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mong the subgroups of the modular group the congruence
subgroups with respect to a prime have been the chief
subject of detailed studies during the initial development of the
theory of elliptic modular functions by FeLix KLEIN, ApoLr
Hurwitz, WALTER Dyvck, GIERSTER and other authors. Most of
their papers on this subject are conlained in volumes X—XX of
the Mathematische Annalen. An elaborate-exposition has been given
in volume I of the Theoric der elliptischen Modnlfunktionen by
F. KrLein and R. Fricke (TEUBNER, Leipzig 1890), where more
informatlion about the literature on the subject is to be found.
The way in which the question of the congruence groups is
approached in these previous invesligations contains elemenls
of an arithmetical character, of function theory, non-euclidean
geometry, topology, and group theory. It seems worth while to
give an introduction to the theory of congruence groups in which
the rdle of these separate elements and especially the abstract
group-theoretical characteristics are brought out more clearly.
For all primes which satisfy a certain arithmetical condition
(given in section I) I shall altempt to give such a deduction
on the following pages. '

I.

Let q be a prime greater than 5. (Without this restriction some
special reservalions concerning the values 2, 3 and 5 would be
necessary in the sequel and, on the other hand, no new facts
of interest concerning these cases are obtained. Hence we omit
them for simplicity.)

We put ¢ = 2r+1, thus r =

g—1
5 -

1*
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All congruences occurring in the sequel are to be understood

modulo g unless otherwise stated.
For every residue class ¢ = 0 the congruence

0=c"—1=("—DE+1
holds, hence

r
[

[

1 or—1,

since ¢ is a prime. If r is the least positive exponent satisfying
this congruence, we say that ¢ belongs to r.

We resirict ¢ by the condition that 2 belongs fo r. No further
restriction will be imposed on q.

If ¢ is not the zero class, ¢ == 0, it possesses a reciprocal

class ¢ ' defined by the congruence e = 1. Since —2r=1,
we get in particular
(1) 9 = _—r=r+1,

and hence the classes of r and r-+ 1 helong to r. Thus the con-

gruence
2¢

e

which is equivalent to

implies
g = 0 modulo r.

. 2 - . .
Hence the expression r™ yields all quadratic residues exactly
once, if y ranges over a complete system of residue classes
modulo r.

IT.

In this section we define some simple auxiliary functions of
an arithmetical character.

IL, 1. Let z denote the set of all residue classes g modulo
g except the zero class:

(=) ‘ p == 0.

This set z forms a group by multiplication. On this set we define
a function 7(g), which is a residue class modulo r, by



(2) 1270 = 0%, p==0.

It follows from the last remark in section I that the residue
class 7{(¢) is uniquely determined by the definition (2). This
definition of 7 (g) may also be written '

(3) @ = 1.

4

It is immediately inferred that 7 has the following properlies

4) 7(—0) = 7 (o),
(5) 7(0,05) = 7 (0,) +7(0,),; modulo r.
0! (E1) = 0. |

In consequence of (5) and (6) we get

(7) 7(0)+7 (0 ') = 0 modulo r.
In particular
(8) T(r) = 1 = 7(—7r) = 7{r+1) modulo r

and hence for the reciprocal class
') 7(2) = —1 = 7(—2) modulo r.

I, 2. Let Z denote the set of all “three-sets” [p, o, w], where
w denotes a residue class modulo r, and ¢ and ¢ denote residue
classes modulo ¢ with the additional condilion that ¢ is an
element of z:

IQ = 0 modulo ¢
(Z) [0, 0, w], <o arbitrary modulo ¢
‘o arbitrary modulo r.

Z comprises — g (g—1)* elements. We now put

o | =

(10) @ (0, 0) == 0(go—1)

and define on the set Z a function ¢, which is itself a three-
set, by

(11) glo.o, 0] = o0, 0,] = [—¢ Lo, o). o+,
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7 being the function defined in II, 1; the congruence sign refers
to modulus ¢ for the first two numbers in the three-set and to
modulus r for the last one. Since *9—1 == 0, the three-set
glo, o, w] belongs to 7. We can thus repeat the operation g,
and we get

9o lo, 0, 0] = glo,, 0, 0] = lo, 0, @],
since
—(—e ) =g, ,_
_ —17 —1 \
(—e Loleo—1) = —p {—0 ‘0(ec—1)—1j
az) 17

= Hoo—1+1} =0, '
w+1(g)—i—r(—g—l) = o modulo r by (4) and (7).

Hence g is an involutory transformation of the set Z into ilself,
This transformation leaves no three-set invariant. In particular,
the congruences

¢, == ¢ modulo ¢

W, = modulo r

cannot hold simultaneously.
In facl, if p g= £ 1, then 7 (o) == 0 modulo r, and thus

w, = @ +1(p) &= w modulo r;

if p = 41, we get from (10)

o, = cF1==o.

The elements of Z are thus distributed in pairs by g..
II, 3. Let 7" denote the set of all residue classes ¢ modulo ¢
except 0 and —1:

, __Jo
() Q_I:LL

On this set " we define a function f(p), which is itself a residue
class modulo ¢, by

(13) fl@)=—1+g .

In virtue of the condilion (Z) the class 9_1 exists, and it is
neither 0 nor —1. Hence [(g) is neither 0 nor —1. We can
thus repeat the application of f and get '
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L@ =FF@) =—1+0+g V' = U+ U+o " +o(l+e)
(14) L@ =—0+te
e =f(—1+o ) =—1+1+40
(15) f5 (@) = o.

