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1. During the last few years a number of papers [1] have
appeared dealing with the problems of energy production and
evolution of main-sequence and giant stars, which start from
discussions of composite stellar models consisting of isothermal
cores and point-source envelopes.

Gayow [2] in particular has considered the evolution of a
star with energy production in a convective core according to the
carbon cycle mechanism, and suggested that such a star, as a
consequence of exhaustion of the hydrogen in the convective core,
would evolve into a giant star, of very large radius for its mass,
and built on a model in which the energy is produced by the carbon
cycle in a sufficiently hot shell surrounding the inert core.

Although the investigations quoted above [1] would appear
to throw some doubts on Gamow’s suggestion, it nevertheless
seemed worth while to cxamine whether a model for the giant
stars, characterized by a core devoid of hydrogen, might lead to
sufficiently high temperatures and densities in the region immedi-
ately surrounding the core to explain the energy production in
the giant stars according to the carbon cycle.

The aim of the present paper is to investigate, by numerical
methods, the possibilities of a model with non-productive core
to explain the energy production of giant stars. The investiga-
tion was restricted to a single giant star (Capel‘la 4) of specified
mass, radius, and luminosity.

The problem has been simplified through the assumption
that the entire energy production takes place in an infinitely
narrow shell surrounding the core. This means that the total
outward net-flux of energy L (r) is assumed to be constant, and
equal to the luminosity L, right up to the core, and zero inside

the core.
1*
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The temperature of the shell in which the energy production
takes place is assumed to be 20 million degrees. The choice of
the value of the temperature is governed by the following con-
siderations. The simplified model should approximate as closely
as possible a model which has these properties: 1. The change of
L (r) with distance r from the centre throughout the envelope is
given by the energy production according to the carbon cycle
mechanism. 2. The particular distance r from the centre at
which L (r) becomes zero, coincides with the radius of the non-
productive core.

It may be remarked here already that the results of the present
investigations tend to show that the energy production takes place
in a very narrow zone, and indicate that a repetition of the
investigations with a considerably higher value of the represen-
tative temperature would be desirablel.

2. As already mentioned the model consldered is specified by
given values of the mass, ), the radius R, and the luminosity L.
The hydrogen content X is considered as a variable parameter.
We assume that the helium content of the envelope is negligible,
and that the non-hydrogen part contains the heavier elements
in the relative proportions of the RusserL-mixture. The mean
molecular weight of the envelope can then be calculated from X.
With regard to the core we assume that cach gram consists of
X gram helivm, and 1 —X gram of the RusserLr-mixture (no
hydrogen). The mean molecular weight of the core can then also
be calculated as a function of X.

We thus assume that the model is composed by an envelope
with constant L (r) surrounding an isothermal core, the mean
molecular weights being g, and u,, respectively. The transition
from envelope to core is assumed to take place when the tempera-
ture, going inward, reaches 20 million degreces. The following
question is now formulated: given mass, radius, and luminosity

1 Note added in proof: After this paper was sent to the press calculations
(to appearin Arkiv [6r Astronomi, Band 1:1, 1948) have been performed with a tem-
perature of 33 million degrees as represenlative for the carbon cycle. The energy-
output computed by means of BETHE’s law from the new temperatures and
densities is for X = 0.34, L = 4.0.10%% erg/sec closely agreeing with Loy« = 4.5-10%3
The central conditon M (r) = 0 for r = 0 for the composite configuration is salis-
fied for the above hydrogen content. The representative temperature almost
coincides with the thcoretical value 32 million degrees derived by DBrrmz for
Capella A (Phys. Rev., 55, 434, 1939).
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of the star, does there exist a certain value of the hydrogen c¢on-
tent X, which is varied as a parameter, for which such a composile
model can be constructed, satisfying the condition M (r) = 0 for
r = 0? In fact, from our investigations it will appear that for X
situated between 0.31 and 0.32, there does exist such a configura-
tion, built up by -an envelope with zones in radiative and con-
vective equilibrium surrounding an isothermal core.

