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Printed in Denmark

Bianco Lursos Bogtrykkeri

he following is a discussion of the heat transfer caused b y
radiation between two bodies of different temperatures, on e

them entirely surrounding the other .

In the first part of the article we make some simplifyin g
,sumptions often allowed for technical surfaces (later on w e
le going to discuss the significance of the most important among
Item) :

I) The temperature-radiation obeys lhe. . cosine emission law .
2) The surfaces of the bodies are reflecting according to the

cosine law of reflection (completely diffuse reflection) . The
bodies are opaque .

3) The reflectivity is independent of temperature and wave-
length. According to Kirchhoff's law this means that th e

emitted temperature-radiation obeys, Stefan-Boltzmann's law .

The inner surface is everywhere convex and the outer on e
is everywhere concave .

The temperature is constant on each body .

Thé energy emitted in unit of time from the inner body is
ic 1 T1, . where Al is the area of the surface, c 1 the "radiation-
(instant" and Ti the absolute temperature of the body . If the

uiinundings are non-reflecting (absolutely black) the energ y

oreived and absorbed by the inner body in unit of lime wil l

)c 1 1 c 1 T2, where Tz is the absolute temperature of the surr-

oundings. Hence, the net loss of energy from the inner body
ßü11 he

H = A1 c 1 ( Ti - T2) .

	

( 1 )

formula is often used in practical calculations . It is only
i, if the radiation emitted from the inner body and reab-

lrhed after reflection from the surroundings can be neglected .
1*



4
Vr . 8

5

If the reflected radiation is not vanishingly small, the loss o f

energy is less than given by (1) . CHRISTIANSEN 1 arrived at th e

following formula :

We now express that this resulting radiation is the sum of
the emitted and the reflected radiation .

This leads to the following two integral equations :
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Index 2 refers to the outer surface ; co is the radiation-constaul

for a black body (Stefan ' s constant) .

CLAUSING 2 and SAUNDERS 3 have shown, that (2) is not alway s

correct ; H also to some extent depends on the form and mutua l

position of the two surfaces . SAUNDERS has shown how to malt (

corrections for this dependence if the reflectivity is so small thai

it is sufficient to take into account only one reflection .

We shall give equations determining H, show in wheel

cases (2) is correct, and find an approximate solution in th i

general case .

The integral equations of the problem .

We choose two points x, and x 2 on the inner and outer sul

face, respectively (cf . fig . 1), so that x, can be seen from x 2 an (

vice versa. That part of the outer S m

face which can be seen finm xi is denote

by A2, while A2 means that part whir l

cannot be seen from x 2 .-Ai denotes th .

part of the inner surface, which can 1

seen from x2 . By p (x 1, x 2) we deny

cos 4 . cos i 2
the function

	

2

	

, where i1 and
n r

are the angles shown in fig .1, while r

the distance between the points x 1 5[ 1

x2 . Il is equal to the fraction of the radiation from the viciai

of x 1 , which goes directly to unit of area around the point x ,

vice versa . The corresponding function for radiation between I v

points x 2 and x2 of the outer surface is denoted by 99(x 2 x2) .

The resulting radiation (both emitted and reflected) in ur ,

of time from unit of area near a point x is called I (x) .

C . CARISTIANSEN : Ann . d . Phys . u . Chem., Vol. 19, p. 267, 1883 .

2 CLAUSING : Revue d'Optique, Vol . 10, p . 353, 1931 .

+ SAUNDERS : Proc . Of the Phys . Soc., Vol . 41, p . 569, 1929 .

Here as before index 1 refers to the inner, index 2 to the outer
urface ; dx,, dx2 , and dx2 denote surface elements . We have

made use of Kirchhoff's law, according to which the reflectivit y
I a surface with the radiation-constant c is 1 - e. The absorp -

i ivity is ç .

	

co
c o

Let X2 denote the point where a straight line from x 2 to x1
intersects the outer surface again (cf . fig . 1) . It is then easily
you, that (4) can be rewritten as

r (4 a )
I2(4)p(x2x2)dx2

	

J
Af

he net energy-loss from the inner body is the difference betwee n
fitted radiation and absorbed radiation :

H-
A, c1

Ti- çi '
J

dx 1 Ç12 (x 2 ) 4' (x1 x2) dx2 .
CO Ai

	

A É

I I le equations (3), (4a), and (5) determine H, when the geometry
,I ihe system is known . They cannot often be solved exactly .

We first want to emphasise that Christiansen's formula (2)
valid, if the functio n

(p (x2)

	

lp (x 1. x2) dx 1
A i

i e . the fraction of the radiation from the vicinity of x2 which goes
cetly to the inner body) is independent of x2 . In that case q'(x 2)

easily be found : From the definition (6) it follows that

rig . 1 .

(3)

I-2 (x2) = c2T2 + (1

	

co ) ' {(Ii(xi)Iz(X2))

	

\x lx2) dx 1
A

(5)

(6)
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1 q)(x2) dx2 = dx2 (p(x l x2) dxl = dxi 97( .x 1 ;X,2) dx2 =
. .A z

	

Az

	

Ai

	

A ;

so that if cp (x2) is constant, it must be equal to
A

2 .
In general

Ai
is the mean value of 99 (x 2) over the outer surface

When rp(x 2) 2= 2 it is seen that (3) and (4a) are satisfi t

by constant values of I1 (xi ) and 12 (x 2 ) . Solving for I1 and 1,

and inserting in (5), we gel Christiansen's formula (2) .

