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he following is a discussion of the heat transfer caused by

radiation between two bodies of different temperatures, one

f'them entirely surrounding the other.

In the first part of the article we miake some simplifying

ssumptions often allowed for techmical surfaces (later on we

fe going to discuss the significance of the most important among -
erm) :

1) The temperature-radiation obeys the. cosine emission law.
2) The surfaces. of the bodies are reflecting according to the
© cosine law of reflection (completely diffuse reflection). The
bodies are opaque.

3) The reflectivity is independent of lempexaiure and wave-
length. According to Kirchhoff’s law this means that the
- emilted temperature-radiation obeys. Stefan-Boltzmann’s law.
"The inner surface is everywhere convex and the outer one
“Is everywhere concave. '

) The temperature is constant on each body.

" Thé energy emitled in unit of time from the inner body is
¢;Tt, where A, is the area of the surface, ¢; the ‘‘radiation-
nstant” and 7, the absolute temperature of the body. If the
oundings are non-reflecting (absolutely black) the energy
ceived and absorbed by the inner body in unit of time will
A, Ts, where T, is the absolute temperature of the sur-
ndings. Hence, the net loss of energy from the inner body
be

H = A;c, (17— Té)- (1)

s formula is often used in practical calculations. It is only
“if the radiation emitted from the inner body and reab-
bed aftcl reflection from the surroundings can be neglected.
1%
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This leads to the following two integral equations:

If the reflected radiation is not vanishingly small, the loss o
energy is less than given by (1). CHRISTIANSEN' arrived at th

following formula:
Ay (T — Ty)

1—{—01(1 1>i4i

Co Cp 1’12

H =

(2

— .o c
=¢T] +< “?i) . SAI;Z.-(Q:Z) pxix,) dx, (3)
Index 2 refers to the outer surface; ¢, is the radiation-constar
for a black body (Stefan’s constant).
CrausinGg? and SAuNpERs® have shown, that (2) is not alway
correct; H also to some extent depends on the form and mutu:
position of the two surfaces. SaunDERS has shown how to mak
corrections for this dependence if the reflectivity is so small th
it is sufficient to take into account only one reflection.
We shall give equations determining H, show in whic
cases (2) is correct, and find an approximate solulion in f

Ty +<1¥C_2>. ' . ‘
2 c SA{1(11) o (a, ay) dxy + § I (x,) (mzxﬁz) da), 1 (4)
1 Q'Az‘*A;' >

J

wher lore index
vhere as before index 1 refers to the inner, index 2 to the outer

surface; dx ;
1, dxy, and dx, denote surfice elements. We have

nade u [ Ki ’ :
lade use of Kirchhoff’s law, according to which the reflectivity )

| a surrla » he T 1 10Nn-con [a 1 '1 =
3 b ce wilth t ad at ‘

f E - 1 ] ) ¢ « 1 . "l‘l b
ons 1[ C 18 1 . e a bOIP
“l y 15 —,

g CO

Let X2

general case. :
ntersects t

denote the point where a straight line from xy to x
1

he outer surface agai
) gain (cf. fig. 1), It i :
een, that (4) can be rewritten as &b s then easily

'

The integral equations of the problem.

We choose two points x; and x, on the inner and outer su
face, respectively (cf. fig. 1), so that x, can be seen from a, and
vice versa. That part of the outer su
face which can be seen from x; is denot
by A, while A, means that part whi
cannol be seen from a,.-A; denotes

(@) = T3 +(1—--2). . ,
gl C +( Co) {SA(;h(-’El)“Iz(Az)) . (p(x1x2) dx, + 1
+Slz(ac'z)<p(.7czxfz) dx;l J(4 a)

A, I

he pet ene%'gy-loss from the inner body is the difference betwees
mitted radiation and absorbed radiation: -

-

part of the inner surface, which can’
seen from x,. By g@(x;x,) we den
COS 11 COS T2

> , where {; an
Tr

. H=— AT — 0 { o {1 .
the function 16Ty Co S,ﬁxl SAI; (x2) @ (x;205) das . (5)

are the angles shown in fig. 1, whil
the distance between the points ml;é
5. Il is equal to the fraction of the radiation from the vicin
of o, which goes direcily to unit ol area around the point x,
vice versa. The corresponding function for radiation between t
points x, and x, of the outer surface is denoted by @ (T425)"

The resulting radiation (both emitted and reflected) in
of time from unit of area near a point « is called I(x). :

theequatftons (3), (4a), and (5) determine H, when the geomelry
system 1s known. They cannot often be solved exactb;