This shows that f is a one-one transformation of order 3 in
the set z'.

We may therefore arrange the elements of z' in cyclical sub-
sets of three elements except when invariant under f. We repeat
for convenience the general cycle as expressed by (13), (14),
and (15):

(16) o= —(+e >+ —e
and note the special case, having regard to (1):

an 1>—2—>r—>1.

The lalter is not invariant, since we have assumed q + 3.
It is observed that

(18) ¢f@ @ =e(+g HU+e =1

I1, 4. Let Z' denote the set of three-sets with the first symbol

belonging to z':

Ig == 0 and —1 modulo ¢
ZhH lo, 0, @], ¢ arbitrary modulo ¢
la) arbitrary modulo r.

, .1 . N
Z contains q(q—1) (¢g—2) elements. On this set we define a

function G, which is itself a three-set, by

(19) Glo.o,®] = [og, 06, w5l = [f(0), ¢ (0, 0), @+ ()]

This three-set belongs to Z', since f(g) belongs to z. For the
same reasons as with 7, this transformation G leaves no three-
set invariant; in parlicular, the second and third symbol are
not invariant simultaneously. By repeating this operation we get
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Gylg,0.0] = Glog, 05, w4] = lg,,7¢,, 9g,]
= [/2(0)., %, (0,0), 0 +7 () +7(f ()],
s (0,0) = f(A{fl@) p(e,0)—1}
=—(1+¢ H{=U+¢ Deles—1) 1]}
=+l +e Hlo—1D+¢ Y
= (1+{(Q+po—1},

20)

and with one more repetition

Gy lo, 0, 0] = G log,, 04, 0g,] = [0, 0, w], since
fr(0) = o by (15),
7: (0,0 = L@@ g0, 0)—1}
=+ {0+ Ut 1+ e—1—1)
=0+ i +o—1+1} =0,
w+1@)+7(f ) +7(f3(0)) = ©» modulo r by (18), (5) and (6).

2D

Thus G is a one-one transformation of Z° of order 3 without
any invariant element, and it distributes the elements of Z' in
cycles of three each, the explicit scheme being

[Q,o’,w]—>[%(1+g_l),g(ga—1),0)+r(g)] _
(22) |+ LU+ W+ o—1), o+1@+T(1+e D)

— [Q,U,.CO].

I11.

Let r (g + 1) simple, oriented polygons be given, each of which
has g sides. We intend to combine these polygons into a two-
dimensional, closed, orientable manifold @ by certain identifi-
cations of pairs of sides. This is done in an abstract, purely
topological way so that (in this section and the next two) no
question of metric comes 'in.

As in sectionI], the symbol w denotes residue classes modulo r,
while ¢ and o denote residue classes modulo q. Let r of the polygons
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be denoled by P(w) and called “central polygons”, the remaining
qr polygons being denoted by P(o,®) and called “peripheric
polygons™; here w ranges over all residue classes modulo r and
o over all residue classes modulo ¢. Let s (0, w) denote the sides
of P(w), the numbering o of these sides proceeding in the positive
sense of the oriented polygons, and s (g, o, ») the sides of P (o, w),
the numbering g likewise proceeding in the positive sense. With
these denotations we define the following identifications:

(A) For all values of ¢ and o the side s(¢,w) of P(») and
the side s(0,0,®) of P(c,w) coincide with opposite senses.

This disposes of all sides of all central polygons and of the
sides s(0,0,w) of all peripheric polygons. So we are left with
all sides s(p,0,®), o == 0, of the peripheric polygons, and these
sides thus correspond to the set Z of three-sets. For these sides
we define:

(B) The coincidence of these sides in pairs is given by the
involutory transformation g: The side s{p, o, ) coincides with
s(gg,ag,wg) with opposite senses.

Since the two last numbers of the three-set are not left inva-
riant simultaneously, no side coincides with a side of the same
polygon.

We now establish the cycles of vertices resulting [rom these
identifications by turning around these vertices in the positive
sense. Starting in the central polygon P (w) we leave it over the
side s (¢, w) and enter across the coinciding side s (0, ¢, ®) accord-
ing to definition (A) into the peripheric polygon P (s, ). The
preceding side of this polygon is s(—1, ¢,®), which coin-
cides with the side s(1,0+41,w) of lhe peripheric polygon
P(e+1, w) according to definition (B). The preceding side of
this polygon is (0,041, w), which coincides with the side
s(o-+1,w) of the central polygon P(w), and the preceding side
of this polygon is s(s,w), with which we started. So we get a
cycle of vertices as illustrated by fig. 1.

In this process ¢ and ® are arbitrary within their range.
Therefore all vertices of central polygons are involved. We may
also remark that, if we leave an arbitrary peripheric polygon
P (o, w) by crossing its side s(—1, 0, ) and turn in the positive
sense, we get the cycle of vertices just now established. Like-
wise, if we leave P(o,w) by crossing its side s(0,0,®) and
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turn in the positive sense, we get a cycle of verlices of the same
type, o being replaced by o —1.

In the remaining cycles of vertices, therefore, only peripheric
polygons are involved and, turning always in the positive sense,
we have to leave P(o,w) by crossing a side s(p, o, ), where

Fig. 1.

o belongs to the set z, (¢ == 0 and — 1); thus the three-set [0, ¢, »]
belongs to Z'. This side coincides with s ey 0, @) = s(— @_1,
@(0,0), w+7(0)) of P(p(g,0), w+7(p)), and the preceding side

of this polygon, which we have to cross in leaving the polygon, is
s(—o1—1,9(,0),0+71() = s(og g, 0,).