Some very simple forms and symmetrical arrangements o

the two bodies give a constant value of cp (x 2), e . g . two concentr a

spheres, two coaxial cylinders, or a sphex ,

with a thin disk covering the equatorial pla n

(see below) . In these cases Christiansen '

formula (2) is valid, but if 99 (x 2 ), and con

sequently Il (xi) and I2 (x 2 ), vary, this fo

rnula is no longer correct . A simple exampi

that can be solved exactly, will show this : l

the outer surface be a sphere and the inn ,

body a hemisphere with slightly smaller radie

(cf . fig . 2). Formula (2) then is valid for fit

radiation from the hemispherical surface and the plane surfa

separately (cf. p. 12) . This means that H is a sum of two expr e

Ai .

Approximate solution of the integral equations .

We shall now show how to find approximate solutions o f

equations (3), (4a), and (5) in the general case .

The crudest approximation formula (1)-is obtained by .li

7

egarding the integral S A, • • dxi in (4a) ; this integral represent s
he influence of the inner body on the radiation from the outer
,urface . By doing so one gets the solution (black-body radiation) :

I2 x2) ° cO T
4
2 ,

iiich inserted in (3) give s

11(x1) = c1 ( T 1 7 2)+ c 0 T 2 •

n) then leads to the " zero th " approximation (1) .
These expressions for I 2 and Ii are now inserted in the integra l
(4 a) which was first disregarded . In the other terms of th e

stations (3), (4a), and (5) we put

Il(x1) = cl( T 4 Ts)+ cu rt +f(xi)

	

(10 )

12 (x2) = CO 'II + g (x2 ) .

	

(11 )

Vo then get the following equations, where we have introduce d
It function (p (x 2 ) defined by (6) :

( x1) = (i_t)
. g (x2) 92(xix2) dx 2

	

(12 )co A Ø

~o) ' c1( T4- T
å
) ' eP(xs)+~ g (x2)m(x2 x2) dx'2((13 )ll

	

'AY

	

1

H = A i c i (T 4 - T 2) - co • g (x2) 1;o (x2) d x2 .

	

(14)
A Y

l' heseequations can be solved without further approximations if
he outer surface is a sphere . If it has the radius R, it is seen tha t

O''ause cos i2 = cos i2 =
21R .

The last term in equation (13)

herefore is a constant so that

g(x2) = (1 co
)22 . c1( T1 -T) {92(x2)+ cons t . ),

	

(16

) \here the constant is found by inserting (16) into (13). Making
it, of (7) it is seen that the constant is equal t o

Fig . 2 .

sions of the form (2) with
A2

in the denominator replaced by

and 2 , respectively . This sum, however, is different from what i

obtained by using formula (2) for the radiation from the total inn (

surface (putting Al = 4 in the denominator) . One often get s
2

better approximation than (2) by separating the radiatio n

two or more parts of the form (2) as in this instance, e. g . w1i

dealing with a flat radiator placed' near a wall . On page 13 l

more example is given, where such a separation is exact .

(8 )

(9 )

COS Z2 • COS I 22
9) (x2 x2 ) =

n • r2

	

4 n R 2

	

A 2 '

	

(15)
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c 2

	

A i

c 2

	

co

	

A 2

H is then determined by means of (14) . We denote mea n

values over the outer surface by a bar, e . g .

= A2 • SÅT(x2)12dx2 and 9' =
A2

. S T (xz) d2 ÅQ

according to (7)
. The resulting expression for H i s

H = Al e l ( T i TL) .

	

A, .} 1- 2

This may be considered as the first two terms of an expansio n

of H in powers of A2
. We know that Christiansen ' s Formula (2 )

is correct when T is constant, i . e . T2 == (-T) 2 . We therefore obtai t

a better result if we transform the expansion (17) into an e s

pression in which the denominator is expanded in powers

Ēl
instead of the nominator . In this way we get from (17)

2

(	
1

	

1
l

A 1

	

1,
ç2 T 2	 -(eP)2

.

1 +
cl

\ c 2

	

c o / A 2 \

	

c o

	

(9~)2 ~

It is of course possible to proceed along these lines and fn s

(-)2 hy get the term of order introducing the now determine r

first order expressionsfor 12 @ 2 ) and Ii (x l) into the integr ,

5A'

	

dx l , in (4 a) . In the case of a surrounding sphere this-

sdcond-approximation can also be expressed in terms of simh l

mean values . Usually, however, (18) will be quite a sufficien

approximation .

