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"grey" radiation, and (55), (56), and' (57) in the general cas e

The equations for "grey" radiation are solved approximately ai,

a formula for the heat transfer is given - (18) - and applic ~

to several examples. The radiation between surfaces which a r

not grey is treated in some special cases . On page 22 (section

the case of variation in temperature on the outer body is treate ; i

and formulae for the radiation field inside a sphere and for th i

heat exchange with a small body inside a sphere are obtaine r

(formulae (69) - (72)) . Finally, in section (e), page 24, equatio n

determining the apparent emissivity of a cavity are obtained an (

solved for a cavity shaped as a spherical cap .

The methods and results may be of some interest in llt

heating technique, the illumination technique, and optical pyrc

metry .

The author wants to express his thanks to Professor T . BJERG E

Professor F . BECKER, and cand. polyt . V . KOHSGAARD for helpr

suggestions and discussions .
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I . MOMENTS OF INERTIA OF METHYL BROMID E

I. Introduction.

rt recent years, the application of quantum mechanics to che -
mical questions has proved especially fruitful in the treatmen t

of problems which hitherto could only be dealt with correctl y
rom a purely thermodynamical point of 'view, such as the de-.
animation of standard entropies, chemical affinities, etc . As
luantum mechanics mainly work with symbols to be experi-
ientally determined by means of spectroscopical methods, a
fear relationship between spectroscopy and thermodynamics ha s
)e:en established .

A survey of the work accomplished within this common fiel d
f spectroscopy and thermodynamics up to 1936 was given b y
ï .assEL . l It is a striking fact that most of the compounds in-
estigated are simple inorganic molecules, and the develop-
aent of the last ten years has hardly altered the situation . Thi s
s due partly to the restrictions laid upon the experimentato r
then working with unstable organic molecules, partly, as will
c pointed out later, to theoretical difficulties arising when th e
enre complex organic molecules are treated .

In the present paper the author attempts to combine th e
letermination of the heat capacity of CH 3Br,, carried out b y

Gtrr and KEMP,
2 with an analysis of the optical spectra of th e

uxe compound. In order to ascertain the correctness of th e
l I L rational analysis, the Raman spectrum of CH 3Br was re -
]] estigated . Our result is in conformity with the results obtaine d

[tier . The vibration frequencies, therefore, can only be unes -
.,i Bally changed by future work . As will be shown in the
resent paper, the combination of thermodynamical and spec-
roscopical data leads to definite values of the moments of inerti a
f (- H 3Br .

KASSEL, Chem. Rev. 18, 277 (1936).
a EGAN and KEMP, J . Am. Chem . Soc . 60, 2097 (1938) .

I .
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II . Entropy in Terms of Spectroscopicall y
Determinable Quantities .

The fundamental equations were coherently published i

GlAUQUE . 1 The general expression for the absolute entropy o
one mole of an ideal gas, S°, is :

So Storans +R (lnZ+TddT1 .

	

( 1

Here, R is the gas constant, T the absolute temperature, ari l

Sans the translational entropy . 2 Z is the so-called `state sum ' . For

an ideal gas the individual molecule has a well-defined groure

state, a first excited level, etc ., unquantized translational energ i

being neglected . The separation of the translational energy fro m
the quantized vibrational-rotational energy is correct for the idea
gas state because, in the field-free space, the part of the Schro e
dinger equation dealing with the translational movement df t h

molecule, factors out .' In Table I a survey of present circuit )

stances is taken .
Table 1 .

Energy minus A prior i

State translational probality
energy of stat e

Ground State	 P o

1 . excited level	 4+61 P i

2 . excited level	 4+6 2 P 2

i .

	

excited level	 E', + E, P,

If the total number of molecules is denoted by N, we obtala

-E,

z = p u +

	

p ie .kT

i = 1

GIAUQuE, J . Am. Chem . Soc. 52, 4808 (1930) .
2 The subscript zero applies to the ideal state throughout this , an d

following paper.
KASSEL, Chem. Rev. 18, 279 (1936) .

'r .9 5

Within this field most rules are conveniently formulated b y
neans of Z, as for example in (I) . It should, however, be kept i n

	 co

	

-(E,4-4 )

mind that the state sum is sometimes defined as Z = > pie k T
i= o

'here e o is zero . This is done e. g . in the important paper by
TORDON and BARNES . ' As is seen from the papers cited ,

So

Z (Giauque) = ekT Z (Gordon and Barnes) .

owever, Giauqu e 's definition seems to be more commonly used .
For the ideal gas stat e

trans = 2 R1nM + 2 R1nT - R1nP -I- 2 R+ C+ R1nR' .

[ere, M is the molecular weight proportional to oxygen, P th e
ressure in atmospheres, R' the gas constant in ccm atmospheres

'1=
er degree and C = Rln • (h k? where k is Boltzmann's con-

N I '
ant, h Planck 's constant and N is Avogadro's number . Thus ,
ir one mole of an ideal gas

.S° = 2R1nM+2R1nT-R1nP-{ 2R-+- C +RinR'-~

+R(1nZ+TddT )
•

.et us now try to find the special form for (II) in the case o f
,1,1 .3 Br by following the approximations step by step .

As a first approximation let us assume that no molecules ar e
n a state of electronic excitation . This is practically true for mos t
molecules up to ca . 1500°, because the available kinetic energy
)er degree of freedom at 0° C is - 100 cm-1 while the electroni c
1scitation energy is 10000-100000 cm-1 .

Furthermore, in the case of CH 3 Br, po , the a priori prob-
n hility of the electronic ground level, is 1 . Hence

, ioanoN and BARNES, J. Chem . Phys . 1, 298 (1933) .

N =
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E ;

Pie ILT ,Z = 1+
!equidistant levels instead of the actually occurring con-

rging ones .

where e now simply means the height of one of the vibration,i l

rotational levels above the ground level . By defining eo = 0 v

may write :

where po is equal to 1 .
Generally, the vibrational and rotational energies of a mo t

cule vary almost independently of each other . However, speci <

interest will be paid to the case where they are completely it

dependent . The correctness of this assumption will be discuss € ,
later. The assumption means that each e i can be written r

en (vib) + ej (rot), defining eo (vib) = eo (rot) = 0. To ever ,

fixed value of en (vib) belongs the same series of rotation a

levels eo (rot), e l (rot), s 2 (rot) . • , superposed on the vibration a

level . Simultaneously, p can be written as pn (vib) -p i (rot), h r

cause of the independence of the a priori probabilities of I 1

vibrational and the rotational states . As po (vib) = po (rot) =

we get :

The entropy expression (I), therefore, is changed into

S 0 - strans + Svib + S rot -

a . Calculation of the vibrational entropy .

Here the simplifying assumption will be made tha t

molecules of the system perform harmonic vibrations . I

a diatomic molecule, with only one vibration frequency .

vibrational energy diagram is considered to consist of a : serf

s 4 (vib) = 4 E 1 (vib )

~

E 1 (vib )

W

	

- y

Fig. 1 .