Therefore we leave the next polygon by crossing the side
$(0g,> 9¢,> @) > and again we leave the next polygon by crossing
the starting side s(p, o, ®) in virtue of (21). So again, we have
a cycle of three vertices, as illustrated by fig. 2; compare (22).

In both cases the three polygons arranged round a vertex
are different.
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11

It follows from this construclion that @ is a closed surface.
Moreover, it is orientable, since the orientation of any two neigh-
bour polygons are in accordance, the common side being oppo-

sitely sensed.

We conclude this section by computing the genus p of @.

/1(?/6-/“)) /

Fig. 2.

TN Py ),
/"'th;g)a*-f(#’@’))

The number of polygons is &, = (¢ +1)r. Thus the number of

different sides on @ is «; = %q(q—%—l) r, and the number of

1
vertices on @ is o, = §q(q+ 1) r. From this we get by Euler's

formula

2—2p=qy—a;ta,=r{qg+1) <1

and hence

1

5@—D @@+ 6—g)

(28) p= 145, —1D(q—6) =, (42 (g—3) (3—5).
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We list the smallest values:

g=3 5 7 11 13
p=0 0 3 26 50

(23) also holds for ¢ = 3 and ¢ = 5, which might have been
included in the preceding considerations by adding a few special
remarks. In these cases the struclure af @ is that of a tetrahe-
dron or dodecahedron, respeétively.

IV.

In this section we establish by a well-known process' the
fundamental group (Poincaré group) of @ by generators and
generational relations in a special form derived from the construc-
tion of @. Inside each polygon we select a representative point,
which may be denoted by the same symbol P(w) or P(o,w)
as the polygon itself. From each represeniative point we draw
an oriented path, called “elementary path”, to the representative
point of each of the g neighbouring polygons and denote it by
a(———), the paranthesis including the same symbols as the
side s(———) which we cross in leaving the first polygon. So,
according to definition (A), a (v, w) leads from P(w) to P(o,w),
and a (0, 0, w) leads from P(o,®) to P(w). We therefore have

(24) a(0,0,w) = a(c,w)_l.

Similarly, for ¢ == 0, according to definition (B), a (g, o, ) leads
from P (o, w) to P(p(o,0), w+7(0)), and we have for ils inverse

(25) a(ey0,0) =a(—¢ g, 0),0+7(@) =ale,0,0) ", o=0.

These paths form on @ a network N of triangles as indicated in
fig. 1 and 2 by dotted lines, and this network N is dual to the
network of polygons (e.g. the dual of the dodecahedron network
is the icosahedron network).

Every path on the network N between two represenlative
points is a chain of elementary paths. We choose the point P(0)

! See for instance H.Se1¥erT and W. THRELFALL, Lehrbuch der Topologie, § 46.
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as starting point. Next we define for each representative point
an individual path on N connecting P(0) with that point in the
following way: First, let the point be a P(w) and let the path
envisaged be called h(w). For o = 0 we take the path h(0)
to be empty. Then, by induction, when h(w—1) is defined,
we put

(26) h(w) =h(w—1Da@,0o—1Da(r,0,0—1) a0, r+1,w),

w=1,2,----,r—1 modulo r.

[To control this, h (w —1)leads from P(0) to P(w — 1), a (0, —1)
leads from P(w—1) to P(0O,o—1), a(r,0,w—1) leads from
P{0,0 —1)to P(r+1,w) by (10) and (8) and, finally, a (0, r+1, w)
leads from P(r-+1,©) to P(w).] Next, if the representative point
is a P(o,w), we put for the path h(o,®) leading from P(0)
to P(o,w)

27 h(o,w) = hiw)a(o,w)

for all values of ¢ and w.

The fundamental group of @ is the group of homotopy classes
of closed curves issued from a fixed point, for which we here
choose P(0). Every closed path on N issued from P{0) can be
composed of certain closed paths depending on the single elemen-
tary paths, namely the I, leading from P(0) to the starting point
of the elementary path a followed by this path a itself and then
by the h; ' leading from its end-point back to P(0). We denote
the homotopy class of such a path by k(———) with the same
symbols in the parenthesis as for the corresponding elemenlary
path a (———). This finite set of k’s then generate the funda-
mental group.

If a general closed path issued from P{0) is written down
as a composition of the a’s, then its homotopy class is the
product of the corresponding %’s, as is seen by inserting between
any two consecutive a-factors the corresponding IR of their
common point. Any equation between the «’s therefore yields
a relation between the corresponding &’s. So we get from (24)
and (25) for all values of g, o, w, for which these equations hold,

(28) E(e,0) k(0,0,0) =1,
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(29) k(p,o,0)k(—o L go,0),0+1(0)) =1, p=F0,

the symbol 1 indicating the idenlity of the fundamental group.
(29) may also be written

(29) kg, 0,w)k (o, 00 0,) =1.

The homotopy class derived from the elementary path a (¢, )
is according to the above definition the homotopy class of the
product

h(w)a(o,») h(s,w) %,

h(w) and h(o,w) being abbreviations for certain products of
the «'s as defined above. Inserting h (o, ) from (27) we find
that this reduces to the empty product. Hence

(30) k(o,w) =1,
and lhen (28) yields
(31) k(0,0,0) = 1.

Consider the product of a@’s making up h(w). The corre-
sponding product of &’s is the homotopy class of

h(0)h{(w)h (a))_l,

whiceh reduces to the empty product. Thus the product of the
ks corresponding to the a’s in hi (w) is 1. (27) together with (30)
then shows that this also holds for the & (s, w).