The differential equations which form the starting point are
the classical ones given by Eppingron (cf. [5])

dP-_ GM (r)
dr e
— _ K 1
P=p,tp = el yaT
dp, xL(r)
. L) 1
dr 4aer? e W
dM (r) 5
P tmrp
dL ()

dr h

where the symbols used mean: r distance from the centre, P
total pressure, composed by p,, gas-pressure, and p,, radiation-
pressure, T temperature, ¢ density, M (r) mass inside sphere of
radius r, L (r) net-flux through sphere of radius r, » coefficient
of opacity, g molecular weight, G constant of gravitation, «
STEFAN’s constant, k BoLtzymanNN's constant, H mass of the proton,
¢ velocity of light.

Starting from the boundary values of the variables T = T,,
g ~0, M(R) = M, L(R) = L, the differential equations can be
integrated inwards, thus giving temperature, density, and mass
at any point in the configuration. As to the function & (r) expressing
the energy generation per unit mass at the distance r from the cen-
tre we can make use of the formula derived by BeTuz [3]; in the
following calculations, however, as has already been mentioned,
we make use of the approximation L (r) = constant = L in the
envelope. In order to simplify the integrations the following
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variables are conveniently introduced [4]

x=1/r, xy=1/R, =12+ log (x—x)
« (2)
y=1logT, z=1logg, u= M()/M.

Substituting at the same time the expression, cf. [5],

R
o

where %y = 3.89-10%° (1 — X*).

X being the hydrogen abundance, the helium content being zero,
the equations (1) are transformed as follows [4]:

dy _ jx—z ¢ 1

at — ' T Tt

dz T — x, dqj T3 .
L p Ty W)yl :
¢ U ) + . (3)
du T —x,

ar ¢ P

which govern the variations in the variables y, z, and u in the
case of radiative equilibrium. The constants «, 8, y, and { are
to be found in [4].* As to the guillotine factor 7 the values given
by B. STrOMGREN [6] have been used.

3. The integrations of the equations (3) were started using
an analytical development [7] from the surface to a certain point
well below the surface; from this the integrations were carried
out inwards by means of standard methods until a temperature of -
20 million degrees was reached. The observational data for Ca-
pella A on which the calculations are based are due to Kurper [8]

L=120Ly, M=4.18M,, R = 158R;,

1 In the expression for { given there the factor M has dropped out in the
denominator; further the constant here denoted by & is there called B.
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Table 1
X =028 X = 0.30
¢ y=log T z=1log g ll:]llﬂg[r) y=1logT z=logp u:%ﬂ
0.0—1 5.191 4.150—10 1.000 5.179 4.107—10 1.000
1 290 473 1.000 278 430 1.000
.2 390 .798 1.000 378 754 1.000
3 .490 5.124 1.000 478 5.080 1.000
4 591 451 0.999 578 407 0.999
5 .691 779 .996 679 734 997
.6 792 6.106 992 779 6.061 993
Vi .892 431 084 -880 .387 .985
.8 5.990 755 967 5.978 711 .970
9-—1  6.087 7.076 937 6.074 7.032 .943
0.0 182 .384 886 171 .343 .897
1 274 673 .808 263 637 .826
2 .362 932 701 .352 .902 726
3 443 8.153 570 435 8.132 601
A4 514 329 430 509 .320 467
.5 875 461 .303 572 .466 .340
.6 625 535 201 625 575 .236
7 .666 618 128 670 653 158
.8 .700 .657 .081 706 707 .106
9 728 632 .053 738 747 074
1.0 .752 .697 036 764 779 .053
N 772 709 027 787 807 .042
2 790 720 .022 .808 .834 .036
3 .808 732 019 .828 .866 032
4 824 749 .017 .848 904 .030
B .840 771 .016 .868 .951 .028
.6 856 .800 .016 .890 9.009 028
7 873 .838 016 912 .079 .027
.8 .892 .888 .016 938 164 027
9 912 950 .016 6.967 .266 .027
2.0 935 9.026 .016 7.001 .387 027
1 961 118 .015 .040 526
2 6.992 228 . .085 .685
3 7.028 .357 . 137 9.863—10
4 .070 .507 . 195 0.061
5 118 .676 . .259 276
6 173 9.866—10 . 329 .510
.7 .235 0.074 . 401 .765 .
8 .303 300 .015 475 1.044 027

(ta be continued)
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Table 1 (continued).