If the outer surface is not a sphere (18) will no longer be a cote

sequent expansion until the first power of
2

because (16) is not i

exact solution of (13). In order to solve equation (13) in this cas t
make use of the following result from the theory of integral equatio n

1 See, e. g ., COURANT and HILBERT : Methoden der mathematischen Pthp

vol . 1 .

r ; 8

The integral equatio n

g ( xz) = a T (x,) + b • Ç 9 (x2') T (x, x2) dx2 ,
A ,

there a and b are constant and the "kernel" T (x 2x2) is symmetrica l
ü x2 and x2 (as in our case) has the solution

g ( x ,) = a { T ( x ,) -~ b •

n this expression hi (x 2) and d i (where i covers 0 to N) are the N H- 1
ndependent eigenfunctions and corresponding eigenvalues of the kerne l
(x 2 x2) ; they are defined by the statement that they satisfy the homo -
aeons integral equation :

(21 )

urthermore the eigenfunctions must be normalised and orthogonal ,

J ~
h i(x,) ' hx(x,)dx,

	

O, if i

	

k

1, if i =/c'
.

n our case T (x,x2) dx2 = 1 ; it then follows from (21) that there i s
A ,

lways a constant eigenfunction ho (x 2 ) ; owing to the normalisation it
oust have the value	 1• . The corresponding eigenvalue is 20 = 1 ac -

V A z
iding to (21) . In the solution (20) we treat this eigenfunctio n
'oarately .

From (13), (19), (20), and (14) we get an expression for H simila r
(17) . Transforming to a form similar to (18), we finally get

A1c1( Tf-7' 2) 	
1

	

1 A 1 (

	

c 2
c1 1

---)

	

1 -f ' k)C,

	

co A,

	

c o

N
( h i T) 2

r 'orally the eigenfunctions cannot be found explicitly . However, i t
i often be a sufficiently good approximation to neglect the eigen-

m o±tions of higher order than the zer oth , because they have zeropoint s
l consequently give smaller contributions to k than the zero th . Below
shall treat an example where these contributions can be evaluated .
the eigenfunetions of higher order are neglected, (23) and (18) are
atical .

At c l (Ti -71)
H=

9

(19 )

" hi (x z) • hi ( x z) . <p (x'2) dx
; }

•

	

(20 )
-b

	

JJ

hi (x,) = ~ i. • hi (x2) ,72 (xzxs) dx2 ;
A,

(22 )

I
cT2_(T)2

	

? A E
(T)2

	

(1

	

co~ (T) 2

I-I = --
1 -~-

(23 )

( 24 )
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Two spheres .

	

Examples .

We consider two spheres, one inside the other, with radii I

and r and placed excentrically with a distance c between the cel l

tres (cf . fig . 3) . We evaluate the function (a. )
by means of the following quite general rule :

The cone made up by the tangents from x

to the inner surface cuts a sphere wi n

radius 1 and centre in x2 in a certain close

curve ; this curve is projected on the tango

tial plane of the outer surface in x 2 ; the are a

enclosed by the projection is n • (p (x 2) . In fi t

case of two spheres the projected curve i

an ellipse, the area of which can easily b

found by simple geometry . For a point x 2 on the outer sphe r

with a distance y from the centre of the inner sphere we fin e

(for notation cf . fig . 3) :

1.2 1 .2 R 2 -+-y 2 c 2R'
9' (x2) = Ø(y) _ -2 cos v=

	

2 Ry

Integration then leads to

(-)
2

	

\

()2

	

4

2-

	

-1 I 74 +
[R

1

	

1-- R
	 ii

k =

	

- ~ =

	

+ -- • l~g~ -- -(92)2

	

4(1-(12) 2 8 ' R

	

1 ~

k is zero when c = 0 ; it is always positive and increases mon '

tonously until c = R

	

(the spheres touch each other) . Th

value of k for c = R r-denoted by kmax	 is given below f

R
some values of - :

r

R
r

k,,, ax

	

I

	

1 0

When c ~ 0, (18) leads to a smaller loss of energy i

Christiansen ' s formula (2) . A few examples will show the er ]

Nr 8

	

-1 1

if magnitude of the difference. We take R = 4 ; the differencer
between (2) and (18), when the spheres touch each other, is the n

o

	

c l

	

c2
°

2 .8 /o ,if - = 0.75 - = 0 .75 .
co

	

co (

n the same three cases the differences between the values give n
)ti the uncorrected formula (1) and Christiansen's formula (2)
ire 5.9 per cent ., 2 .0 per cent ., and 1 .5 per cent ., respectively .

(All numbers are given in per cent . of the uncorrected ex-
nression (1) . )

lane disk inside sphere .

We shall evaluate k =	
-(3)2

for a number of different
(4~) 2

ositions and magnitudes of a plane disk inside a sphere i n
n rder to be able to estimate k for any position and magnitud e
if the disk .

In the first case (cf . fig . 4) the disk is circular and placed
with its centre in the centre of the, sphere .

It can be proved-by integratihn--tha t
4r -a pointx 2 with polar distance 19' :

99 (x2) = PO) = r2 - cos 29' _
QiP 2

r 2 cos

VR'+r'-1- 2 r 2 R 2 cos279.

L( r notation cf. fig . 4) .

	

Fig . 4 .

This leads to

R 2 -r2
(1-

R

	

2rR
IC

	

2r aret~ R2_r2) ,
d e creases from

3
to 0 when r increases from 0 to R . The

cease is slow when r is small .

Next we consider a-not necessarily circular-disk which i s

Fig . 3.