This fact together with (30) and (31), when applied to (26),
yields the relation &k (r,0,w —1) = 1 for the values of @ indicated
in (26). We prefer to write this relation

(32) k(r,0,0) =1, w==0,1,--++,r—2 modalo r,

and we emphasize the fact that the value w == —1 modulo
r is not included in this relation (32).

Finally, the homotopy class derived from the elementary path
afg,0,w),p == 0, is the homotopy class of the product

h(o,m)ale,o,0) h(p(o,0), 0+ (@)
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in consequence of the definition (B) of coincidence. This only
yields the identical relation % (¢, 0, ®) = k(p, 0, w), since the
h’s do not contribute.

To these relations we have to add the relations derived from
the fact that the cycle of three a’s surrounding a vertex of @
bounds a simply connected piece of @ and thus belongs to the
homotopy class of identity. For a vertex of the type of fig. 1
this yields the relation

(33) k(c,0)k(—1,0,0)k(0,04+1,0) =1,

and for a vertex of the type of fig. 2 the relation

k (o, a,w)k(/"(@),(p(@,v),wJ;T(Q))k(f'z(e),%(9,0),60+r(9)
+(f(e) =1,

in which o EIEO and — 1. With the use of the symbol G this

[~

relation reads
(34) k(o,0,0)k(og, 0g, a)G) k (QGZ, O, sz) = 1.

This completes the establishment of the generational relalions
of the fundamental group. Looking over the result, we see that
we may omit the k (o, w) and their reciprocals, the k (0, o, w),
since they are identity according to (30) and (31). Then relation
(28) disappears, and (33) reduces to

(35) k(—1,0,0) =1,

while (29), (32), and (34) remain unaltered. We thus have Lhe
following result:

The fundamental group of ® may be generated by the elements
k(p,o,w), ¢ = 0, with (29), (32), (34), and (35) as generational
relations.

One might suggest the elimination even of the k(r,0, ) for
@ == —1 modulo r and of the k(—1, ¢, w) in consequence of (32)
and (85), and at the same time of their reciprocals £ (2,r+1,0+1)
and k(1,04 1, w). This would, however, destroy the full generality
of relation (34), into which some of them enter for special values
of 0,0,w. We therefore prefer to keep them, but we may note
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at once the consequences as to the reciprocals. We put them
in the form

(86) k(2,r+1,0) =1, o ==0 modulo r,
(37) k(l,0,0) = 1.
If we put ¢ = r, 0 ==0 in (34), we get by (10), (17), (8),
and (6)
k(r,0,0)k,r+ 1L, 04+1Dk2,r,0+1) = 1.
Here the central factor drops out in virtue of (37). The recipro-
cal of the last factor is k(r +1,0, ») by (29), (10), (1), and (9).

Thus, if w 5= —1 modulo r, the first factor drops out in virtue
of (32), and we get

(38) k(—2,r,0) =1, o == 0 modulo r,
(39) k(r+1,0,0) =1, o=k —i modulo r.
If w =—1 modulo r, we get

(40) K(r,0,—1) = k(r+1,0,—1),

and for their reciprocals
(41) E(2,r+1,0) = k(—2,r,0).

These last six relations (36) io (41) need not be included in
the generational relations of the fundamental group, since they
are consequences of the generational relations (29), (32), (34),
and (35) established above.

\Y
Let F denote the abstract group generaled by three elements
S, T, U subject to the relations

§T=1, T2 = 1, U =1, STU = 1.

Eliminating U by meaus of the last relation we get for F a re-
presentatlion by two generators S and T with generational relations
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(42) _ §1=1
(43) T2 =1
(44) (ST = 1.

We use this latter form and pay attention to relalions (42) and
(43) by only regarding exponents of S and T as residue classes
modulo g or modulo 2, respectively. So (44) is the real working
relation and, for convenience, we write it in different, but equi-
valent forms: '

(45) (ST)'=1, STS=TS 'T, TST =8 ‘15", (TS = 1.
As a consequence of (45) we get
(46) TS 2T = (IS 'T)" = (STS)* = STSTS.

We now take ¢ to mean a prime ¢ = 2r 11 subject to the
same restrictions as in section T and define the functions 7 (o),
f(o) and @(g,0) and the transformations g and G as before.
Moreover we introduce a function m{w) = the smallest non-
negative residue of w modulo r:

7 (w) == o modulo r, 0<m{w)<r.
We denote by W the following element of F:
(47) W = TS’ TS 2TS" = TS "' 18*1S" 2,

these two products being equal in virtue of (46). We also note
the reciprocal of W:

T S8 TS" T = STTSTATS'T.

(48) W

Regarding as before p and o as residue classes modulo g
and o as a residue class modulo r, we introduce the subgroup
H of F generated by the following elements:

(49) k(o,0,w) = W T8¢ TS TSP (@0 yw—mo+rle) 4 4= .

D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXV, 18, 9
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We set out to prove that these elements satisfy the relations
(29), (32), (34), and (35) established in the preceding section
for the fundamental group of @.