X = 0.32
{ y=log T z=1logp
.0—1 5.168 4.065—10
1 .266 .388
.2 366 712
.3 .466 5.038
4 .566 .364
b 667 691
.6 767 6.018
7 .868 344
.8 5.966 668
9—1  6.063 .992
159 7.305
.253 601
.343 873
427 8.111
.503 .309
.569 468
625 .590
672 .682
712 .750
746 .804
775 .850
801 893
.825 938
848 .O87
871 9.045
.895 114
921 195
.950 .292
6,982 405
9 7.020 537
.0 .063 687
1 112 9,858—10
2 167 0.047
.3 .229 .254
4 296 478
5 .368 722
.6 987

MO
M
1.000
1.000
1.000
1.000
0.999
997
.994
.986
973
.948
.906
.840
.748
.630
501
376
.269
188
131
.095
.072
.058
.050
046
.043
.041
.040
.040
.039
.039
039
.039
.039
.038

.038

Y

.

=log T

5.255
.354
.454
555
.655
756
.856

5.955

6.052
148
242
.333
418
497
.565
624
.674
717
753

784
812

839
.865
.891
919
.949
6.983
7.021
.064
13

169

.230
.298
.368
440

4.348—10 1.000

672
.998
5.324
651
977
6.303
628
.950
7.265
.565
.843
8.089
.297
467
.602
706
.788
854
913
970
9.028
.093
166
.252
.351
466
598
748
9.918—1
0.106
312
534
776
1.039

1.000
1.000
0.999
.997
.994
.988
975
.952
914
.854
768
658
.533
410
.302
217
156
116
.090
074
.065
059
056
053
052
.051
.050
050
050
049

.049

~ (to be continued)
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Table 1 (continued).

X = 0.38 X = 0.40
t y =log ¥ z=1logp u= J}é;{([z) y=1logT z=logp u=M]‘£’r)
0.1—1 5.233 4.272—10 1.000 5.223 4.237—10 1.000
2 .332 .596 1.000 322 .560 1.000
.3 432 921 1.000 422 .885 1.000
4 532 5.246 0.999 522 5.210 0.999
b 632 573 998 .622 537 998
.6 733 .900 .995 722 .864 996
i .833 6.225 .990 .822 6.190 991
.8 5.932 .550 979 5.022 514 981
9—1 6.030 874 .960 6.020 .839 965
0.0 126 7.192 928 116 7.158 .935
1 .221 497 .877 212 466 .888
2 314 .784 .803 .304 .756 .818
3 402 8.043 .706 .394 8.020 L7126
4 484 .268 - .591 477 253 .616
.5 .557 459 473 .552 452 502
.6 621 .616 364 618 619 394
7 676 744 275 .676 757 .302
.8 724 .849 207 .726 .873 231
9 .765 .940 159 .769 974 180
1.0 .801 9.022 127 - .807 9.067 145
i .833 102 106 .842 .156 121
.2 .864 184 .093 874 .247 .106
.3 .895 271 .084 907 .342 .096
A4 .926 .367 079 941 447 089
.5 .560 475 075 6.977 .562 085
.6 6.997 596 073 7.016 - .691 .082
v 7.037 733 071 .059 .834 079
.8 .083 9.887—10 070 107 9.994—10 .G78
.9 133 0.058 .069 159 0.170 077
2.0 190 .246 .068 218 .363 .076
1 252 451 .068 281 571 .075
2 .319 672 .067 .348 796 075
.3 388 912 .067
4 458 1.174 .066

(to be continued)
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Table 1 (continued).