8 4 2

2.5 0 .5 0

6 .4 0 /o if
çY

= 1
c o

if -- 1
co

C 2

Co

C2
=

. co
3 .7 0 /o

0 . 5

0 .7 5

(27 )

(28)
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iendicular to the line from its centre to the centre of the spher e

it a . distance of
4 R from the centre of the sphere j p = 3

-) . I f
4 /

he disk is small, k " 6 according to (30), while k = 1 .3 for
he corresponding parallel circle. For values of its radius be-be-

1 2

so small, that its magnitude only plays a minor role in de-1.c

/
mining k . In the case above this corresponds to r being so sm~ l

that k is not far from 3) . The disk is situated so that the straig i

line from the centre of the sphere to it is p • R in length, and tl

angle between this line and the direction perpendicular to th

disk is u. It may then be shown that.

Ic = ki cos 2 u-{- Ic 2

	

u ,

where ki and k2 are the values of k in the two cases where th

plate is respectively perpendicular to and parallel with the lil t

to the centre of the sphere . The values of ki and k 2 are fouii

by integration :
4

Ice = 3 (1 p2 )2 - 1

1 -i-p

	

5-3p2
k 2 = 4p • log, 1 p

+ 6 (1 -p 2 ) 2

Finally we consider a disk covering a parallel circle, the cenii '

of which has a distance p • R from the centre of the sphere (fig . 5

For a point x 2 on the smaller of the tNy

spherical caps we have :

T' (x 2) = Çx2xi) dx 1 = (p (x2x2) dx 2

disk

	

big spherical cap

1

	

1+ P
2 \ dx2

	

_

4 n R , big spherical cap

	

2

In the same way it is seen that q (x ?)

constant on the big spherical cap and &pa

the ratio of the area of the small spherical cap to the are a

the whole sphere, i . e . 1
2
	 P . Consequently we find

V-7 )ween zero and the radius of the parallel circle

	

R we may
4

stimate k from the way in which it is known to vary with radiu s
the first special case above (formula 28) . If the radius i s

-R we find k 5 . The difference between the values of H given

y (2) and (18), respectively, is-for the three sets of values

f
ci

and
é2

used on page 11-- : 7 per cÇnt ., 4 per cent . and 3 perco

	

co
ent ., while the correction in Christiansen's formula ((1)-(2) )
mounts to 3 per cent ., 1 per cent. and 0.8 per cent: . in the cor -
esponding cases .

In the case of a parallel circle in a sphere treated above ,
I can be calculated exactly as a sum of two terms, each of the
irm (2), because p (x 2) is constant on each of the two spherical
aps . We will therefore use this case for an estimation of th e
lagnitude of the error made, when formula (18) is used :

The exact value of H is :

Fig. 5 .

p 2
k = 1-p2 .

By means of the results from the special cases treated a L

the value of k may be estimated in most cases without furt h

integration . As an example we consider a circular disk }I(;

ft
Ihlflt;C~.,`
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With the usual three sets of values of
el

and
c2

(page 11) i
Co

	

c o

1 4

find in this special case :

The error in the formula (1) is approximately 30 per cent . ,

per cent . and 11 per cent .

- Christiansen's formula (2) is approximately 1 7

per cent., 11 p 2 per cent . and 9 p 2 per cent .

- the formula (18) is approximately 4 p2 per cers '

1 .3 p2 per cent . and 1 .4 p 2 per cent .

(All numbers in percentages of the simple expression (1) . )

Two infinite circular cylinders .

In this case the formulae (23) and (24) ought to be used . We introduc!

ordinary cylindrical coordinates 0 and z for points on the outer cylino .

q (x 2 ) is independent of z . Consequently the last term in equation (D
can at once be integrated with respect to z' . The result is :

`

q ( 0 ) _ (1 -C2 I • cl ( T- T ) q' ( 0 ) + S10' • •
c o

f

The corresponding homogeneous integral equation i s

s27 1

h(0) = A . S h (0') - 4
1
sm

O
2

0 I d0 '
0

I.

	

0'-0

	

~2,L

	

1

	

0'- 0
_ ~.•~-

	

( 0') •-tsin-
2
	 d0'+ h(0')• 4- sin 2 d0'~ . j

e

	

J

00

h
s

o

Differentiation of this equation with respect to 0 shows that the eign i

function h (O) must satisfy the differential equatio n

d'h
dØ 2

	

4 (a-1)
. h ,

the solutions of which are
sin t V1- 0

cost 2

	

J

	

j
They must be periodic with period 2 r, whence it follows that

must be an integer. If we normalise the eigenfunctions accordi n

the rule :

t 2 [h(0)] 2 d0 = 1 ,
ô

we get the following series of independent eigenfunctions :

1 5

O_

	

{ cos p 0hp 0

	

sin pB

1
(P = 1, 2 . . .)

	

(41 )
1./.,T

Aith the corresponding eigenvalue s

ap = 1-4p2 .

	

(p = 1, 2, . .) .

;osides these, we have the constant eigenfunctio n

1
h0 =

2
_ with A, = 1 .