If in (29) we insert the values given by (49), we get

W () §7 150 7S¢ 159 (€0) W=7 (o + ()
LW (@ @) g9 (@.0) T§—¢ ps—e TS W—T (@) — 1

Here we have made use of (12) in the last two factors.
In (32) we have with @ = —1 modulo r:

E(r,0,0) = WO 8" 7§ 2 78" w7 @+ 1) — ¢

by (8) and (47), for #(w+1) = m(w)+1, since wz= —1
modulo r,
In (34) we get by inserting from (49)

W7(©) 56 752 T§¢ ' TS0 0) ypr—7i(w + (@)

LW le T @) gy (o, o) g (o) i ON TS ¥2(0,0) pp—7(w+ () + 7 (o))

. ‘VTE (w+ T(Q)+T(f(g) )) Slpg([), (T) TSIZ (()) TSIZ (())—] Ts—-G "/‘]——TE((U)’

since by (21)
9 (f; (0), @2 (0, 0)) = @3 (¢, 0) == ¢ modulo ¢
7(2) +7(f (@) + 7 (f (0)) = 0 modulo r.

and

Here the underlined parts cancel. Moreover we have by (13)
and (14) for the exponents of those powers of S which thereby
become neighbours

¢ @ =0 '—(+g H=—1,
[@ 7 +h@=—0+d ) ' —(U+o ' = -+ (1 +g = —1.
We therefore get
W) 50 75e (7§~ 1y s1+h @7 pg—o g~ _ 4

by using (45) and (14).
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Finally, in (35) we find by (45)

k(—1,0,0) = WO TSI ST s D @0 g

The elements (49) therefore also satisfy relations (36)—(41),
since these are formal consequences of the four relations just

proved. Especially we remark concerning the elements occurring
in (40) that by (49) and (1) and (47)

G0)  k(r,0,—1) = WLTS s 21S W0 — W,

Thus W' is an element of H.

VI

It is inferred from what has just been proved that the sub-
group H of F defined in the preceding section is one-one iso-
morphic either with the fundamental group of @ or with a factor
group of that group. We set out to prove that the first case
occurs. This is done by construciing from the group F a set of
polygons and of identifications by the k(p, o, @) which corre-
spond to the construction of @ in section III. (This construction
is based on a procedure indicated by W. Dyck in a footnote
on pages 41—42 of Malhemalische Annalen, vol. XX. Instead of
the pair —2 and r used in the present investigations, Dyck uses
a general pair of mutually reciprocal primitive roots e« and &
modulo ¢, thus without imposing any restriction on ¢.)

Let a triangle stu be given with angles equal to g, g and

g, respeclively; see fig. 3. As we assume ¢>7, the triangle is
situated in the non-euclidean plane. A reflection in sf/ followed

. . . . 27
by a reflection in su is a rotation about s through an angle =

in the positive sense. We denote this rotation by S, and hence
S? is identity. Similarly, 7' is a half-rotation about ¢, and U is
a third of a full rotation about u, if they are taken to be the
product of two analogous reflections. The product of reflections
shows that STU = 1.! Hence S, T, and U generate a group of

* A product is read like a composed function : First carry out U, then 7, finally S.
2*
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motions in the non-euclidean plane, which is our group F, and
which we now generate by S and T with relations (42), (43),
and (44). The shadowed triangle stu, of fig. 3 being derived
from stu by reflection al sf, the triangle sy, u is a fundamental
domain for the group F. In fig. 3 this triangle is inscribed with
the symbol of idenlity. Let the triangle derived from it by an
arbitrary element e of F be denoted
with the symbol e. If ¢ ranges over
the whole of F, these triangles cover
the entire non-euclidean plane. This
is illustrated by fig. 4 for the case
of g =7.1

The triangles 1, S, 8%,---, 8%
form a polygon P(0) with cenler
at lhe point s, which will also be
called the representative point P (0).
In the triangle S° the side opposite
P (0) is called s(5,0). Then S* 7S¢
$ 2. is a half-rotalion about lhe center
of this side, and it carries the “cen-
tral” polygon P(0) into the “peri-
pheric” polygon P (s, 0), which has its side s (0, o, 0) coinciding
with s(o, 0) with opposite senses conforming to the orientation
of the plane. The other sides of P (s, 0) are numbered s (g, ¢, 0)
in the positive sense.

This star of ¢--1 polygons, each consisting of ¢ triangles
(each triangle being half white, half shadowed) is shown by
fig. 5 for ¢ = 7.

The triangles of the central polygon P (0) bear the signature
S¢, those of P (0, 0) consequently 7S¢ and those of P(g, 0) conse-
quently S° T'S¢. The side of the latter opposite the center P(q, 0)
is 5(0,0,0). The triangle adjacent lo ST'S® along s(p,d,0)
is S TSY T, because the triangle T is adjacent to the triangle 1
along the corresponding side wmyu. In order to make the side
s(—2,r,0) of the peripheric polygon P(r,0) coincide with the
side s (r 1, 0, 0) of the peripheric polygon P (0, 0) with opposite
senses we must carry the triangle S’ 7S™” 7' adjacent to s(— 2, r, 0)

1 The figures 4 and 5 have been reproduced from Krein-Fricke, Elliplische
Modulfunktionen, vol. 1.

U,

(44
Fig. 3.
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into the triangle TS"*", and this is done by the motion
TSr+1 (Sr TS—2 T)—l _ TSI-+1 TSZTSI'+1 — W,

see (47). The same motion W carries s(2,r+1,0) into s(r,0,0)
for analogous reasons:

TS (SIS T) ' = TS TS 2 TS — W.