X = 0.42 X =0.50
- M(r) . M (r)
t y=logl z=logyp u= i y=logT z=logp u= i
0.1—1 5.213 4.203—10  1.000 5.175 4.080—10 1.000
.2 .312 .526 1.000 273 402 1.000
.3 411 .850 1.000 372 725 1.000
4 511 35,176 0.999 472 5.049 0.999
.5 611 .502 998 572 374 -998
.6 712 .828 .996 672 700 997
.7 812 6.154 991 772 6.026 994
.8 5.911 479 .982 872 .350 .987
9—1  6.009 .802 .966 5.971 674 975
0.0 .106 7.122 939 6.067 .997 955
1 201 .433 895 .164 7.312 .922
2 295 726 831 .258 617 872
-3 385 996 744 .352 .902 .804
4 469 8.235 .640 440 8.163 718
.5 .546 4432 529 524 .396 620
.6 615 .618 .422 .599 .603 521
i 675 767 .330 .667 784 429
.8 727 .894 .257 727 945 .350
.9 773 9.005 203 .780 9.091 .286
1.0 812 109 164 827 .230 .238
1 .849 .209 138 871 .362 .202
2 .884 .309 121 913 493 176
.3, 919 414 .109 955 626 158
4 956 .528 101 6.999 763 144
5 6.994 .651 .096 7.044 9.908—10  .135
.6 7.036 788 .092 092 0.063 128
7 .081 _ 9.939—10 .090 143 .229 123
8 132 0.106 .088 .200 407 119
9 187 .288 .086 .259 599 116
2.0 247 .486 085 .323 .803 114
1 .312 .700 .084

(to be continued)
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Table 1 (continued).

X =10.70 X = 0.80
[ y=1logT z=logp u:%]ry) y=1log T z=1logp u:MJVE[r)
0.2—1 5,193 4.185—10 1.000 5.160 4.134—10 1.000
.3 292 503 1.000 .258 A52 1.000
4 .390 .825 1.000 337 773 1.000
b 490 5.148 (.999 .456 5.095 0.999
.6 589 A72 998 .555 418 .998
7 .689 796 .996 .654 741 .997
.8 789 6.121 .992 .754 6.065 .993
9—1 .888 444 985 .853 .387 987
0.0 5.986 767 973 5.952 709 977
.l 6.083 7.088 .954 6.048 7.031 .960
2 179 404 924 .144 .347 .933
3 274 .709 .881 239 .655 .895
A4 .367 .998 .824 .333 950 845
) 458 8.268 755 425 8.227 .782
.6 544 517 677 .513 485 711
7 624 747 597 .096 725 .636
.8 .698 1959 520 673 L9438 .562
.9 764 9.159 451 743 9.158 494
1.0 .824 .351 .391 .806 .361 .433
1 879 .537 .340 .865 5569 .381
2 933 718 .299 921 752 337
.3 6.987 9.894—10 .267 6.978 9.941—10 .301
4 7.042 0.070 241 7.035 0.128 272
.5 .098 .246 221 094 .314 .250
.6 .156 426 .206 154 502 .232
7 215 .611 194 215 .694 217
.8 277 .803 .184 279 .890 .206
.9 .340 1.004 177 343 1.095 196
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The hydrogen abundance has been varied as [ollows: X = 0.25,
0.28, 0.30, 0.52, 0.34, 0.38, 0.40, 0.42, 0.50, 0.70, 0.80. The
solutions are listed in Table 1 except for X = 0.25, in which case
- the mass was used up before arriving at the above temperature.
The computations were carried oul with one more figure than
given in the tables. The quantities listed are supposed to be
correct to the last figure.

.5
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Fig. 1

4. The above-mentioned integrations have been performed
on the tacit assumption that radiative equilibrium is stable. This
is the case if the radialive gradient yg is less than the correspond-
ing adiabatic gradient y 4. The gradients can be written as follows [9]

:
N
S 2
L, 2(4—3p)* _
YA TP =y ®)
%L(r)
_HGy ©

where

and Py = pP. (7
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An instructive picture of the conditions is obtained by plotting the
quantity A against the corresponding value (1 — £) [10]. In
the same diagram has been drawn the curve for which y, — YR»
that is the limiting curve of the domain of convection. It appears
that in the actual case convection is possible only for X < 0.34,
and that the convection zones are increasing through the star for
decreasing hydrogen content. It is thus concluded that it is neces-
sary to revise the calculations, taking into account the modifica-
tions due to the convective equilibrium. In the convection zone
the following differential equations are valid [9]:

Lap | 1de
Pdr yAQ dr
dP GM (1)
R 1w
aM () P
a 4mreg.