Fig. 1 is the energy diagram for a harmonic oscillator with
e degree of freedom . ei (vib) = i • e l (vib) . The a priori probability
each level is 1 . Therefore

- E; (vib)

Z (vib ., diatomic molecule) _

	

e kT

	

1

=	
-e l (vib)

1 - e kT

[f, moreover, we imagine a molecule with two vibrationa l
grees of freedom, an energy pattern like that shown in fig . 1
at with a different distance between adjacent levels) must b e
perposed on each of the levels of fig . 1 . Thus, when . calculatin g

the situation is completely analogous to that describe d
rlier, which permitted the rotational state sum Zrot to be factored
I from the combined Zrot+vib : each vibrational level is super -
,scd- with the same series of other vibrational levels . Con-
quently, in the case of two vibrational degrees of freedom ,
i o consists of two factors, each of the form stated for the
atomic molecule . Generally, for a molecule with n atoms ,
nssessing 3 n-6 vibrational degrees of freedom, correspondin g
3p-6 fundamental frequencies vi , where hvf = ef , we get :

3n-6

v

	

-E r
1 1 - e kT

If of is a double degenerate frequency, e . g . of = of +1 , the
me, factor appears twice in (1) ; if of is threefold degenerate ,

same factor appears three times, etc .

Z =
n= o j= o

-E a (Vfb)

	

-Ei (rot )

pn (vib) e kT

	

p~
(rot) e kz = Zvib z.

i o

-E ~

ekT =

(vib) - e, (rot)

pn (vib) p i (rot) e

	

kT

~

	

-e ;y'7

Z _
G.~

p;e 1cT ,

i ='o

1
( 1 )
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The approximation made by assuming harmonic vibrativ e

is mostly very good . The ground level and the first excited le v

appear with their correct energy values in (1), the second ai

higher excited levels appear with an energy value which is so m

what (1-2 °/ 0) too high. But, as the second excited level generall

lies higher than 500 cm-1 (in most cases much higher), the fra

tion of molecules in this state is very small, viz . approximate)
-500

e 100 - 0.006 at room temperature . Consequently, we may writ

	 k7	
-1n (1- e kT) is often abbreviated as SEI!. (vf, T)

s ,
ekT - 1

We then obtain :
f=3n

i
-6

° = R

	

SE ;n (vf , T

f= 1

b . Calculation of the rotational entropy .

-8j (rot)
-7

pj (rot) e kT

A common expression valid for all types of molecules ;

at room temperature, cannot be given . For small moleau) ,

direct summation generally pays (H 2, HF) . For larger molecule

such. as CH 3Br, approximate formulas have been develop e

CH 3Br has two different principal moments of inertia, A am i

If C be the moment of inertia around the C-Br axis ,

2	 [k(k
Ej (rot) = 8 ~2A I 1) I n2 C-1

	

Inl<k .

k and n are the integral quantum numbers . For a state with
quantum numbers n, k the a priori weight is 2 k + 1 . The sum-
nation to be made according to (2) is considerably more com-
plicated than the summation of Z . Asymptotically the su m
can be expressed by

z
= 7,16-; edl.+ 1)-2I1

	

ß (ß -i- 1)-1a .

.J

,

A
1 . 1

In the case of CH 3Br the expression in the square brackets
in good approximation is equal to 1 . As A - 1 0-38 gcm2 we get

40 . 10-54

	

1

and
12 0+1)-16-

40 T
. At 100° K this is less than 0.001 and

,,an safely be neglected .
	 1

eds. e11T At 100° K this is approximately 0 .001. Con-
sequently, in good approximation we hav e

trot = tea i
(N + 1) i

Finally ,

S ° = Straps + S vib + Srot = R

SEin (v f , T) + ln (8
	

h 2

	 A'C'kT
e )

~

Looking more closely into the matter and taking into con -
sideration the possible presence of spin . isomers, optical isomers ,
and a possible multiplicity of the electronic ground state differin g
from unity, we find :

00

Zrot -

h 2
and

8 . 10 . 10-35 . 1 .4 . 10-16 . T 2
.8 T AEG 15 . Thus ß 1 4

ß

°

	

8~~A~C
1
kTe ~

S rot - Rln • ~-	 h2	 1
and

~1nM+21nT-1nP-+- i -+-5

+ R--1nR'

Ni . 9
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S° = R 2 1nM+21nT-1nP+2 +R--1nR ' -+-

f

=3

:-;EIfl

	

3

+

	

v ,f) + ln
8 A $ C

1
~kTe

)
PePnI

( f

Here, p e is the a priori probability of the electronic ground stat

(= 1 for CH 3Br), pn is the number of nuclear spin isomers .
is the number of optical isomers (= 1 for CH 3Br), and a is il l

`symmetry number', equal to the number of permutations ( ,

identical atoms in a single molecule which could be carried o e
by rotating the molecule (= 3 for CH 3Br) . The number pn
unknown for the molecule in question, which means that t h

absolute entropy given by (IV) cannot be calculated . Howeve i

most entropy determinations are carried through at temperatur e

between a few degrees above the absolute zero and room _tern

perature . As in all cases the calorimetric effect of the presenc e

of spin isomers is detectable only in the immediate neighbour

hood of 0° K, this means that such effects are not included i n

the experimentally determined entropy values . These experimenta

values may, therefore, be put equal to S, calculated from (IV )

putting pn = 1 .

valid for the entropy of one mole in the ideal gas state a t

pressure of one atmosphere .

GIBSON and HEITLER, Z . Phys . 49, 465 (1928) .

III . Moments of Inertia of Methyl Bromide .

a . Application of the calorimetric data of EGA N

and KEMP .

EGAN and KEMP (loc. cit .) determined the entropy of C H3Br-gas

the ideal state at 1 atm . and 276° .66 K (the boiling point) t o

7 .86 cal ., deg . -1 mol.-1 . They estimated the values of A' and C ' ,

sing the data of LEVY and BROCKWAY ] for the C-Br distanc e

( .91 + 0 .06 A) and taking C-H equal to 1 .09 Å and < H-C- H

111° . These values correspond to A 85 .3 10-40 gcm2 and

= 5 .36 10-40 gcm2. Inserting A and C into (V) together with

e known vibration frequencies, T, M, and a (= 3), they cal -

dated the entropy per mole CH 3Br in the ideal gas state a t

76° .66 K to 57 .99 cal . deg . -1 . Thus, good agreement between the

alculated and the experimentally determined entropy was found .

In the present paper, however, we wish to reverse matters ,

g. exactly to determine the contribution of Egan and Kemp' s

-dorimetric data to our knowledge of the dimensions of th e

Ur-molecule. As is seen from (V), the calorimetric data

[aermine the product A' 2 C ' . By combining the value foun d

1th spectroscopic results, the best possible values for the mo-
nnts of inertia of CH 3Br are obtained. These figures will b e

plied in a paper to be published later .

Prom (V) we obtain :

/

1 /21nA' 2 C' = 57 .86	 6 +1n3

	

2 .30 7 +41nT+,3-~ 1nM +
_

lie uncertainty of the value 57 .86 is ± 0.1, all other figures

re known to be practically exact . This means that

A 2 • C = 33400 10 -120 g3 cm 6 ± 10 °/a .

In this connexion it is worth mentioning that in the calculati e

of equilibrium constants for chemical reactions above 100 L.

all nuclear spin effects can be ignored 1 .