We firsl want to e .
N mphasise that Christi ,
val}d, if the function istiansen’s formula (2)

@ (xy) = S x :
‘ 2) .AA‘I; (2, 25) daxcy (6)
é.;ile fractio.n of the radiation from the vicinity of x, which goes
; y.to the inner body) is independent of x,. In that case o (xy)
easily be found: From the definition (6) it follows that 2

1 (. CHRISTIANSEN: Ann. d. Phys. u. Chem., Vol. 19, p. 267, 1883.
2 CLausing: Revue d’Optique, Vol. 10, p. 353, 1931,
3 SAUNDERS: Proc. of the Phys. Soc., Vol. 41, p. 569, 1929.
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garding the integral S 4; *+ dxy in (4a); this integral rep1 esents
e influence of the inner body on the radiation from the outer
rface. By doing so one gets the solution (black-body radiation):

R‘P(xz) dx, = dez S(P(xle)dxl = \ dx, S‘P(irll'z) dry, = A;, (

vA, A Aj YA | A;_

. . . A
so that if @(a,) is constant, it must be equal to Zl—
Ay . 2
In general A—l is the mean value of ¢ (x;) over the ouler surfac

2
When ¢ (x,) =

I (x) = ¢ T5; (8)

A—:, it is seen that (3) and (4a) are satisfie hmh inserted in (3) gives
by constant values of I, (xy) and I, (x,). Solving for I; and
and inserting in (5), we get Christiansen’s formula (2).
Some very simple forms and symmetrical arrangements
the two bodies give a constant value of ¢ (x,), e.g. two concentr
spheres, two coaxial cylinders, or a sphei

with a thin disk covering the equatorial plan

Ii(xy) = ¢, (T1—T3) ¢, T (9)

) then leads to the “zero™’ approximation (1).

These expressions for I, and I, are now inserted in the integral
.(4a) which was first disregarded. In the other terms of the
quations (3), (4a), and (5) we put

(see belo(w)). In these cazes (Ch)ristiansen Li(x) = ¢ (TT— T +cyTE+ fo) (10)
formula (2) is valid, but if ¢ (x,), .and cos , .,
sequently I, (x;) and I, (x,), vary, this fo Lo (@) = & T3+ g (x). (11)

mula is no longer correct. A simple examp
that can be solved exactly, will show this: L
‘the outer surface be a sphere and the inn
bodyéhemispherewith slightly smaller radis (11) = (1_i> S J (209) @ (20, 205) dxz (12)
(cf. fig. 2). Formula (2) then is valid for t ‘ €o

radiation from the hemispherical surface and the plane surfa
separately (cf. p. 12). This means that /7 is a sum of two expre

e then get the following equations, where we have introduced

)= -C—O)-{c1<T;*—T§>-¢(mg>+\g(x;m(xzm;)dx;}(m)

h .A

sions of the form (2) with —z— in the denominator replaced by
2

i
and — 5 , respeclively. This sum, however, is different from What

obtained by using formula (2) for the radiation from the toLal innes

H= 4,0 (7] —TH—. Sg(x»w(xz)dxz ! (14)

se, equa‘uons can be solved without further approximations if

: . A 3 . . . outer surf;
surface (putling A—l = 7 in the denominator). One oflen gets ace is a sphere If it has the radius R, it is seen that
2 : . - rcosi!
better approximation than (2) by Se.para.tm.g the 1‘ad1at10ni» . o (xoal) = Cos1, C;)Slz = 1 . = i, (15)
two or more paris of the form (2) as in this instance, e. g. wh wert 7R A,
dealing with a flat radiator placed near a wall. On page 13 o Atse cos i — cos il o T ] )
more example is given, where such a separation is exact: v Sl = COsty = ope The last term in equation (13)

Approximate solution of the integral equations.

‘We shall now show how to find approximate solutions o
equations (3), (4a), and (5) in the general case.

, ere the constant is found by inserting (16) into (13). Making
The crudest approximation—formula (1)—is obtained by

f.(7) it is seen that the constant is equal to




S, (1_C_Z> éi (162 ¢ Integral equation c |
Cy Co/ As - g (932)': ap(x,) + b Sg (@) @ (xp23) dxj, (19)
H is then determined by means of (14). We denote mea

here @ and b are constant and the ‘““kernel” @ (xyxy) is symmetrical
values over the outer surface by a bar, e. g

% and x; (as in our case) has the solution
. — 1 A ‘ N
@ = L.S[(p(xz)]wxg and ¢ = r'S?’(ﬁCz) dxs = A, .

lhl s, ‘hf '; s ’
4 )0 . M v@) =alp@ o[ D THEIME il @0
according to (7). ' =0 )

The resulling expression for H is

=3 __(3)?
Ay 1_1>_< Cz.‘PZ_((P)
= Ao (131 .{I‘Az'c'l-(Cz Co 1—l_co (p)?