Transforming these by means of the variables (2) we are left with

dy _2(4—3p)dz

& 56 -1p d
dz _ GMH (v o)up

dat— Tk T

|
G
|

The third equation remains unchanged. The integrations are thus
performed by means of these equations as long as the condition
Yr > 74 is fulfilled. From the point where the convection zone
is changed back into the radiative zone the corresponding differ-
ential equations are to be used until a temperature of 20 million
degrees has been reached.

5. At this interface has been fitted an isothermal core devoid
of hydrogen. The fitting conditions imply continuity in pressure,
temperature, and mass; the density, however, has a discontinuity
at the interface. The ralio of the densities on both sides of the
interface is equal to the ratio of the respective molecular weights.
The differential equations of the isothermal core arc immediately
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derived from (3) by putting % equal to zero and changing the

molecular weight #; entering in the constant « to us.

The integrations are now continued until the stage of non-
relativistic degeneracy defined through the equality in pressure
at the interface

k K,

eT = —¢ s ' 10
lqu ILL?)/S Q ( )
Or
~ (ﬂ@i) b (11)
HK, u,

is reached [9, ciph. 56c¢]. #; denotes the mean molecular weight of
the degenerate core, the constant K, is equal to $.91-10!2 The mean
molecular weights g, ¢#o, and u; are derived from the formulae

it =2X+n,(1-X)

3
—1 717 1__
=y X+ng(1—X) (12)

1
/Ll,3_1 = §X+HR (1 *X),

where the quantity ni has been put equal to 0.54, or the value
given for a completely ionized RussErr-mixture [11].

In the case of non-relativistic degeneracy the equation of
state is given by the right member of (10), which means that
the configuration is a Lane-EmpeEN polytrope of index n = 3/2.
It appears from the integrations that the density in the relevant
parts of our models stays below the limit where relativistic
degeneracy sets in. Before performing the actual integrations it
is advisable to investigate if a fitting of a polylrope of that type is
really possible. The fitting problem can be solved in a convenient
way by a method due to Russeir [12], cf. also [5]. Defining the

variables?!
2.2

3
_ 4mor BZMGQ—PF_, (13)

4= 3M(ry

1 This variable A must not, of course, be confused with the variable 4 de-
fined by means of (6).
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RusserLn in a diagram with the ordinate A and the abscissa B
plots the funection A (B) corresponding to the E-solutions of different
polytropes. In order to determine the type of solution in a certain
point of a model we have only to calculate the polytropic index n
and the quantities A and B. The solution will be an E-solution,
an M-solution, or an F-solution according as the point (4, B) lies
upon, inside, or outside the E-curve for the given polyiropic
index. The quantities 4, B for n = 3/2 calculated for the hydrogen
contents 0.30, 0.31, 0.32 are listed in Table 2.

Table 2.

x | a4 | B

0.30 0.13 | 472
0.31 0.23 7.79
" 0.32 0.34 | 11.33

It is remarked in passing that the integrations for X = 0.31
are based upon interpolated y, z, and u values; by means of
these the numerical integrations are started at the point where
. the convection zone begins. The points (4, B) are plotted in the
diagram (Figure 2), from which is clearly demonstrated that an
E-solution does exist for an X-value between 0.31 and 0.32.

=7/
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The differential equations governing the variation in z in the
degenerate zone can be written as follows



Table 3.

X =0.30

Zone ol convective equilibrium.

M(r)
t log T log g u = 7
0.70 6.668 " 8.654—10  0.1586
.80 702 715 1063
.90 .728 .763 0726
1.00 749 .803 L0522
10 768 .839 .0400
.20 .786 .873 L0331
.30 .804 .908 .0292
40 .824 .946 .0271
.50 .846 8.990 .0258
.60 871 9.039 .0250
70 .899 .096 .0246
Second zone of radiative equilibrium.
1.80 6.931 9.162—10  0.0243
90 962 .248 0242
2.00 6.995 .352 0241
.10 7.032 475 .0240
20 073 .619 0240
.30 .120 782 .0239
.40 174 9.966—10 .0239
.50 .234 0.168 .0239
.60 301 .388 .0239
Isothermal zone.
' logo u = M@

= M

2.60 0.598 0.0239

.64 .820 0239

X = 0.31
Zone of convective equilibrium.
‘ M(r)
{ log T log o u o= - i

0.70 6.671 8.668—10 0.1731
.80 707 734 1190
.90 .735 787 .0838
1.00 759 .832 .0620
.10 781 .873 .0490
.20 .802 914 0414
.30 .824 8.956 0370
.40 .847 9.001 .0345
.50 874 .052 0330

Second zone of radiative equilibrium.