Defining A ' = A . 10 38 and C' = C•1038 , and using the usui l

numerical values for the natural constants, we get the formul, {

S° = R 2 .307+41nT+Z 1nM + 1/2 1nA' 2 C' +

pe11nl f -
	 3n 6

{ In

	

+

	

S Ein (yf , T) ,a
f=1

(V')
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b . Application of the structure of infrared bands .

In 1928, BENNETT and MAYER have studied the infrared absorp -

tion spectrum of gaseous CH 3 Br . 1 Parallel bands (D were foun d

at 610, 1305 and 2972 cm-1, perpendicular bands ( I ) at 956.

1450 .5 and 3061 .5 crn-1 . A study of the structure of these ban d

gives us some information on the size of the molecule .

From the structure of the II bands the absorption maxim a

of the P- and g-branches could be determined . The distanc e

between the absorption maxima of a single band is called th e

doublet separation and is denoted by åv . GERHARD and DEr -

NISON 2 have demonstrated that

	

S kT

	

S =	
0 .721	

Sv =
1

/	

A

	

loglo S

	

\G }
3
)1 .1 3

år is - 25 cm-1 and could only be measured with an accurac y

of - 2-3 cm-1 .

Therefore the average of the following results is taken .

Doublet separation cm-1 .

BENNET and MAYER,,	 25 23 2 3

MOORHEAD 4	 26 `'25 24

SLEATOR S	 2 6

BARKER and NIELSEN 6	 27 . 5

As an average value is used åv = 25 .0 cm-1 ± 1 .0 .

The I bands show a rotational fine structure which I .

resolved by BENNETT and MAYER (loc . Cit .) . The fine structii r

is found to be more complicated than usual since the I vibratio I

levels are double-degenerate ; this means that an interaction 1

tween rotational and vibrational movements takes place, distud

• Phys . Rev . 32, 888 (1928) .
8 GERHARD and DENNISON, Phys . Rev . 43, 197 (1933) .

8 BENNETT and MEYER, IOC . Cit.
4 MOORHEAD, Phys . Rev. 3l, 788 (1932) .

• SLEATOR, Phys . Rev. 38, 147 (1932) .
B BARKER and NIELSEN, Phys. Rev. 46, 970 (1934) .

ing the usual regularity of the bands . . However, DENNISON and
IOHNSTON I assuming harmonic vibrations, showed that

3

dv_
h 3_ 7

4n2 ~C 2A) '

where Av is the average line spacing within one of the I bands ,3
ind dv is the sum of the average values of all three I bands .

i VII) mainly determines C, because A - 15 C. For a given A,
ENNISON and JOHNSTON (loc . Cit .) estimated that C may be found
ith an error of about 5 °/ 0 .

c . Numerical calculations .

From (VII) it is seen that only a rough knowledge of A i s
necessary to obtain a good value of C . Using A = 85 • 1 0-40 gcm2
u accordance with EGAN and KEme, we obtain

C = 5.42 10-40 gcm2 ± 5°/0 .

n error of 10 °/ 0 in the value assumed for A, only change s
by 1 °1 0 . The calculation is carried through on the basis of

4.v = 28.32 cm-1 from the paper of BENNETT and MAYE R

Joe . cit .) .

Now, by inserting C = 5 .42 10-40 in (V ') and (VI) we get
Iwo values of A. Substituting C in (V ') and allowing for an erro r
of 5 °/ 0 in C and 10 0/ 0 in the calorimetric A 2 C-value we find

A= 78 .10-40 gcm2 ± 8°/0 .

nserting C = 5 .42 . i0-40 in (VI), it is seen at once that, as
\IC -15, S - 1 .065 . If C changes by . 5 °/ 0 , S becomes 1 .070 ,
i~iz . a change in C within the experimentally permissible limit s
is of negligible effect on S. Thus, the error of A simply is abou t

twice the error of åv . Consequently we get :

A = 82 . 10--40 gcm2 ± 10 °/ o

DENNISON and JOHNSTON, Phys . Rev. 48, 868 (1935) .

(VII)
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According to the above-mentioned results the value o f

equally well consistent with calorimetric and with spectrosco p

data, is then
A

	

80 . 10-4° gcm 2 ± 6 0/ 0 .

In the calculation of A = 82 . 10-40 gcm2 by means of (V I

and (VII) due regard was paid to the interdependence of ro i

tional and vibrational energies . In using (VII) and (V') whit

leads to A 78 . 10-40 gcm2, this interdependence is parti

ignored . The fact that almost the same values of A are obtain (

supports the view that the approximation made in formulati c

(V) is rather good .

VI . Summary .

(1) The expression for the entropy of 1 mole of CH 3Br i

the ideal gas state is considered and the derivation' from mor

general expressions is discussed .

(2) The calorimetric data given by EGAN and LEMP are al.

plied to find the product A2C . The infrared measurements (

BENNETT and MEYER are used to calculate the value of C . Co y

biring calorimetric and spectroscopic data A =-78 • 10 -40 g( . :

(+ 8 per cent) and C = 5 .42 . 10-40 gcm2 (± 5 per cent) is 0 1

lained .

Infrared measurements by BENNETT and MEYER, MOORHEA '

SLEATOR, BARKER and NIELSEN permit the calculation of A =

10-40 gcm2 (+ 10 per cent) on a purely 'spectroscopical basis .

(3) A value for A, equally well consistent with spect

scopical and heat capacity measurements, is 80 •10-4°
gcm2

Universitetets kemiske Laboratorium .

Copenhagen .

II . EQUILIBRIUM CONSTANTS OF THE REACTIO N
CH 3Br + HC1 CH 3C1+ HBr

MOMENTS OF INERTIA OF METHYL BROMID E

I . Introduction .

In a previous paper by the present author" the formul a

li 2 .307 + 41nT +

2
1nM + 2 1nA 'ZC ' +1n	 p~ni + 'S Ein (vf , T)

	

( I )

	

C

	

,

3n- 6

was shown to be valid in a large temperature interval (100°-
000°K) for the entropy of one mole of CH 3Br-gas in the ideal
tate at 1 atm. It was demonstrated how the measurements o f
'eat capacity by EGAN and KEMP 2 can be used for finding the
oduct A'2C' . In the present paper it is shown how A' can b e

determined by measuring another thermodynamical quantity ,
iz. the equilibriumh constant of the reactio n

CH 3Br + HC1 CH 3CI + HBr

it various temperatures, the final calculation of A' being based
ipon the equilibrium constants of the above reaction and spectro -
copical data available in the literature .

For the most convenient formulation of the problem (I) i s
.oinbined with the general thermodynamical relatio n

G=E-TS+pV, ( 1 )

where the thermodynamical potential G, is defined as a functio n
'f the internal energy E, the absolute temperature T, the entropy

l) : Kgl . Danske Vidensk. Selskab, Mat.-fys . Medd . XXIV, 9 . Here cited
,TÎ)

T . Am . Chem . Soc. GO, 2097 (1938) .
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S, the pressure p, and the volume V. As only ideal gases are cosI -

sidered pV = RT . Furthermore, E° = E°, + RT + RT2
adT1

where Eå is the internal energy at the absolute zero, 2 RT

the translational energy, and the last term is the energy due t o

all other degrees of freedom (electronic, vibrational, etc .) . This

equation is easy to derive by means of Table I, (S-TI) . Sub-

stituting for E° in (1) we get

G° = Eß+2RT+RT2 då1 .