Thus W can be thought of as a translation sliding the whole
star downwards along the vertical diameter of fig. 5 at a distance
equal to the length of that diameter. If this displacement is
repeated o times, we get a star composed of a central polygon
P(w), whose triangles are W®S? and ¢ peripheric polygons,
P(o,w),whosetrianglesare W"” §¢ TS¢. Take w <r, thus o = m (w).
If for ¢ = 0 we want the side s (o, o, @) of this last triangle to coin-
cide with the side s(g,, o, w,) = s(~g_1, @ (e, 0), 7 (w+1(0)))
of the triangle W7{¥+7@) g (e, ) TS—¢" with opposite senses,
we make the adjacent triangle of the latter, thus W7 @+ (@)
$9(. 9 TS=¢ ' T coincide with the triangle W7 §% 7S¢, This is
evidently done by the element k (g, o, w) defined in (49).

The r stars derived from the first one by W”, o = 0,1,

.-, r—1, form a singly connected piece £ of the plane, bounded
by a polygon, whose sides correspond in pairs by those elements
k(p,0,®) which are not equal to 1. This shows that the con-
struction of the subgroup H of F is a materialization of the
fundamental group of the two-dimensional manifold @ defined
in section III by abstract identification. The group H is here
realized as a group of motions in the non-euclidean plane, which
is a model of the universal covering surface of @.

The fundamental domain £ of H consists of r (¢ + 1) polygons
containing ¢ triangles each. This shows that -

(51) j=r(q+q= %q(qg—-l)

is the index of H in F.

_If the non-euclidean plane is denoted by D, we may speak
of @ as D modulo H, which means that points of D corre-
sponding by elements of H are considered as identical. In the
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same way, D modulo F evidently is a non-euclidean manifold
of genus zero, three points of which are singular with respect
to the metric, namely those corresponding to s,f, and u. They
may be called conical points. D modulo H is a closed manifold,
which covers D modulo F with j sheets, and which possesses
no conical points. Accordingly, H possesses no elements of a
finite order.

VII.

We now want to prove that the covering of D modulo F by
D modulo H is regular. This is equivalent to -the assertion that
H is self-conjugate in F. In order to prove this it is sufficient
to prove thatl the generators k(g,o,w) of H are transformed
into elements of H by the generators T and S of F.

In preparation for this proof we state the following facts
beforehand: '

(52) TWT ™' = w .

This is immediately seen from (47) and (48). Also the definition
of = (x) implies:
(53) a(z(x)) = n(x),

0if x = 0 modulo r
r if * = 0 modulo r,

(51) 7 () L) = {

(55) r27@® = 2% modulo g,

since r" = 1.

We now transform k (o, 0,®w) (where it is remembered that
¢ =£ 0) by T and get by (49), (52), and (10)
Tk(p, 0,0) T ' = TW*@) §7 7S¢ TS TS99 yy—(o+e@) T

(56) — W) 7o Tse T8¢ TS (oD 0+,



On the other hand, suppose o == 0 and ¢ == g'ﬁl and consider the product
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k(o,0,—o) k(6 (go—1),—0, 1()~w) k(—¢ (oo~ 1)1, —p (oo —1),7(0) +7(6 (oo~ 1)) —0)

_ ‘V;T (—w) SO TSG Tsu‘_l TSG ‘V—n (T(a)—w)

.o —w) Kd TSG_I (pa—1) TSG(90~1)ﬁ1 TS¢ (o6—1) W (z(a) + T(o‘_l(gﬂ— 1))—w)

. W (z (o) + 1'(5_1 (po—1))—w) 59 (pa—1) TS—Qﬁl(grrﬁl)"l TS (p6—1) TSO W—7 {r(a) + T(rf1 (po-~1)) + r(()“l (grr~'1)_'1) «m)'

It should be noted that all reciprocals occurring herein exist owing to the assumptions for ¢ and o,
and the first argument for all three &’s is == 0. Now the underlined parts in the product cancel. More-

over we get for the exponents of the powers of § which thereby become neighbours

o ! (oo —1) = CT*IQ(T = o,
a(go—1) " =0 oo — 1) = (oo —1) Yoo " —p0 ) = (eo—1)""¢ (o —1) =g~ ".

Finally, with the use of (5) and (7),

() + (e o~ 1)) +1(g er—1)7H
{g-0" (oo —1) -g—i(gaﬁl)“i} = r(g_T) = —1(p) modulo r.

=E PO

24
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Do
WD

The above product therefore is equal to
WO S TS T8¢ ps— e oo Ty (—w—r(e)),

Comparing this with (56) and slightly reducing the last argument
of the third k we get

Tk (o,0,0) T71 = YY/’_"Z(“’)_fT(“"’)
‘ k(5,0,—w)
k(6 (po—1),—0,7(6) —w)
k(=g o =17 —eeo—1), 7 (00— 1) — )

Lot Te) +r(—n—1(o)

In consequence of (54) the first factor of the right hand pro-
duct is either 1 or W', and the last one is either 1 or W',
Hence, by (50), the right hand member is an element of H.

We still have to supplement this result by a consideration
of the cases ¢ = 0 and o = g_l, which were excluded in the
preceding computation. The two cases exclude each other. As-
suming ¢ = o |, we get

_ - —1 -1 N

Tk (Q, o} 1, w) T L TW7 (w) S¢ Tse ng TSOW —7 (w +1(0)) T
— yy—lw) TS?_ﬂl TS0 TSg_iwn(m +1(0))
= W (w)—n (—w)k (0—1’ 0,—w) W7 (w+1(0) +7n(—u—1(0) .

Thus except for powers of W' all the generators of lhe type
g = 9*1 are transformed by T into all generators of the type
o = 0. Therefore the inverse is evidently also true. The explicit
formula is

—)71'1) Tk (Q, 0, w) T—l — "V——ﬂ(m)—.'{(—(u) k (QT‘I’ 0,— (,4)) “‘,771(01-}—1(9)) + 7 (—w—z(e)) .