1.60 6.901 9.112—10 0.0321
.70 .929 188 .0316
.80 .959 .280 .0313
.90 6.992 .390 .0311

2.00 7.029 518 .0310
.10 071 9.667 .0309
.20 .120 9.834—10 .0308
.30 174 0.022 .0308
.40 .236 227 .0307
.50 .303 450 .0307

Isothermal zone.
1 log o u = M (1)
M
2.50 0.674 0.0307
.54 0.899 .0307

X = 0.32

Zone of convective equilibrium.

M)

4 log T logo u = i
0.70 6.672 8.682—10  0.1879
.80 711 752 1313
.90 742 810 0946
1.00 769 .860 0716
10 793 .906 0577
.20 817 951 0494
.30 .842 8.999 0445

Second zone of radiative equilibrium.

1.40 6.868 9.052—10  0.0417
50 .803 116 L0401
.60 920 193 .0390
.70 949 .286 .0384
.80 6.981 395 .0380
.90 7.018 522 .0378

2.00 .059 .668 .0376
10 107 9.834—10 .0374
.20 161 0.020 0374
.30 .222 223 .0373
.40 L2688 444 .0372
.50 .359 .683 .0372

Isothermal zone.
t ) log g u = M @)
b M
2.42 0.715 0.0372
.46 0.941 .0372

—
=}
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.76 1.621
.80 1.940 .0238
.84 2.289 0237
.88 2.671 .0236
.92 3.087 .0234
.96 3.537 .0229
3.00 4.016 .0220
Degeneracy at ¢ = 2.974.
3.00 3.866 0.0221
.04 4.064 .0210
.08 221 .0197
12 .350 .0183
.16 459 .0170
.20 554 0157
.24 638 .0145
.28 713 0134
.32 782 0124
.36 844 0115
40 .903 .0108
44 4.958 .0101
.48 5.010 .0096
52 .061 .0091
.56 110 .0087
3.60 157 .0083
3.70 5.273 .0077
.80 .387 .0073
.90 .502 .0070
4.00 .619 .0068
10 .740 .0067
.20 .864 .0066
.30 5.991 .0066
40 6.122 L0065

66

1.713

0305

.70 2.037 L0304
74 2.390" .0303
.78 2.775 .0300
.82 3.192 .0294
.86 3.637 .0283
.90 4.096 0259
Degeneracy at { — 2.865.
2.88 3.793 0.0274
.92 3.998 L0252
.96 4,154 .0227
3.00 277 .0201
.04 376 0175
.08 .459 0151
12 528 L0129
.16 586 .0110
.20 .637 .0094
24 .680 .0080
.28 719 .0068
.32 753 .0058
.36 .784 L0051
40 812 .0044
A4 .838 .0039
.48 .862 .0035
.52 .885 .0032
.56 908 .0029
.60 .930 .0027
3.70 4.984 0.0024
.80 5.040 - 0022
.90 100 .0020
4.00 .166 .0020
.10 .238 .0019
.20 .318 .0019

1.755

.58 .0369
.62 2.078 .0367
.66 2.431 .0364
.70 2.813 .0359
.74 3.223 .0349
.78 3.654 .0328
.82 4.085 .0286
Degeneracy at ¢ = 2.784,

2,80 3.798 0.0312
.88 4.129 .0232
2.96 .316 0150
3.04 424 .0084
A2 .483 .0037
.20 .507 .0008

“IN
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dz _S3GM gz —m
dt 5K T g

i, (14)

the second cquation being identical with the last one in (3).
They are integrated numerically in the above three cases -and the
corresponding y, z, and w values are collected in Table 3. The
existence of an E-solution for X between 0.31 and 0.32 is clearly
exhibited. Finally it should be noted that the higher the X-value
the smaller the remaining reclative mass, contrary to the case of
the point-source models without an isothermal core (¢f. Table 1).
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