1 7

In	 ~, (CH 3Br)

A'

	

+

3n-6

	

~11
+

	

lIl (1- e ],T)

f -1 (CH,Cl )

here, M (CH 3Y) is the molecular weight of . the molecule CH 3Y,
nd A'(CH 3Y) is 1038 x the moment of inertia of the molecul e
ith respect to an axis perpendicular to the C-Y bond through
te centre of gravity. The term

3 M (CH 3 Br)
ln

2 M (CH 3 C1)
R

3n~ 6

	

-gr
~ 1zT1n 1

(CHsBr)

(5)

As already shown (S-TI), Z can be written as Z vil,•Zrot , whic h

means that
dlnZ _ dlnZv;1, dlnZrot

dT

	

dT + dT

But

RT2
d1nZ ;t, = RT

dT

Substituting for Z in (2) we get

G°- Eô R

T

S °
4- -

R E,

ekT- 1

8f

kT

Introducing the value of S given by (I) we derive

G° -Eg = R
T

1 .694 - 41nT- 2 1nM -9 InA'2 C' ~--

-I- ln 3 -I-

3n-6

	

sf7

ln (1 - ek T

o _
-

o

Now, we want to form Ll G	
T
	 E 0 for the reaction CH 3 B '

HC1 = CH 3 C1 + HBr. The part of the function originating te a

the conversion of CH 3Br into CH 3C1 is easily seen to be

ln
C' (CH3Br)
C (CH 3 CI)

l gis been put equal to zero . Experimentally C'(CH 3Br) was found
be 0 .0542, viz . the saine as for CH 4 . 1 Using the same ex-

Ilerimental method, C ' (CH 3C1) is found to be 0 .0544 . However ,
Kith values have an uncertainty of 5 per cent, but the deviation s
orrl C ' (CH 4) must have the same sign and be very nearly equal .
hus C'(CH 3Br) = C'(CH 3C1) .

The part of the function A
G°

1-E° originating from the con-

ersion of HC1 into HBr is found from tables available in the
o

	

J o

literature .' In Table I values of - G-	 r0 for HBr and HC1 ar e
4iy~ en .

	

T
Table I .

Values of
-G°-E$

,I	 for HBr and HCl .

(cal . deg.-1 mole1)

tie . temp	 250 300 400 500 600 700 800 900 100 0

llir

	

; ,	 39 .330 40 .594 42 .589 44 .139 45 .409 46 .487 47 .426 48 .259 49 .01 £
H' ;1 . . :	 36 .487 37 .778 39 .771 41 .321 42 .588 43 .663 44 .597 45 .425 46 .17 1

ence . . . 2.843 I 2 .816 2 .818 2 .818

	

2 .821, 2 .824 I 2 .829 2 .834 Î

	

2 .831

-T 1, p . 9-10 .
lIORDON and BARNES, Journ . Chem. Phys . .(i), 692 (1933) ; GIAUQUE, J . Am .. Soc . 54, 1731 (1932) .
Ii4 . Danske Vidensk. Selskab, Mat ..fys . Medd . XXIV, II.



18

The equilibrium in question was studied in the temperatu r

interval 350° K-600° K . Table I shows that in this inter n

E
4

G°
T-- originating from HCl -* HBr can with. good approxu h

ation be put equal to -2 .819 cal . deg . -1 mole-1 .

Consequently we get for the reaction CH 3Br + HC1 -~ CH ;,( '

+ HBr

3 M (CH 3Br)

	

A ' (CH 3 Br)
2 ln M (CH 3 C1) + in

A' (GH 3 Cl )

	

3n-6

	

(

	

- g, \

	

~

	

1 1 !+ , 1n l - e
(cxacl )

The general relation between the 4 G of a given reaction and ' I

equilibrium constant for the corresponding equilibrium is

4 G = - RT1nk ,

where k or k (T), as it will often. be written, is the thermodynar ,

equilibrium constant . Combining this relation with (6) we ge l

' 3n-6

a
A'	

~ t (1
~ elcT)

k (T) = (	 	

CHs~r 2.819 d E~
M (GH 3 C1)

)
%a A(CH 3 G1) f 1 	 - e

~
- RT

M (GH3Br) A' (CH 3 Br) ~
(1_ ekT

f =1

	

crl,ct

9
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has, by means of equilibrium data and . spectroscopical data
ratio

A' (CH 3 C1 )
A' (CH 3Br)

ambe calculated . From the fairly accurate value of A ' (CH3C1) ,
uwn from work in the infrared by NIELSEN, l A' (CH3Br) can
aalculated . 2

. Experimental Determination of the Equilibrium Constan t
at Different Temperatures .

a . Preparation of CH 3 Br .

Commercial bromine was freed from chlorine by being kep t
hours in contact with an aqueous solution of KBr unde r

tieing at intervals. Subsequently the bromine was distilled off
nil reduced to HBr by means of SO 2 in the usual way, a con-

+:ntly boiling hydrobromic acid being prepared . By heating the
drobromic acid to 70° C and adding methyl alcohol a gentl e
lotion of gaseous CH 3Br is obtained. The gas is fractionated

rough a column, jacketed with water, at 5°C, led through 3
ash-bottles with water and 3 with concentrated sulphuric aci d
Id is finally condensed . Its purity was checked by its Rama n
iectrum . Since the spectrum showed no lines originating fro m
aser, methyl alcohol, dimethyl ether, methyl chloride, or an y
lier compound, the sample contains no water or methyl alcohol ,
i+.ll substances being very easily detectable in the Rama n
;e( .trum. Dimethyl ether and methyl chloride must be presen t
amounts of less than c . per cent and, actually, the way

preparing the sample makes it highly probable that it is eve n
S~ Unfortunately the constancy of the melting point and th e
erse of the premelting curve could not be studied .
The CH 3Br was kept in a glass vessel, M (fig . 1), surrounded
iee . Prior to each experiment c . 1 g was distilled from M t o
or T 2), which was placed in liquid air . Then a high vacuum

äs established and the CH 3Br was twice sublimated from T 1
Iand vice-versa. At the end of each sublimation the last

ä-tenth was pumped off. This treatment ensures the presenc e

IIELSEN, Phys . Rev. 56, 847 (1939) .
empare, however, the note added in proof .

2 *

If the equilibrium constants at two different temperature s

known, the knowledge of the quantity 4 Eå is unnecessary

our purpose (8) :

lf (T2)T` T,
T ,

3n-6

(1

	

-E~

	

T'-
Ta

~ ~

	

/

	

ICI-;Br
r=1

3n-6 (

	

-ef

k (T r)T~Ta

	

ea
.RO ( M(GH3C1) )'la A ' (CHaCl)

T, = M (CHaßr) A' (CH 3 Br)

CFIgCl

G° -Eo
T

3
°-

6
(

	

-~Fl

	

2 .81 9
ln 11

	

e k T
(CI-aBr)

	

R
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N

of an air-free sample, which was afterwards allowed to dis t

into that part of the apparatus (A), where the amount o f

was determined .

b . Preparation of HC1 .

While a suitable amount of CH 3Br was prepared for a wise

series of experiments, HC1 was produced for each single ( l

termination of the equilibrium. Conc. hydrochloric acid (0.