We have thus proved that THT ' = H.
In order to prove that SHS ' = H we slart with generators
of the following form:
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k(r, 12%, ) = W09 S T T§=275—r(rr?*=1) yr—ste+ 1)

2(z+1)

= Wl g W= T oz 1)

(by (49), (1), (3), and (47)). We form their product for increas-
ing values of % from » = 0 to x = n—1 and denote this product
by ¥ (n): ’

(58) ¥(n) =k, 1*° 0 k(r, P 1) - k , " Y n—1), n >0,
and remark that ¥(0) means the emptly product. We then get
P (n) = SWHS—" 7

and from this we get some sort of commutation formula for
S and W:
n

(59) SW = @ (n) Wi g,

This. is applied lo

Sk(g,0,0) S~ = SWHW ST TSe TS 7§ ¢ler—Dyy—r(w+2(e) g1

and we get for the first two factors of the right hand Product'
SWHE) = P (7 () W g2

in consequence of (59), (563), and (55). Similarly, for the last -
iwo factors:

W@+ T(e) g—1 [ Swrlot T(()))]_q =

= [ ¥ (n(o+7(e)) wrlvsrien gr2lo+r@)] 1

L s

27(p)

where we note that r = g% according to (2). Hence

Sk(o, o, w)s—-l = ¥ (xz(x)) W) g+ r2 ©rrge TS()—l TS~Q2 (c+r20) 1
“,_n(m +z{g)) W(;‘g (CI) +7 (Q)))_I
W () k(or o 2 “ o) ¥ (ot (Q)))_l'
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Since the ¥’s are elements of H defined by (58), this completes
the proof of the invariance of H in F. The last formula together
with (57), (57"), and (57”) states explicitly the elements of H
into which the generators of H are transformed by the gene-
rators of F. '

VIII.
Let M’ denote the set of all malrices
M (“ /3), | 5':1,
@) y 6/ |y 8

with integer elements and determinant 1. This set M forms a
group by multiplication. The matrices

I R

conslitute a self-conjugate subgroup M” of M'. The quotient group
(M) M= MM

is the modular group, the group of all linear fractional substi-
tutions with integer coefficients.

. The (principal) congruence subgroup modulo ¢ of M means
the set C of elements of M represented by those matrices which
modulo ¢ are congruent to an element of M":

(©) (;‘ g) = + E modulo q.

It is immediately seen that this set C forms a group and,
furthermore, that this group is self-conjugate in M.
Usually, the two matrices '

s=loa} 7=( )

are taken as generators of M. Since

T2 = —E, (ST = —F,
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they salisfy the relations

(60) T*=1, (ST)®=1

as generaiors of M, and it is well known that (60) is a com-
plete set of generational relations for M. Since

s _ (1 /3>
S _<01’

all powers of S are different in M, but

1
5% = <0 g) = E modulo ‘q,
and hence S? belongs to C. The same then is true of the trans-
forms of $? with arbitrary matrices m from M’:

¢ —1 _ [« /3> (l q)/ é —ﬁ>:<l——a’yq «*q )
(61) mS"m (y sl 1)y o g 14apg)

Here a and y range over all pairs of relatively prime integers,
and the resulting matrix does not depend on f and 3.

We can now form a subgroup Q of C, namely the one gene-
rated by all elements (61). Evidently Q is self-conjugate in M
(and thus also in €), and the quotient group M/Q is obtained
by using S and T as generators and adding to the relations
(60) of M the single relation

§%=1.

Thus M/Q is one-one isomorphic to the abstract group I of
section V, and we write

(62) M/Q = F.

We now take the modulus ¢ to be a prime subject to the
condilions of section I and use the notations introduced in the
previous sections. It is remembered that all congruences are
understocod modulo q unless otherwise stated.

It turns out that (on account of the assumplion g>>5) lhe
group C contains more elements than its sell-conjugate subgroup
Q. We want to find a set of generators and generational relations
for the quotient group €/Q-and to establish the quolient group
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of € in M, for which, by a well-known theorem of group theory,

we have
_ M[Q

M/C = o

When speaking of matrices <;: g) as representatives of the

quolient group M/C, the inlegers «, 3, ¥, d may be freely replaced
by other members of their residue class modulo ¢ and, more-
over, the sign of all four numbers may be changed simullane-
ously. Under such operations the delerminanl remains = 1 mo-
dulo g. We apply this to the [ollowing products:

ro 1 r
S"(o 1)

TS f<1 r)
oo [—2 —1—2r\ _ (=20
§ TS _< 1 1 >—< 1 r)
—_2 r__ —1 ‘*‘I\
TS TS _<_2 o)

Il
T
-
o |

|
|
o o~
g

i
/“\
| S o]

|
o —
S

STTSTA S =

2 0
“\o o7/

. 2
W= T8 TS 7" = (‘ 0) =

Thus modulo ¢ we have for W a diagonal matrix as a repre-
sentative matrix. For the powers of W we thus get

-W" _ (¥
—lo 277
and these are all different for 0 <n <r in consequence of the
assumption of section I that 2 belongs to r. For n = r, however,
(63) wW'= LE.