2
1=

1 this expression h; (x,) and A; (where i covers 0 to N) are the N 41
dependent eigenfunctions and corresponding eigenvalues of the kernel

(x;2;); they are defined by the statement that they satisfy the homo-
neous integral equation:

)

Ry () = s 5 T () ) 1)

2 —— —_—
is correct when ¢ is constant, i. e. p% = (@)% We therefore obt

a better result if we transform the expansion (17) into.an

rthermore the eigenfunctions must be normalised and orthogonal,
e.:

o) - [0, it is£k
S;‘: (@) * Ity () d, = { 1Ll i =k (22)

A instead of the nominator. In this way we get from (17

“our case S(p (Zo23) dxy = 1; it then follows from (21) that there is
A, A, ' :

A (T% - Té)

L) A e P
R g @

It is of course possible to proceed along these lines and fi

ways a constant eigenfunction h, (x,); owing to the normalisation it

H = ust have the value —1—‘

. The corresponding eigenvalue is 1, = 1 ac-

B 2

rding to (21). In the solution (20) we treat this eigenfunction
(13), (19), (20), and (14) we get an expression for H similar
1'(17). Transforming to a form similar to (18), we finally get

From

AN . L
get (he term of order (—1> by introducing the now de‘relmmfa :

A ‘ -
first order expressions fi)r I,(x;) and I, (x,) into the integr I~I=1 i‘lxcll(TlAllzl)l o ©3)
{4+ -dx,, in (4a). In the case of a surrounfiing sphere Fh : + cl<a_~c_o) X;( +o <,)
se’lcond—approximation can also be expressed in tﬂ?rms of simpl o N B
mean values. Usually, however, (18) will be quite a suffic o . (1_%);}1_2; _M o
approximation. @ o) o) < ;‘i—(l_%>

If the outer surface is not a sphere (18) will no longer be a erally the eigenfunctions cannot be found explicitly. However, it
often be a sufficiently good approximation to neglect the eigen-
etions of higher order than the zeroth, because they have zeropoints
_consequently give smaller contributions to k than the zero'®. Below
shall treat an example where these contributions can be evaluated.

he eigenfunctions of higher order are neglected, (23) and (18) are
1 See, €. g., CourRaNT and HiLserT: Mellioden der mathematischen Ph tical.
Vol. 1. i

A . '
sequent expansion until the first power of I: because (16) is not
exact solution of (13). In order to solve equation (13) in this case

make use of the following result from the theory of integral equatio
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Two spheres. Examples.

of"_m’agnilude of Ihe difference. We lake A = 4; Lhe difference
: r

We consider two spheres, one inside the other, with radii R
and r and placed excentrically with a distance ¢ between the ce

tres (cf. fig. 3). We evaluate the function ¢ (%, 6.4/, if H 1 S _y

o

by means of the following quite general rule; R o :

The cone made up by the tangents from 2 379, it 2 =1 2 g5

to the inner surface cuts a sphere with €o - Co

radius 1 and centre in x, in a certain close 2.8 9/, if S 075 <2 _ 0.75
curve; this curve is projected on the tangen: o Co-

tial plane of the outer surface in x,; the are
enclosed by the projection is z- @ (a,). In th
Fig. 3. case of two spheres the pfojected curve i

an ellipse, the area of which can easily b

found by sunple geomelry. For a point x, on the outer spher
with a distance y from the centre of the inner sphere we fin
(for notation cf. fig. 3):

}I'I:he same three cases the differences between the values given
by the uncorrected formula (1) and Christiansen’s formula (2)
e 5.9 per cent., 2.0 per cent., and’ 1.5 per cent., respectively.

(All numbers are given in per cent. of the uncorrected ex-
ression (1).)

ane disk inside sphere.

P 2 P2 2__ .2 § . ' P2 —(9)* ‘ :
o (xn) = 7 (y) — —Ilﬁ-cosv _ *ly"i'R —;%y C We shall evaluate & = 27@;;0) for a number of different
Positions and magnitudes of a plane disk inside a sphere in
Integration then leads lo rder to be able to estimate % for any position and magmtude
» . . he. disk.
-~ c ¢ : ¢ i

oy 147 <E>*4<E> . 1+E ‘In the first case (cf. fig. 4) the disk is circular and placed

L (p—(:);p - L/ ,_—_E . 1‘98e""‘c§ ih its centre in the centre of the ;sphere.