0 .7 cc) was added to 400 cc conc . H 2SO 4 1 in a carfully evacuate
flask through a separatory funnel, the tube of which was I E

to the bottom of the sulphuric acid (H, fig . 1) . When the stopc o

of the separatory funnel is cautiously opened the hydrochlor

acid distils to the bottom of the conc . sulphuric acid, and a stre a

of dry HC1 is obtained . The gas is condensed in T, or T 2. Befo

using it in the experiment it is subjected to the same treatme

as CH 3Br (sublimation in vacua) . In this way an air- a r
water-free sample of HC1 was prepared as will be seen fr o

experiments referred to under d .

The pink, crystalline modification of HC1, noticed by GB !

and BunT 2 and by GIAUQUE and WIEBE 3 was again observ e

c . Determination of the amount of CH 3 Br used

in the experiments .

From the evacuated tube T1 (or TO CH 3Br was distilled i ,

an evacuated I 1-bulb A, placed in a thermostat . After 2 ho e

the pressure of the gas was read off by means of the menu

manometer P. A Dewar vessel with liquid air was put aro u

the evacuated tube B until all CH 3Br was condensed. Now ,

a series of preliminary experiments, the tube B was carefull

sealed off, washed outside with ethyl alcohol and dried in ba r

over P 205 . The weight of the tube was determined on the analvl :

balance. Subsequently, the tube was broken by being scratc l

cautiously and heated in a little (2 mm) flame. In this w ,

tube can be opened with practically no loss of solid materi ]1 ,

blanks have shown. The tube was again dried in vacuo andweit l

Its volume was determined by its water content being wei B l

This amount suffices for abt . 20 preparations of 0 .01 mole dry HC1 . '
2 Journ. Chem . Soc . Lond ., 1669 (1909) .

Journ . Am . Chem . Soc . 50, 101 (1928) .



0 .7685 0,1764 0 .1950 0.1961 1 .00 0

0 .7085 0 .1625 0 .1796 0.1808 1 .0, 1

0 .6499 0 .1490 0 .1647 0 .1658 1 .0, H

0 .5934 0 .1363 0 .1507 0 .1514 1 .0 '

0 .5202 0 .1197 0 .1323 0 .1327 1 :f ? C

0.4677 0 .1076 0 .1189 0 .1193
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In this manner the amount of CH 3Br in grams corresponding;

a certain manometer reading was determined . By carrying o

a great number of similar experiments an equation, giving f

number of moles CH 3Br in A as a function of the manomc ï

reading, was found (y mole CH 3Br = 0 .00006051 x-0 .000i î :

where x is the cathetometer reading in mm at a temperatur e

the mercury of 19° C) . Thus, in equilibrium experiments, t ;

analytical expression and a manometer reading serve as t

practical means of finding the amount of CH,Br involved

the reaction .
The manometer readings were taken by means of a cat i

tometer . Each pressure was determined as the average of I

cathetometer readings . In this way the pressure determination

exact to about -- per thousand for the pressures in " questi r

viz . 100 mm Hg. The pressure reading and The use of

y-equation together cause an uncertainty in the determinat i

of the amount of CH 3Br to c . 0 .2 per cent .

At the thermostat temperature and a pressure of 1001 1

Hg CH 3Br does not obey the ideal gas law . In view of the gen ,

interest of this fact the respective experimental data are g i

in Table II .

Table II .

Deviation of CH 3Br from the ideal gas cstate.

Volume of A : 1 .10551 at 295.2° K ~ 0 .1° .

d . Determination of the amount of HC1 used ii i

the experiments .

The amount of HC1 present in A could not be deternl i

in the same way as in the case of CH,Br due to the high pr y

developing in the ampulla when heated to room temper

2 3

these experiments, therefore, B was connected with the re-

ining apparatus by means of a ground glass joint, which permit s
removing B after condensation of the HCl gas . In a stream
hydrogen the HC1 was subsequently distilled into water, which
solves HC1 quantitatively . Cl was precipitated as AgC1, which

0s filtered off and dried to constant weight . In this way an
nation giving the dependence between the pressure reading
d the number of moles HC1 in A was obtained (z mole HC1 =-
0005883 x + 0 .000101, where x is the cathetometer reading a s
the case of CH 3Br) .
(TREY and BURT' have shown that at p = 180 min Hg and
on temperature nRT = 1 .0012 . At the somewhat lower pres -
e (100 mm) used in our experiment, the gas must be practicall y
+l . If, in our experiment, this result can be reproduced, i t

i lls that the HC1 prepared as described under b must b e
i e. The results of 5 experiments are given in Table III .

Table III .
Proof that the HCl-gas used obeys the ideal gas law .

901i 0 .2293 0.1377 0 .1521 0 .1523 1 .00 1

Volume of A : 1 .1055 1 at 295 .2 ± 0 .1°K .

e. The reaction vessel .

fter successive determinations of the gas quantities in A an d
condensation in B of CH 3 Br and HCl, the Dewar vessel with

Ind air was removed from B, which results in the evaporatio n
the two gases into the reaction vessel C (fig . 1). The vessel
s a 31-bulb of pyrex glass, surrounded by two tightly-fittin g
pper hemispheres . These hemispheres were surrounded by a
erofasbestos paper and asbestos wool together with an electrica l

5tiug wire. The whole arrangement was again surrounded b y

i urn . Chem. Soc . Lond ., 1669 (1909) .

p atm .g CHgBr
pv

liter-atm.

nRT

liter-atm .

nR T

py

I .1793
1 .1706

1 .0539

) .9952

Corresp .

g HC1

0 .300 0

0 .297 8

0 .268 1

0 .2531

p atm .

0.1807

0.1790

0.161 0

1519

Pv
liter-atm .

0 .199 7

0 .1 -97 8

0 .177 8

1678

I1R T

liter-atm .

0 .199 3

0.1979

0 .178 1

1682

nRT

p v

0 .99 8

1 .00 1

1 .00 2

.00 2
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a big tin container, filled with kieselguhr . Copper-constar l

thermocouples were placed at t 1 , t 2 , and t 3 . In this way it w

possible to maintain temperatures deviating less than 2°, t 2 geia)a

ally being very nearly the mean of t i and t 3 . No thermo-regulat~ o

was necessary for keeping the temperature constant withi n

during an experiment . By varying the heating current any desim f

temperature between 20° C and 450° C could be obtained.

The thermocouples were calibrated in the vapors of boiiiu /

benzene, water, toluene, bromobenzene, naphtalene, benzophenon

and mercury . At 350°C the reading is accurate to 0 .5°, at 100° G

it is accurate to 0 .2° .

f . Analytical determination of the position of

the equilibrium .

After equilibrium had been established in C, the equilibrilu r

mixture was frozen down into the carefully evacuated trap D

surrounded by liquid air . After 2 hours the stopcock S `v

closed. By means of a stream of hydrogen the reaction mi n

was passed through 75 cc water in an 300 cc Erlenmeyer f

HBr and HC1 are dissolved quantitatively in water. Most o :

CH 3Br and CH 3C1 is passing, as blanks have shown, the r f

removed by continued bubbling-through of hydrogen for 2 h

In a special experiment it was shown, moreover, that neither C

nor CH3C1 hydrolyse under the present circumstances .

