

Thus modulo q we have for W a diagonal matrix as a repre-

sentative matrix . For the powers of W we thus ge t

urn _ (2n 0
O 2 n '

and these are all different for 0 < n < r in consequence of th e

assumption of section I that 2 belongs to r . For n = r, however ,

(63)

	

Wr	 E .

Thus Wr belongs to C, but no smaller power of W .

In the same way we want to find a matrix representing th e
product k (O, a, w), defined by (49), and we get in turn :

S r =

TS' =

s-2 Tsr= (
1 \

2 0\

1 r/

0 -1 .\

-2 0,



30

	

Nr . 1 8

(1 c r)

0 1

	

(1

	

0

)

6 ea- 1

	

1

	

e
(ea-1 =a)

1

(Pc- 1 -e i
Q

	

0
(-e-1 -oo+ 1 1

0

	

-o J
(_1 0 \

0 - e /

Now k (e, cr, w) arises if we apply the factors Wn(` °) in front
and W-7T(GU+r(e)) in the rear of (64) . But since both W and th e
element (64) are represented by diagonal matrices when considere d
as elements of MIG, they are interchangeable, and we therefor e

	

multiply (64) by

	

('''+r(o)) . Now

	

ac (co)

	

(w -{- z(o)) = ---c (e) modulo r .

Hence, in virtue of (63), we only have to multiply (64) b y

W r(o)	 2 0(e) 2

pE'))
_((

0 )r(( 1)-T(e))
-

( 0e ÿ~1 7

in consequence of (1) and (3) . In both places we have th e
positive sign, or in both places the negative sign. We hereby ge t

(65)

	

k (o, a, w) = ± E .

The k a, co) are by their definition products of S and T.
(65) shows that they belong to C. Together with the generator s
(61) they generate a certain subgroup C' of C. For this we have

MIC'_ M/Q_ F

G/Q H

by (62) and the fact that the k (O, a, w) generate H when they
are considered as elements of F. Thus the index of C ' in M is
equal to the index ,j of H in F, . which was found in (51) .

S"

S" T

S"TS e

	

=

S" TS e T

S"TS e TS°

S"TS e TS(' I T

(64)

	

S"TSe TS e I TS- Q,u- 1 )
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On the other hand, the
`
index of C in M may be easil y

established : In a matrix I a 5 I of M ' the elements a and ß can -

not both be divisible by q . But take any two numbers a, and ßo
which are not both - 0 modulo q . Then two numbers a and b
exist such that a = ao + aq and ß = ßp + bq are relatively prime .

Let y() and 60 be so . chosen that aåo - ßyo = 1 . Then the rela-

tion a8-ßy = 1 holds for y = yo va, å å0 + vß with arbitrary

values for v . The choice of residue classes modulo q for ao and

ß p admits q2-1 combinations . For each of them there are q
possible choices of the class of v . Since at least one of a and ß

are 0, the choice of v implies q different residue classes fo r

at least one of the numbers y and 8 . Thus, in all, the matrice s

fall into q (q 2 -1) residue classes modulo q . Taking the simul-

taneous change of sign for all elements of a matrix into con -

sideration, this corresponds to

	

q (q 2 -1) different representa -

tive matrices for the elements of M/C . Since this number coin-

cides with the value j in (51), and since C ' is known to be a

subgroup of C, we infer that C ' = C .
We can thus generate the congruence subgroup modulo q of

M by taking the generators (61) and (65) together . This system

reduces to a finite system of generators for C by the matrix m

in (61) being made to range over a suitable set of j matrice s

which are mutually non-congruent modulo q . The usual point
of interest is not so much C as C/Q = H . This group then i s
generated by elements k (e, a, w), o =~= 0, with` (29), (32), (34) ,

and (35) as generational relations . The quotient group of C in M ,

which is at the same time the quotient group of H in F, has
S and T as generators, and a system of defining relations i s
obtained by adding the relations k (P, a, co) = 1 expressed in S

and T to the relations (42), (43), and (44) of F.
This system of relations is, of course, capable of abundan t

reduction, and no attempt is made here to reduce it to simpl e
forms. It is for instance well known' that in the special case
of q 7 the step from F to F/H can be carried out by addin g

one single relation to the relations of F, namely the relatio n

(S 4 T) 4 = 1 .

' See Burnside, Theory of Groups of Finite Order, p . 422 .



32

	

Nr. 1 8

Note .

After the preceding study had been sent to the printer, it came t o
my knowledge that Mr . HERMANN FRASCH had, in vol . 108 of the Ma -
thematische Annalen in 1933, published an article Die Erzeugung der
Hauptkongruenzgruppen far Primzahlslufen, which had escaped my
attention . On examining this earlier article I found a rather far-reachin g
consonance with my own investigations especially concerning the arith-
metical formalism, which I had treated explicitly beforehand in sec-
tion II, but which is contained implicitly in Frasch's development, an d
also concerning the choice of generators k(o,a,u), which correspon d
to the UÅ 1<. „ T in Frasch's notation, and therefore also the relation s
between these generators . Moreover, Frasch goes into the question o f
the reduction of this system of relations, which I leave aside.

If, nevertheless, I maintain the publication of my investigations unal-
tered, I do so on the ground that the chief means of research is diffe-
rent in the two papers. Frasch bases his work on the powerful metho d
of REIDEMEI:STER and SCHREIER for the abstract characterization of sub-
groups of given abstract groups contained in vol . V of the Abhandlungen
aus dein mathematischen Seminar der Hamburgischen Universität . -(By
the way, this method would not be necessary for the establishmen t
of a system of generators, since such a system follows directly fro m
formula (9) on page 231 of Frasch's paper) . On the other hand, m y
treatment is based on the most elementary notions of two-dimensiona l
topology without recurrence to Reidemeister and Schreier's method .
Upon comparing these two ways of approach I found that they thro w
some light on each other and that this might justify what could other -
wise he called a re-publication of results . For instance, the choice o f
the h(w) and h()T,,w) in section IV can be taken as an illustration o f
Schreier's condition (F) . The establishment of a complete system 'o f
generational relations by simple considerations of surface topology must,
in each special case, be simpler than the general mechanism of th e
Reidemeister-Schreier method, which leads Frasch to rather elaborat e
calculations . But I am pleased to call attention to Frasch's interestin g
use of this method, following an earlier paper by Rademacher, th e
more so as his section 7 hints at more general applications and eve n
touches on the illustration by means of surface topology .

Indleveret til selskabet den 13. december 1919 .
Færdig fra trykkeriet den 30 . marts 1930 .