@ 4('1_<ﬁ> > 8% 1= It can be proved—by integration—that

La point x, with polar distance #:

k is zero when ¢ = 0; it is always positive and increases mon
tonously until ¢ = R—r (the spheres touch each other). Tl
value of k for ¢ = R — r—denoted by kya—is given below

p(xy) = @(&) = - cos P =
€103 )
r* cos ¥ (27)

VR 4 %4 212 R® cos 29

R
some values of —:
T

Eil
.

. RE—,E R 2 rR
k=G (1-7 arcig ———_[2>; (28)

s 10 ] 2.5 \ 0.5 ﬁ 0
: 1 .

ecreases f1'0111 E) to 0 when r increases from 0 1o R. The

When ¢ 32 0, (18) leads to a smaller loss of energy..

_ ease is slow when r is small.
Christiansen’s formula (2). A few examples will show the ¢

Next we consider a—mol necessarily circular—disk which is
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so small, that its magnitude only plays a minor vole in deterid

mining k. (In the case above this corresponds to r being so sma

CAN
4
he disk is small, k2 6 according to (30), while k — l.é for

he corresponding parallel circle. For values of its radius be-

; S t a distance of —R from the centre of the sphere < _3
that k is not far from E) The disk is situated so that the straig

line from the centre of the sphere to it is p-R in length, and thej
angle between this line and the direction perpendicular to the

ween' zero and the i ; . V7
disk is u. Tt may then be shown that radivs of the parallel circle (

e R) we may
stimate & from the way in which it is known to vary with radius

I = k; cos® u+ Lk, sin® u, n the first special case above (fonnula 28). If the radius is

2
where k; and k, are the values of k in the two cases where 1l
plate is respectively perpendicular to and parallel with the li
to the centre of the sphere. The values of k; and k, are fou

‘R we find k2 5. The difference between the values of H given

¥ (2) and (18) lespectwely, is—for the three sets of values |
C1

by ln[egrauOll_ . fc_ and T used on Page 11__ 7 PEI' Cenl 4 er cendt. an
. A "0 € b d 3 per
Ky — 3_(1__-_2)2_ ) ent.; while the correction in Christiansen’s formula (H—2))
p mounls to 3 per cent., 1 per cent. and 0.8 per cent. in the cor-
. 1 : 1+p+ 5 3p° G espondlng cases. '
>~ 4p 08 T2 6 (1—p?)? -In the case of a parallel circle in a sphere treated above,

l:can be calculated exactly as a sum of two terms, each of the
orm (2), bef:ause ¢ (x,) is constant on each of the two spherical
aps. We will therefore use this case for an estimation of the

nagnitude of the error made, when formula (18) is used:
The exact value of H is:

Finally we consider a disk covering a parallel circle, the cen
of which has a distance p- R from the centre of the sphere (fig.
For a point @, on the smaller of the t
spherical caps we have:

o p(xy) = &(P (xyy) day = S‘P (33212) d”Lz . 1 1
Ydisk big SpherlCdl cap : ( T T4) ? o ? l
1 1+p Ao ae)e — - 34
-471{2%6&2 :__2—-—. 1+01<L——1~> I—p 11e L_L 1 (34)
Ybig spherical cap Ca Co 2 1 Cs Co —r
Fig. 5. In the same way it is seen that q)(gczr" approximation (18) leads lo
constant on the big spherical cap and equ
the tatio of the area of the small spherical cap to the area 5. 1
— ' 2) 9
the whole sphere, i.e. 1 5 P Consequently we find 14+¢ <‘1__L) 1—p <1+ ¢ pt (35)
2 Cp Coy 2 e 1— pz
pZ
S 1—p¥ tiansen’s formula (2) gives
By means of the results from the special cases treated ab . 1
the value of k may be estimated in most cases without furt — 1 1 1\ 1—p* , (36)
integration. As an example we consider a circular d1sk L+e <;;“ZJ->W7—-




14

15
With the usual three sets of values of & and — (page 11) w e 1 cosp()] »
Co p(0) = — - (p=1,2,-- - (1)
find in this special case: Yz | sin ng ,
The error in the formula (1) is approximately 30 per cent., 'lth the corresponding eigenvalues
per cent, and 11 per cent. C i—ips B
—  — - Christiansen’s formula (2) is approximately 17p P p=1,2,- (42)
per cent., 11 p* per cent. and 9 p* per cent. esides these, we have the constant eigenfunction
—  — - the formula (18) is approximately 4 p* per cent,4 {
1.3 p? per cent. and 1.4 p? per cent. : hy = iz with 7g = 1. (43)