The amount of acid was determined by titration wit h

NaOH . Blank experiments with HC1 alone prove that the quauti

of acid found by means of this titration is in excellent agreerel[

with the amount calculated by means of the equation mention e

under d .

Using the mass-law of action for the equilibrium we obtain ,

CH 3Br + HC1 Z. CH 3 C1 + HBr

Number of moles before

reaction : mc c o

Number of moles in th e

equilibrium : 	 a) c (1- a) ca

a 2

-a) (1-a) '

ris the known ratio between the number of moles CH 3 Br and
i[Cl before the reaction . If the ratio between HBr and HC1 i n

le equilibrium is f, a is given by f = 1 - a . Consequently a
a

determination of the ratio between Br and Cl in the aqueou s
lotion of HBr + HC1 must be made .
This special problem has been studied by several authors .

See e . g . GMELIN, Handb. der anorg. Chem.). I have checked
series of these methods. The method described by LANG'

oxidation of HBr by KMnO 4 in the presence of HCN and H 8 PO 4 ,
rduction of surplus KMnO 4 by FeSO 4, addition of KJ an d
ii ration with Na 2 S 2O 3 ) was found to be of suitable accuracy and

nvenience . By this method the contents of Br can be determine d
,Imost independently of the contents of C1. In the present ex-
eriments we are interested in determining Br in the presenc e
f 3-5 times as much Cl . Table IV gives the results of using
ang's method on weighed quantities of KBr and KCl .

Table IV .

Lang's method thus gives reproduceable, although not quit e
orrect values for the Br contents . In practice, the thiosulphat e
olution used was adjusted to solutions of KBr + KC1, almos t
die those to be analyzed . In this way the amount of Br can b e
hund with an accuracy of about 0 .3 per cent .

The inaccuracy in the determination of m and f is seen t o
ause an inaccuracy of k of about 1 .5-2 per cent, as verified

equilibrium experiments .

The determination of the equilibrium constant at
606° K in the absence of a catalyst .

As ;seen from the preceding sections, the equilibrium was
gudied by mixing known amounts of CH 3Br and HCl in `C' and

Zeitsch . f . anorg . u. allg. Chemie 144, 75 (1925) .

~

	

g KBr Equiv.. Br. g KCl Equiv. Cl .
Cl

Equiv . Br .

found.
Erro r

St

	

t

)un

	

0 .2029 0 .001704 0 .5025 0 .006740 0 .252 0 .001721 1 .0 °/o
R~

	

D .1943tI 0 .001632 0 .5047 0 .006769 0 .241 0.001649 °/°1 . 0
0 1460 0 .001226 0 .5103 0 .006844 0 .179 0 .001239 1 .1 °/ o

~ ~

	

~~ .1277

>_

	

!
0 .001073 0 .4973 0 .006670 0 .161 0 .001085 1 .2 °/ o
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Nr ft

heating the mixture . As preliminary experiments show, the ~r

change of Br and Cl starts at 250-300° C in the absence of

catalyst. At 330-340° C, equilibrium is established within 40_;

hours . Some experiments aiming at a faster establishment of t i

equilibrium were carried out at higher temperatures . At 390` i

the following observations were made : After 40 hours the reactik 1 1

mixture was led to the trap D . The condensation, being complti ,

in corresponding experiments at 330° C, now was incomplf. l

At the same time the number of equivalents of acid, present i t

D after the reaction, exceeded the number present before

reaction . Thus, some ` side reaction' must take . place, bet a

all the reaction partners of the equilibrium CH 3Br + HC1

CH 3C1 + HBr, are condensable and the number of equivalen t

acid is constant. In fact, the only compound which coul d

be condensed in liquid air and which could be' formed fro m

reaction partners, is hydrogen . When, in a following experi m

HC1 was omitted, the contents of `C' were likewise not comple

condensable in D after 24 hours, a considerable amount of

(c. 0 .1 mole per cent) being simultaneously formed . This .

dicates that the `side reaction' probably i s

CII2 Br
2 CH 3 Br H 2 +

CH 2 Br

\r, 9 .

	

2 7

t H 2 BrCH2Br had been present it would have been particularly
easy to detect because of the isolated Raman line of the C-C bond .

Consequently it was decided to carry out a series of deter-
minations of the equilibrium constant at some . temperature be-
roen 330 and 340° C . The results are given in table V .

Mean of experiments 2-10 : 0 .1352 . Result : 0 .1352 + . 0 .0008 = k .

Table V .
Equilibrium constant determinations at 606° K .

tl

	

.

	

_

Equiv.

	

Equiv .

	

Equiv .

	

Equiv.uti~

	

Duration . CH a Br.

	

HC1

	

HC1

	

HBr

	

a '
haurs)

	

before

	

f

	

a
efore

	

before

	

+ HBr

	

after

	

(m-a)(1-a )
S ~t

	

exper.

	

exper .

	

aft. exp. .

	

exper .

LI

	

'

	

I 22 hours 0 .007891 0 .007986

	

0 .9882

	

0 .007996 0 .001975

	

0.3280

	

0 .2470

	

0 .109 3
0.007786 0 .006162

	

1 .2635

	

0 .006162 0 .001845

	

0 .4274

	

0 .2994

	

0.132 7
0 .007121 0 .007146

	

0 .9 .965, 0 .007131 0 .001916

	

0 .3674

	

0.2687

	

0 .135 6l

	

43

	

-

	

0 .007125 0 .007381

	

0 .9653 0 .007377 0 .001947

	

0 .3586

	

0.2639

	

0 .134 9
12

	

0
H

	

.007200 0 .007007

	

1 .0275

	

0 .006982 0 .001896

	

0 .3728

	

0.2716

	

0 .134 0
(-i1

	

0c.-,

	

-

	

.006522 0 .008077

	

0 .8074 0.008087 0 .001951

	

0 .3180

	

0 .2413

	

0 .135 5
72

	

-

	

0.007863 0 .007767

	

1 .0123 0 .007767 0 .002096

	

0 .3696

	

0 .2698

	

0 .134 2
72 . -

	

0 .007797 0 .006774

	

1 .1510 0 .006781 0 .001965

	

0 .4080

	

0.2898

	

0 .137 3
îï

	

-

	

0.006704 0 .007587

	

0 .8836 0 .007578 0 .001918

	

0 .3389

	

0 .2531

	

0 .136 0
-

	

0 .007791 0 .006341

	

1. .2286 0 .006334 0 .001890

	

0,4253

	

0 .2984

	

0 .1364

HBr being produced by subsequent reactions such a s

At 330° C, however, the condensation in D was complete a n

no extra equivalents of acid were formed . To ensure 'hail n'

secondary reactions take place in experiments at this temperatiï i

an experiment with 0 .01 mole CH 3Br alone was run for 10 da t

330° C. The subsequent condensation in D was complete ant i

HBr was formed . In a similar experiment with 0 .05 mole Cl1ß'f,

the condensate in D was distilled into a Raman tube and t} '

Raman spectrum was photographed. The spectrum showed n o

signs of other lines than those corresponding to CH 3Br . If e

In connexion with Table V the use of the mass-law of actio n
may be discussed . The law is only fulfilled for ideal gases . At
higher temperatures and lower pressure, the actual gases can b e
considered ideal with better and better approximation . As HCl
and HBr are already ideal at p = 150 mm Hg and room tern-

perature they are even more so at the pressure of the experiment
0.100 mm Hg) and the temperatures 80°-340° C. Table I I
bows that at room temperature CH 3Br deviates a little fro m
tteality . . The same is probably the case with C H 3 C1. At the higher
niperatures of the experiments the deviations from ideality are
i tor . Thus, the ratio between the activities of CH 3Br and
11,01 as a good approximation must be equal to the ratio be -

en the concentrations. The .application of the mass-law of
ion must be permissible .