1/ Il

riserting these eigenfunctions and eigenvalues in (24) and the resultin g
in (23), we find H . (It should be noted that the methods of normalisatio n

i-ed here and on page 9 are different, because A E now is infinite) . If
he zero-plane for 0 is taken to he the plane through the axes of th e
\=hinders, sin p0 . q'(0) = 0 (odd function of 0) . Denoting the radii o f
he inner and outer cylinder by r and R, respectively, we find tha t
{ic energy loss per unit of length from the inner cylinder is

2 ir, rc 1 (7.';, - TD

	

1

	

1

	

r

	

c

	

1+ c c2

	

ca) • .R ,• ( 1 +o•Ic)

2-- (q' cos pO\ 2

-~--- 4 p2 C2 `

	

q

	

1
u=

co

The distance between the axes of the cylinders we denote by c .
he function q' (x E) = q' (0) may be determined by the method used
di page 10 through a rather simple geometrical consideration . With
denoting the distance from the point 0 to the axis of the inner cylinde r

re get :
r

	

R2 -I- x2

	

c 2

c 2

2 (R 2 - c 2) .

the terms in the sum in (45) can be evaluated by integration (most
drily by contour integration) . We find :

/9,cosp02

	

1'c2 P
-~ J

= 4
`D)

When (47) and (48) are inserted in (45) we get

(42 )

(43)

k- q'2-(q')2
-

(q') 2

II = (44 )

(45)

q'(0) = 2R

	

x2

	

.

am this we get by integration

p_
( q') 2

(,)2

(46 )

(47 )

(48)
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c 2
1--

	

2

	 r"~ (RZ ~ p .
4 p2_ 2

c o

It is seen that the terms from the higher eigenfunctions decrease rapid] ,
with increasing order . Even the contribution from the second term i i

(49) may generally be neglected . If e. g . co = 0.75, the ratio betwe i

R'
the first and second term in (49) will be 13 R ~	 c2 , which is more than I t

This result gives some justification for totally neglecting cons
butions from the other eigenfunctions than the zer o th , i, e . for us) ~
formula (18) even in cases where the outer surface is not a sphere .

We again calculate the difference between the values of H gi-v i
by (1) and (2) and by (2) and (18) for the usual three sets of values r

co
and (page 11) . We choose as an example r = 8 R and c = R -

C Oo
(the cylinders touch) . By using formula (18) we neglect other te r
in (49) than the first . (The contribution from the second is in this Co

3-2 per cent . of the first) . The result is that the difference betwe e

Christiansen's formulà (2) and our formula (18) is 7 .4 per cent., 4 .5 p i

cent, and 3 .5 per cent., respectively, while the corresponding differer e

between (1) and (2) are 11 per cent, 4 per cent . and 3 per cent .

The examples treated above show that in case of a ver

unsymmetrical position of the inner body with respect to 11 1

outer one, it is often so that very little is obtained by appl`i n

Christiansen's formula in calculating the heat transfer, becau s

the error made may be just as large or larger than the correcli o

which the formula gives compared with the simple expressi ü

c 1Ar (I'1- T2) . We must conclude that if we aim at such a

accuracy that it is necessary to apply a corrected formula inste a

of (1), then (18) must be used in case of unsymmetrical positi o

of the inner body. This is also practically possible, because I 1

order of magnitude of the correction factor
ZC)2

	

can r l

he estimated by simple geometrical or graphical methods .

Discussion of the assumptions made on page 3 .

Equations analogous to (3), (4a), and (5) can easily be l

tained in the most general case. The surface in the vicinilH

point x has the absolute temperature T and a reflectivity denoted
(ia r(A. Tx) i ' a ' ) and defined in the following way :
We consider monochromatic radiation of wavelength A, which

falling on a surface element dA . The direction of the incoming
ay will be characterized by the angles i
Ingle of incidence) and a (azimuth) a s
town on fig. 6 . Of this radiation a certai n
action will be reflected so that it leaves
le surface within a solid angle do ', the
rincipal direction of which is characterize d
y i' and a' (cf. fig . 6) . If the reflection i s
tmpletely diffuse the reflected radiation is distributed accordin g
l the cosine law, i . e . the said fraction will be proportional t o
as i' and independent of i, a, and a ' . In general we therefor e
mote the fraction reflected to dw ' by

1- • (ia r (2 Tx) I i 'a ' ) • cos i' do; ' .

titution of the surface as well as on the angles . The factor 1 i s
rtroduced for convenience .

	

it

The intensity of the emitted radiation (emitted radiation fro m
nit of apparent area into unit of solid angle) in an arbitrar y
il ection can be calculated by means of Kirchhoff 's law, if the
electivity is known :

We shall write down an equation expressing that the resulting
ulensity of radiation in a closed cavity, the walls of which al l
late. the same temperature T, must everywhere be equal to th e
[density of radiation from a black body Ko(2T) . The resulting
ntensity from a point x in the direction (ia) is the sum of th e
b itted intensity KT (2 Tx, i a) and the reflected intensity, a n
xpression for which can be written down by means of (50) ;

equation is :

= KT (2 Tx, ia) -i-Ko (AT)'-•S (i ' a ' r(A Tx)lia)cosi' dcu ' (51)
76 solid angle 2 n
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k =	 c2	 	
1

2 (R 2

	

c 2)