Thus W° belongs to C, but no smaller power of W.
In the same way we want to find a matrix representing the
product k (g, o, w), defined by (49), and we get in turn:
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. 1
S {0 7)

QG ' __ {0 —1
ST _<1 J
S°TS¢ — (01
Lo

S°TSeT — <9"_1 "“)

0 —1
S°TSeTse = <9"‘1 _Q%1>

0 0
STTSeTSY ' T - <* o “@"*1)
, . o)

. 9
(64)  S°TSeTSe 'T§—9les—1) z< 0 0),

Now k(g,o,w) arises if we apply the factors W) in front
and W7@+7@) iy the rear of (64). But since both W and the
element (64) are represented by diagonal matrices when considered
as elements of M/C, they are interchangeable, and we therefore
multiply (64) by W71 +70)  Now

7 (w)—x (0 +1(0)) = —1(p) modulo r.

Hence, in virtue of (63), we only have to multiply (64) by

w0 (10 (€0 0 ) (e o
0 21(()) * 0 (_I_)—I(g) 0 __EQ——i

in consequence of (1) and (3). In both places we have the
positive sign, or in both places the negative sign. We hereby get

(65) k(g,0,w) = + E.

The k(¢,0,w) are by their definition products of S and T.
(65) shows that they belong to C. Together with the generators
(61) they generate a certain subgroup € of €. For this we have _

M/Q _F

MIC=r0 "1

by (62) and the fact that the k (o, 0, ®) generate H when they
are considered as elements of F. Thus the index of ¢’ in M is
equal to the index j of H in F, which was found in (51).
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On the other hand, the index of € in M may be easily

established: In a matrix (a 'g
v

not both be divisible by ¢. But take any {wo numbers ¢, and §,
which are not both = 0 modulo ¢. Then two numbers a and b
exist such thal « = &y ag and p = f,-+ bg are relatively prime.
Let y, and &, be so chosen that ad;— fy, = 1. Then the rela-
tion «é—fy =1 holds for y =y, +ve, ¢ = d,-+ v with arbitrary
values for v. The choice of residue classes modulo ¢ for a, and
B, admits ¢*—1 combinalions. For each of them there are ¢
possible choices of the class of v. Since at least one of « and
are == 0, the choice of » implies ¢ different residue classes for
at Jeast one of the numbers ¥ and 4. Thus, in all, the malrices
fall into g (g®>—1) residue classes modulo q. Taking the simul-
taneous change of sign for all elements of a matrix into con-

> of M the elements « and f# can-

. . 1 .
sideration, this corresponds lo 5 q(q®—1) different representa-

live matrices for the elements of M/C. Since this number coin-
cides with the value j in (51), and since ¢’ is known to be a
subgroup of C, we infer that €' = C.

We can thus generate the congruence subgroup modulo ¢ of
M by taking the generators (61) and (65) together. This system
reduces to a finite system of generators for € by the matrix m
in (61) being made to range over a suitable set of j malrices
which are mutually non-congruent modulo g. The usual point
of interest is nol so much C as C/Q = H. This group then is
generated by elements k (g, 0, w), o =£ 0, with* (29), (32), (34),
and (35) as generational relations. The quotient group of C in M,
which is at the same time the quotient group of H in F, has
S and T as generators, and a system of defining relations is
obtained by adding the relations k (¢, o, @) = 1 expressed in S
and T to the relations (42), (43), and (44) of F.

This system of relations is, of course, capable of abundant
reduction, and no attempt is made here to reduce it to simple
forms. It is for instance well known’ that in the special case
of g'= 7 the step from F to F/H can be carried out by adding
one single relation to the relations of F, namely the relation
(S*T)t =1,

! See Burnside, Theory of Groups of Finile Order, p. 422.
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Note.

After the preceding study had been sent to the printer, it came lo
my knowledge that Mr. HErMany FrasceH had, in vol. 108 of the Ma-
thematische Annalen in 1933, published an article Die Erzeugung der
Hauptkongruenzgruppen fiir Primzahistufen, which had escaped my
attention. On examining this earlier article I found a rather far-reaching
consonance with my own investigations especially concerning the arith-
metical formalism, which I had treated explicitly beforehand in sec-
tion II, but which is contained implicitly in Frasch’s development, and
also concerning the choice of generators k(¢,s, ), which correspond
to the Uy w, v, T in Frasch’s notation, and therefore also the relations
between these generators. Moreover, Frasch goes into the question of
the reduction of this system of relations, which I leave aside.

If, nevertheless, I maintain the publication of my investigations unal-
tered, I do so on the ground that the chief means of research is diffe-
rent in the two papers. Frasch bases his work on the powerful method
of REIDEMEISTER and ScHREIER for the abstract characterization of sub-
groups of given abstract groups contained in vol. V of the Abhandlungen
aus dem mathematischen Seminar der Hamburgischen Universiidl. (By
the way, this method would not be necessary for the establishment
of a system of generators, since such a system follows directly from
formula (9) on page 231 of Frasch’s paper). On the other hand, my
treatment is based on the most elementary notions of two-dimensional
topology without recurrence to Reidemeister and Schreier’'s method.
Upon comparing these two ways of approach I found that they throw
some light on each other and that this might justify what could other-
wise be called a re-publication of results. For instance, the choice of
the h(w) and h(s,») in section IV can be taken as an illustration of
Schreier’s condition (F). The establishment of a complete system of
generalional relations by simple considerations of surface topology must,
in each special casé, be simpler than the general mechanism of the
Reidemeister-Schreier method, which leads Frasch to rather elaborate
calculations. But I am pleased to call attention to Frasch’s interesting
use of this method, following an earlier paper by Rademacher, the
more so as his section 7 hints at more general applications and even
touches on the illustration by means of surface topology.

Indleveret til selskabet den 13. decémber 1949.
Faerdig {ra trykkeriet den 30. marts 1950.