CII2Br

	

CHB r
-} HBr +

CH 2Br

	

CH 2

CH 2 Br

	

CH 3
or

	

-+ - H 2 -~ i

	

-I-- H B r

CH 2 Br

	

CH 2Br
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Table VI .

Determination of the equilibrium constant at 357°K .

2 9

h . Determinations of the equilibrium constant a t

357° K in the presence of a catalyst .

For the determination of the equilibrium at a temperatur e

far as possible from 606° K a suitable catalyst was looked fc

The first attempt with granulated active carbon turned ou t

be successful . The catalyst was suspended in a glass spira l

the centre of C (fig. 1) . In the presence of this catalyst it is possil

to study the equilibrium even at 80° C .

The first experiment with the catalyst was made at the sa t

temperature as the experiments without a catalyst, 606° K . T.

experiment lasted for 24 hours. After that time the condensat i

in the trap D was incomplete and the number of equivalent s

acid had increased . Thus, some side reaction is catalyzed, t c

In the following experiment at the same temperature, which

interrupted after one hour, the condensation in D was nea

complete and the number of equivalents of acid had onl y

creased by 0 .5 per cent . When calculating the equilibrium con-

stant on the assumption that no side reaction had taken plan ,

k was found to be 0 .1300. Without a catalyst k = 0 .1352 . L

broad outline these experiments indicate that active carbon ] ,

an excellent catalyst for the reaction we want to study . Sinc e .

however, also the side reactions are catalyzed it ås impossibl y

to study the equilibrium with and without a catalyst at the san e

temperature .
Next the highest possible temperature at which the sid e

reactions are negligible was looked for . In experiments at 533 0

K and 497°K, excess equivalents of acid were formed in thecourse,-`

of 40 hours. At 458° K no excess equivalents of , acid were p ,

duced during 40 hours . At 419° K the same result was fou r

Thus experiments with the catalyst at temperatures lower thi n

about 450°K (177°C) can be performed without the complicatiooi n

originating from the side reactions .

Finally the lowest possible temperature at which the eq~~i 1

librium can conveniently be studied was sought for . At 357` t( {{~

(84° C) equilibrium is established in the course of 30-40 how , .1

As this is a suitable period, the experiments of Table VI \V r r

carried out at that temperature .

	

-

Mean number of experiments 2-9 : 0 .03433 . Result : k = 0.03433 ± 0 .00014 .

Ili . Calculation of Spectroscopically and Thermodynamically
Important Quantities .

a . Calculation of the greatest moment of inerti a
of CHS Br .

Formula (8) shows that sufficient data are now available t o
calculate A' (CH SBr), the greatest moment of inertia of CH S Br .
Putting T 1 = 606° K + 1 .0°, T 2 = 357° K + 0.5° and A' (CH S Cl )

0 .5,79 1 and using the vibration data of BENNETT and MAYER 2

A' (CHSBr) = 0.782 gcm2 ± 4 per cent .

Äs A' (CH S Br) = A (CH S Br) • 1038 , where A (CH SBr) is the true
moment of inertia, we get

75 . 10-40 gcm2 < A (CHSBr) < 81 . 10-40 gcm2 .

This value is in excellent agreement with values found by pre-
vie-LIS authors (S-TI, p . 13) .

	

-

NIELSEN, Phys . Rev . 56, 847 (1939) . Compare the note added in proof .
BENNETT and MAYER, Phys . Rev . 32, 888 (1928 )

a s
ir

Du-

ration .

(hours)

Equiv.

CH S B r

before

exper .

Equiv.
HCl

before

exper .

m

Equiv.

HBr

+ HC1

after exp .

Equiv .

HBr

afterexp .

f a
a 2

(1-a) (1-a )

20 0.006335 0 .006678 0 .9486 0.006647 0 .001003 0 .1777 0 .1509 0 .0336 6
39 0.006730 0 .006376 1 .0555 0.006376 0 .001027 0 .1920 0 .1611 0 .0345 9

rie 45 0.007021 0 .006696 1 .0485 0.006685 0 .001070 0 .1906 0 .1601 0 .0343 5
(1i

	

i 42 0.006264 0 .007147 0 .8888 0.007126 0 .001035 0.1728 0 .1473 0 .0343 1
G i 6 4

40

0.00627 0

0.007167

0 .00678 2

0 .006516

0 .9245 0.006775 0 .001021 0.1774 0 .1507 0 .3456 0
1 .1000 0.006510 0 .001070 0.1967 0 .1644 0.0345 7

~ 40 0.006724 0 .007328 0 .9230 0.007325 0 .001101 0.1769 0 .1503 0 .0344 1
~~' 40 0 .006247 0 .006649 0 .9395 0.006623 0 .000998 0.1774 0.1507 0 .0339 0

43 0 .006635 0.007017 0 .9455 0.007025 0 .001063 0.1783 0.1513 0 .03396
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Nr.9 31

The limits given for the value of A (CH 3Br) were calculated

on the assumption that the sources of experimental error ar c
exclusively to be found in the temperature measurements and

the analytical determination of the equilibrium. To check th e

correctness of this we may determine the equilibrium at a thir d

temperature, as different as possible from 357° K and 606°K .

On page 28 it was mentioned that the equilibrium in questio n

can be established at 458° K in the presence of the catalys t

without side reactions . A temperature of 443° K (170° C) wa s

chosen for the experiment . Two determinations were made .

Determination of the equilibrium at 443° K .

1. experiment. Duration 36 hours	 k = 0.0661 0

2. experiment .

	

-

	

67 -	 k = 0 .0664 3

Mean number : k = 0 .06636 ± 0 .00100

Now, calculating A (CH 3Br) by means of the results at 606° h

and 443° K we obtain

A (CH 3Br) = 70 . 10-0 gem2 ± 8 per cent .

The agreement between the two values found by the presen t

`equilibrium method' is not quite so satisfactory as was expected .

This might mean that some systematic error was neglected . A s

no such error seems to have occurred in the experimental d e

termination of the equilibrium constants it seems natural to re -

consider the theoretical basis . In the derivation of equation (1 ,

the simplifying, partly uncontrollable assumption was made th

the interaction between the rotational and vibrational movemeid ,

of the molecule can be neglected . For the methyl halides it i

known with certainty that such interaction occurs . Unfortunatt l

it is very difficult, if not impossible at present, to see to w.h

extent such interaction will influence equations (I) and (8) .

Paying due regard to both determinations of A (CH 3Br) ma n l l

in this paper, we get :

A (CH 3Br) = 76 .5 . 10 -40 gcm2 ± 4 per cent .

Even if a systematic error of 5 per cent is taken into accod i

the value found by the present `equilibrium method' is of ii ;

same accuracy as the values hitherto determined by spectro-
scopical or physico-chemical method 's .