	

2
p=1

(49

Fig . 6,

(50)

he notation r (2 Tx) is chosen in order to show thai: the reflectivity
r general will depend on wavelength, temperature, and con -



1.8

KT (? T.x , ia)

	

, ,

	

,

	

,
e(,Tx,ia) =

	

= 1-

	

(i a lr(AT.x)ia)çosidw .
Ko (AT )

	

z solid angle 27 c

The black body intensity Ko (AT) is given by Planck's radiati v

formula (it is independent of the angles) . The ratio between th

emitted intensity from the surface in question and from a blåe l

body, denoted by e (A Tx, ia) in (52), will be called the emissivi l

for the given surface, wavelength, temperature, and directir ~

(52) is valid for all wavelengths .
The ratio between the total hemispherical radiation of wa ,

length A emitted from unit of area of the surface in questi u

and from unit of area of a black body is :

E (A Tx) =I e (A Tx, i a) cos i d co .

	

(5?

solid angle 2zc

`For the so called "grey" surfaces treated above we have ii i

equalities :
e .(A Tx, i a) = E (A Tx) =

We further define the absorptivity a (A Tx, i a) , i . e . the fraetl o

absorbed of radiation coming in from the direction (ia) :

a(A Tx, ia) = I -

	

l(ialr(ATx)I i ' a') cosI 'dw' .

	

(5 1
•))solid angle 2zc

We now get the equations analogous to (3) and (4a) by expressi f

that the resulting intensity of radiation K (iax) emerging fra i

the point x on one of the surfaces in the direction (ia) is i l

sum of the emitted and reflected intensities :

Kl( i l a l x l) = KT ( i l al)+ ( 1 1 a 7.1 1' 1 a l) It2( i 2 a2x2) ' 99 (x l x2) (Ix 2 .

A a

If the so called Helmholtz's reciprocity law (H . v . HELMHOLTZ : Theorth±

Phgsik, Vol. 6, p . 161, 1903) is valid, we have : (ia lr I i 'å) = ( i' a' r

consequently e

	

a .

1 9

he heat transfer from the inner body is in analogy with (5 )
ror monochromatic radiation) :

Ai~t•E1•Ko

	

Tt( T1)- . ~dxi K2( i 2 a 2 x2) .a l( i 1 a1)•q'(xiX 2) dx 2 . (57)
b A,

	

A Ÿ

I[le emitted intensity of radiation and the reflectivity are still function s
(A Tx), although these variables have been omitted. To get the total

diation the equation (57) must be multiplied by dA and integrated
rer all wavelengths . It is still assumed that the inner surface is convex
rid the outer one concave, and that both bodies are opaque ; further-
ure the inner body must have the same temperature and emissivit y
erywhere if (57) is to be correct. Apart from this the equations are

cite general . )

Of course the equations can only be solved exactly in special
,ses, of which we are going to consider some in what follows ,
order to exemplify the applicability of the method of integral
uations .

a) Non-validity of Stefan-Boltzmann's law .

If the reflectivity depends on wavelength and temperature ,
ut not on angles and position (x), the assumptions (3) on page 3
re not valid, but the rest is . In this case all the calculations i n

he first part of this paper hold true for the heat transfer caused
.- radiation in a narrow interval dA of wavelength (monochrom -
tie radiation) . (Fluorescence, etc., must of course be excluded . )
Phe total heat transfer is then obtained by integration over al l
wavelengths . The formula analogous to (18) now is

(12 .
a • AI .El(AT]) [ Ko(ATl)- Ko(A T2)]

1

	

1

E, Ti )

	

A ,

2 (A T2) • (1 -E2
(A T2)) A2 • (1+ E 2 ( A T2) m

2 _(9?) 2

Hie ratios
cl

and c2 from the case of "grey" bodies have beenco

	

c o
epluaeed by E1 (A TO and E2 (A T 2), while coT 4 has been replaced

l as Ko (A T) .

to Non-validity of the cosine law for the inner surface .

Phe inner surface is now assumed to reflect in an arbitrar y

while the outer one still has a reflectivity that is independen t

2 ?:

C .
co .

K2( i 2 a2x2) = K Te \ i 2 a2) +( i2 a2 Z 2 i 2 a2) }_ K1( i l a l x l)-K 2 ( i2 a2
A;

'9' (xl x2) dx1 -L ( i s a 2 l r2 i 2 a2) 'K2( i 2" a ; x2) (x2x2) d.x2 .
A,

. (58)
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of the angles (completely diffuse reflection) . It is then easy i

show from (55), (56), and (57), in a way similar to that whic h

led to formula (18) or (58), that formulae analogous to (18) :

(58) hold, but the term 9-5--(02 must be replaced by

k, = W
(v)

(~) 2
- 2

where

y (x2)
-

S

Alel

El ( À
	 ~ai)

(xi
x2) dxl

and
at (7. Ti

	

(p (xi xz) dx i ;

	

(6 )~y,
(x2)

= S A 't (A Tt )

ly and y ' are straightforward generalisations of the functi o

cp (x2) for emission and reflection, respectively . The definitio n

(52), (53), and (54) together with the definition of lp(x,x 2 ) shn v

that

It is worth noticing that Christiansen 's formula (2), perha p

modified in order to take into account a possible dependen t

of the reflectivity on wavelength and temperature, still holds t i

concentric spheres and coaxial cylinders, in which cases 1y 1 '

and v ' (x 2 ) are constant . But z, (x 2) and lp ' (x2) are not necessar i

constant in all cases where T ( .x 2 ) is so . They are not so, e ;

in the case treated on page 6 and 12, where the outer surfac.

a sphere and the inner body a disk covering the equatorial plat

In such cases Christiansen's formula therefore is only correct .

the inner body radiates according to the cosine law .