Spectroscopical methods	 82 . 1 0 -40 gemt + 10 per cent .
Heat capacity measurements . . . 78 .10-40 - ± 8
` Equilibrium method' 	 76 .5 .10-40 -

	

4

The value, equally well conceivable with spectroscopical heat
capacity and equilibrium measurements, is :

A (CH3 Br) = 77 .5 . 10-40 * 4 per cent .

b . Calculation of 4E,'' and the heat of reactio n
different temperatures . '

From (7) it follows that

3n-6

	

e f
J ( 1-e' T~CH,Br2'R9 M(CH 3 C1)l'l2 A' (CH 3 C1) f _= e

	

(M (CH 3Br)/ A' (CHsBr) 3/n-6

(i_e i )c,ci
k (T)- • ( 9 )

'
J c

As all the quantities of the right-hand side are known, we can
calculate :

4 Eå - 2500 gcalmolé-1 ~ 75 .

Taking the value of G from (3) we get :

' In the newest American literature AIil is were commonly used for 4E,°, .

3n-6

	

Ef

H° = E~ -F- RT 4 -+ -

	

kT
ef

f=1 ekT _

The enthalpy H, the thermodynamical potential G, the entrop y
S, and the temperature T are connected by the relation :

H=G+ TS .
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We now want to calculate A H° for the reaction CH 3 Br

HC1--> CH5Cl + HBr. The fraction of A H° originating from

CH 3Br -)- CH 3C1 is easily seen to be :

A H° (CH3 Br -->- CH 3C1) = A Eå (CH 3Br -} CH3 G1) +

The change in the evolution of heat at a change in temperatur e
f about 300° is of the same order of magnitude as the experimental
rror .

The evolution of heal at the present reaction can be calculated
n advance by using the data available from the literature . '

CH 3Br + HCl -->- CH 3 C1 + HBr
teat of forma-
on, kcal mole-1 8.5

	

22 .06

	

20 .1

	

8 .65

For the hydrogen halides tables of
G° -Eo
Tare available ." Denoting

this function by B we can write G = E D + BT and

H = ED + BT + TS .

Thus ,

4 H° (HC1-->HBr) = AEå(HCl -)- HBr) -{-TAB° (HC1--> HBr) -r

-}-- TA S° (HCl -~ HBr) 2

CH,C1 sf

	

--J CHsBr E r

eicT-_1 #=1

	

ekT-1 ,

-I-TAB °(HCl~ HBr) + TAS°(HCl-> HBr) .

By insertion of numerical values we gel :

T°K T°C goal mole'

0 -273 2500

298 25 2450

606 333 2340

1 GORDON and BARNES, Journ . Chem . Phys . (1), 692 (1933) ; GIAUQuE, Jour [

Am . Chem. Soc . 54, 1731 (1932) .
2 Values of S for HO and HBr in the papers of GORDON and GIAUQUI

msequentl y

J Q° = - A H° = (20 .1 + 8.65) - (8 .5 + 22 .06) _ - 1 .81 kcal .

n this paper it is found tha t

4 Q° = - 2 .45 kcal .

le values of the heat of formation of HC1 and HBr undoubtedly
re correct, as they are based on consistent thermochemical an d
pectroscopical data . The data for the heat of formation o f
H 3Br and CH 3C1 are mainly due to THOMSEN . 2 From Thomsen' s
ook and from a paper by BERTHELOT 3 it is evident that th e
etermination of the heat of combustion of the methyl halides
Teets with considerable difficulties . It seems safe to conclude
hat one or both of Thomsen's values of the heat of formatio n
f CH 3 Br and CH 3C1 are incorrect .

IV. Summary .

(1) A relation between the equilibrium constants at two dif-
rent temperatures of the reaction CH 3Br - HC1 CH3C1 + HBr

nd spectroscopically determinable quantities has been derived .

` Revised and edited by BIcaowssey and Rossini, Thermochemistry of Che-
[l Substances, New York 1936 .

THOMSEN, Thermochemische Untersuchungen IV, 86 and 116 (1886) .
13ERTHELOT, Ann. de Chemie et de Physique (V), 23, 214 (1881) .

Kgl . Danske Videnyk . Selskab, Mat .-fys. Medd. XXIV, 9.

and

4 H°(GH 3 Br+ HC1 ~CH 3 C1-♦ -HBr) = 4Eô(CH 3Br-f-HCI-~CH 3 Br-I- H

	

3n-6

	

Ef

	

3'n-6

	

Ef

	

-7

	

kT
y

	

kT

3
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Nr, 4

(2) An experimental determination of the equilibrium cop -
slants at various temperatures was carried through . The reactiu ;

vessel was a 3-1 Pyrex bulb. At 606° K k = 0 .1352 ± 0 .0008 w ,

found in the absence of a catalyst . At 357°K k = 0 .03433

0 .00014 was found . At 443° K k = 0 .06636 k 0 .00100 was found

The two last-mentioned determinations were carried through i I

the presence of an active carbon catalyst .

(3) The results obtained permit of calculating the greate

moment of inertia of CH 3 Br, A (CH 3Br) = 76.5 . 10-40 gem t -

per cent. The result is in good agreement with the values foun t

by means of infrared spectroscopy (82 . 10-40 ± 10 per cent) a m

by heat capacity measurements (78 . 10-40 ± 8 per cent) . At pr o

sent A (CH 3Br) = 77 .5 • 10- 4 0 gcm2 is considered the best valu e

It is accurate to 4 per cent .

(4) Furthermore, A Eo for the reaction CH3Br + HCl --r

CH 3C1 + HBr was found to be 2500 pal mole-1 ± 75 . The he: i

of the reaction at various temperatures was calculated. The valu

found is inconsistent with the value which can be calculat o

from existing thermochemical data . It is concluded that Thorn

sen ' s values for the heat of formation of CH 3Br and CH 3C1 mll s

be incorrect .

The author wants to thank Professor LANGSETFr for helpfu

discussions on the subject .

Note added in proof: In a `letter ' to Phys . Rev. 72, 344, (194 -

GOIIDY, SIMMONS and SMITH have reported the results of mica

wave experiments with CH 3C1 and CH 3Br. For CH 3 C135 A i

found to be 63 .1 • 10-40 gem 2, for CHsC1 37 A = 64 .0 • 10- 4° e .

the ` weighed' average for ordinary methyl chloride is 63 .4 . 10- 1`

A serious discrepancy thus exists between this result and M E

SEN ' S value A = 57 .9 • 10 -40 used in this work . The discrepa

is hardly explanable by experimental uncertainty . If the mirr ,

wave results are confirmed by future experiments the result s

the present paper are changed as follows :

peg. 29 : A (CH 3Br) = 85 .6 . 10-40 gem2 + 4 per cent .

al . who found A (CH 3Br) = 87 .5 . 10-4° by direct measure-
lent

pag. 31 : 4Fo

	

4H~ = 2464 ge.al mol-1 i 75 .
pag . 32 : 4 H° (298° K) = 2414 goal mole-1 .
pag . 33 : 4Q° (298° K) = -24 .1 kcal mole- l

iversitetels kemiske Laboratorium ,
Copenhagen .

3 5

his is in fine agreement with the microwave result by GoRD Y

Indleveret til Selskabet den fi . August _94 6
Færdig fra Trykkeriet den II . Februlr• 1948 .