(c) Non-validity of the cosine law for the reflect] ,

from the outer surface.

The case which gives the largest deviation from the un ,

rested formula (1) is the following : The system consists of t t

concentric spheres or coaxial cylinders of which the out(

reflecting specularly, Every ray which, coming from the inn(

1 If Helmholtz's reciprocity-law holds, then v (x 2 ) = y (x 2) .

2 1

;urface, is reflected on the outer one, will then hit the inne r
arface again. If especially the reflectivities are independent o f
avelength and temperature, and the abso'rptivities are indepen -

Ient of the angles, the reduction in loss of energy due to reflectio n
mist therefore be the same as if the inner body was closely sur -
winded by the outer one . We then get in place of (2)

H = A'-cl'(71	
-T )

1+cl j - 1)
C2 Co

'his formula is also due to Christiansen (footnote on page 4) .
I. can easily be generalised to the case of wavelength- an d
cinperature-dependent reflectivities .

As mentioned above, (63) is valid for concentric spheres an d
oaxial cylinders . But as soon as the spheres or cylinders are

laced a little excentrically, or deformed somehow, the fractio n

f the reflected radiation that reenters' on the inner surface wil l
ecrease considerably, and the loss of energy increases . It is
orth noticing that the loss of energy in case of specular reflectio n
the smallest possible in the concentric position, while it i s

a.rest in this position if the reflection is diffuse . The formula e
2) and (63) give the maximum and minimum values of th e
iss of energy, while excentric position or unsymmetric for m
ives formulae like (18) lying between (2) and (63) .

It will often be a good approximation to assume that the
Ater surface is reflecting a certain fraction s of the reflected
adiation completely diffusely, while the rest - (1 - s) i s
ileeted specularly . Furthermore we assume that s and the tota l

-electivity is independent of the angle of incidence . The hea t
ansfer between concentric spheres or coaxial cylinders ca n
icn easily be calculated . Either (55), (56), and (57) may be

(for the outer surface we may put (i a I r2 i' a') = 1
/
1- 2

(1 - 0 .

	

`

	

c o
å(i-i) å(a - (a+ n))}, where 6(x-x ') i srind • cos i

c's 6-function), or we may at once write down analogou s
ations for the total resulting radiation from the two surfaces .
only give the result in case the radiation constants are in-

1 endent of wavelength and temperature and the absorptivity
he inner surface is independent of the angles :

Al
v(x2) = v'(x2)

	

(p(x2)

	

42 .

(63)
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C2
s+(1 -s)

co

This shows that the heat transfer is nearer to the value for diflm ,

reflection, i . e . larger, than that obtained by simply adding el

pressions of the form (2) and (63) in the ratio s : (1 -s) .

It has not been found possible to obtain a general formuk

in case of angle-dependent reflectivity of the outer surface .

(d) The temperature and emissivity of the outer bo d

varies over the surface . Resulting radiation fiel ,

within a closed cavity.

Let all assumptions made on page 3 be correct, except thh

T 2 and c 2 are functions of x 2 .

I (x) = c (x) . T (x) 4 + (1-
c()) . I (x') . q) (xx ') dx ' . (6 5

co

	

A

This equation is a straightforward generalisation of (4a )

specialisation of (56) . If T is a constant, it has of course t l

solution I (x) = co T 4 irrespective of the values of c (x) an

d form of the enclosure (black body radiation). In general, ho . ,

ever, it can only be solved numerically, e . g. by replacing it i t

a number of linear equations corresponding to the requi r

accuracy . If the cavity is a sphere, it can be solved exactly,

in this case we have ry (xx') _

	

, so that (65) takes the f

I (X) = c (x) • T (x) 4 + I 1- c (x)\ . I
V

	

'c o 7

here I = - - S I (x') dx' is the mean value of I (x) over th e
A

[Tface . Taking mean values of the terms in (66), we ge t

if= cT 4 -~11-
C 0

cT 4
I= co •

!iieh inserted in (66) leads t o

cT 4

	

cT 4I (x) = co -

	

+ c(x)
r

	

• I T(x) 4

	

c	 1 .

	

(69)

rom this result the heat exchange with a small body with unifor m
hnperature Tl and radiation constant ci can be calculated whe n

in contributions ` from this . body 1:o the radiation field can b e

eglected

	

N 0 J . By means of (69) and (5) page 5A 2 -
1stead of (1) : /

`
H = A l c l I T 4

	

1 I(x)" 92 (x)]
t - co	

(1) (x)

	

J

( (70)

	

cT 4

	

1 cT4 q),

	

1 cT 4 cØll
= A, - ci

L
T t -	 - CO	 + Co • c m .

c may define a "resulting radiation temperature" To of the
here with respect to the small inner body as the unifor m
mperature which the sphere ought to have if it were black
,d were to exchange the same amount of heat as (70) with

inner body, i . e . we put

	

Hi = Aici ( Ti -Tô),

	

(71 )

:T 4

	

1 cT4 g7

	

cT4 cg7
_ +---

	

-- _ • -c

	

co

	

g7

	

co

	

c

	

rp

Ms is strictly correct for a sphere and will probably be a goo d
l' p roximation in many other cases . If the temperature• does no t
tÿ too much, it may be a sufficient approximation to use the
si eratures in °C in (72) instead of the fourth powers of th e
øolute temperatures .

H = A i c, (Ti - T)

We only treat the case of a very small inner body Al
- t

corresponding to the "zerot,l
„ approximation (1) . Consequent

we must solve the equation for 1 2 (x2) without contributions fron

an inner body. For convenience we omit the index 2 in 12 , x ;

c 2 , etc . :

c '

(67 )

(68)

we get

Tr = 1 • I~ =a
Co

	

97 (72)
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(e) Cavities in a surface .

A cavity the walls of which have a certain emissivity, ni

be replaced by a surface covering the cavity, but with ånotl ,

emissivity, which generally will vary over the surface and depe g '

on the direction of emission . The method of integral equation

can also be used to find this apparent emissivity .

We assume that the walls of the cavity a !

reflecting diffusely and independently of wav e

length, temperature, and direction . The radia

Lion constant is c 1 and the uniform temper i

ture T1 ; the emitted intensity of radiatio n

then 1 c1 Ti in all directions. We are going t
n

Fig . 7 .

	

find the resulting radiation intensity K3 (x3 i3ul

in an arbitrary point x 3 on the replacing sn e

face A3 and in an arbitrary direction (i 3 , a 3 ) (cf . fig . 7) . First ,

have that the intensity sought for is equal to the resulting into

sity from the corresponding point xl (cf . fig . 7) :

K3 (x3 i3 a3) = K 1 (:rl)

	

(7 .

K 1 (x1 ) is independent of direction owing to the complete )

diffuse reflection and may be found from an integral equati, '

expressing it as a sum of emitted and reflected radiation as usn, l

1
F1(xi) = c1Ti+ 1 -

	

~ K1(xt)9) (x i x i) dx, .

	

CO

	

'A,

It is seen that only if the function

cp (x1) = Ç q, (x1 x1) dxi = 1- Ø (xi x::) d :r
A.

is independent of x1 , we find a constant value of K1 (x1) ,

only in this case, therefore, K3 is independent of x3 and the d e

fion (I 3 a3 ) .

If q) (xi) is constant, the value of it may be found, bee, n

dx1
S

(x lx3) dx 3 = ( dx3 (g2 (.x 1x 3 ) dx1 = A 3
A,

	

A .

	

As

	

A ,

From this and (75) it follows that

A
41 (x1) = -A3 .

n (76) it is assumed, that A3 is plane. )
'ith this value of 92 (x1), K 3 may be foun d

1-c 1 .T1

1-

(i _

Ç1/

(

1-A3 )co Al

% e define the apparent radiation constant c 3 by putting

1
K3 = e3 T i .

9) and (78) then lead to

I.

	

1

	

A 3

	

1
+	 f1- _

e3

	

cl Al

	

c o -

	

A 1 ,

is seen that c 3 ->- co, if
A3

	

0, as it must, because we then get

u artificial "black body" .
If 92 (x 1 ) is not constant, (74) may be solved numerically or

v iteration . cp (x i) is constant, if the cavity is a spherical cap
: f. page 12) . If the distance from the centre of the sphere wit h
adius R to the plane A 3 is p .R (p positive to the interior of th e

avity), we get
A3 = 1 +P, whenceAl

	

2

1

	

1 1+ p 1 1-p
c3

	

e1

	

2

	

co

	

2

(80)

lie results and methods used in this section and section d may
e useful in estimating the deviations of the radiation from a
avity from black body radiation .

Summary. The net loss of energy suffered by a radiating
ödy entirely surrounded by another body of different temperatur e
investigated with special respect to its dependence on th e

mu and mutual position of the bodies . Integral equations are
}iveu which determine the heat transfer ((3), (4a), and (5) for

K 3 = K 4 -

(79)

(-1 <p< I) .

	

(81)
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N

"grey" radiation, and (55), (56), and' (57) in the general cas e

The equations for "grey" radiation are solved approximately ai,

a formula for the heat transfer is given - (18) - and applic ~

to several examples. The radiation between surfaces which a r

not grey is treated in some special cases . On page 22 (section

the case of variation in temperature on the outer body is treate ; i

and formulae for the radiation field inside a sphere and for th i

heat exchange with a small body inside a sphere are obtaine r

(formulae (69) - (72)) . Finally, in section (e), page 24, equatio n

determining the apparent emissivity of a cavity are obtained an (

solved for a cavity shaped as a spherical cap .

The methods and results may be of some interest in llt

heating technique, the illumination technique, and optical pyrc

metry .
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