(All numbers in percentages of the simple expression (1).) iiserting these eigenfunctions and elgenvalues in (24) and the resulting

in'(23), we find H. (It should be noted that the methods of normalisation
sed here and on page 9 are different, because A, now is infinite). If
€-Zero- plane for 6 is taken to be the plane through the axes of the
ylinders, sin pd - ®(0) = 0 (odd function of 6). Denoting the radii of
e.inner and outer cylinder by r and R, respectlvely we find that
energy loss per unit of length from the inner cylinder is

Two infinite circular cylinders. -

In this case the formulae (23) and (24) ought to be used. We introdu

ordinary cylindrical coordinates 6 and z for points on the outer cylind

g (xy) is independent of z. Consequently the last term in equation (1
(,an at once be integrated with respect to z’. The result is:

H - 2mre, (T4 — T

. . 2 . ' r_ 3 - R 44)

C, J ‘o P O Gldgf 3 1 (}__l LI Cs | (

g(0)=(1—c—0)-1c1<1“1 nmww&og(e) b |sin®5 A YL T AP
The corresponding homogeneous integral equation is e ‘PZ—_(¢)2_(1*&> . jﬁ’y‘%_‘ <qa T y
G o —8 (o) A A (49)
h(0)=l-5h(6’)-z- sin do’ p=1 p*c()
i ( T

. o6 on L , l ie distance between the axes of Ghe cylinders we denote by ¢
= Ai- { 5]1(0) —sm 5 dao’ + \h(()) —sm e dG he function ¢ (x,) = ¢ (6) may be determined by the method used
page 10 through a rather simple geometrical consideration. With

denoting the distance from the point 0 to the axis of the i inner cylinder

Differentiation of this equation with respect to 6 shows that the eig e get:

function k() must satisty the differential equation

: v0=om o (46)
@eh_ 1 qyn ,
g 4 | rom this we get by integration
si 1—2 — = (
the solutions of which are zl(if V—;~- . 01. . «pzh(rp)w _ ct .
= ’ )2 2 Ayt
They must be periodic with period 2w, whence it follows that — () 2(R €%

terms in the sum in (45) can be evaluated by integration (most
ly by contour integration). We find:

pcos pB\' 1 [\
) " ilwm) (48)

‘(47) and (48) are inserted in (45) we get

musl be an integer. If we normalise the eigenfunctions according

the rule:
W2 7T

S[h(b)}mo -1,
0

we get the following series of independent eigenfunctions:
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o 1 ' point « has the absolute temperature T and a reflectivity denoted
CZ 1 ~— o CE P (. I A T LY ] . N A ) e
o % — (& fa|r( a:)lz ') and defined in the following way:
< 4p — ‘We consider monochromatic radiation of wavelength 4, which

falling on a surface element d4. The direction of the incoming

will be characterized by the angles i ‘
ngle of incidence) and @ (azimuth) as
hown on fig. 6. Of this radiation a certain
raction will be reflected so that it leaves
the surface within a solid angle do’, the
ncipal direction of which is characterized
y i and o (cf. fig. 6). If the reflection is
ompletely diffuse the reflected radiation s distributed according
0 th.e cosine law, i. e. the said fraction will be proportional ‘tg
08 i and independent of i, o, and o. In general we therefore
lenote the fraction reflected to dw’ by

Tt is seen that the terms from the higher eigenfunctions decrease rapid
with increasing order. Even the contribution from the second term

(49) may generally be neglected. If e. g. % = (.75, the ratio betwe
1) N

2
the first and second term in (49) will be 13 R—?fR;F’ which is more than

This result gives some justification for totally neglecting cont
butions from the other eigenfunctions than the zerot, i, e. for -usi
formula (18) even in cases where the outer surface is not a sphere:

We again calculate the difference between the values of H giv
by (1) and (2) and by (2) and (18) for the usual three sets of values

% and % (page 11). We choose as an example r = %R and ¢ = R
0 0

(the cylinders touch). By using formula (18) we neglect other terl
in (49) than the first. (The contribution from the second is in this ¢
3—2 per cent. of the first). The result is that the difference betw
Christiansen’s formuld (2) and our formula (18) is 7.4 per cent., 4.5 per
cent. and 3.5 per cent., respectively, while the corresponding differen
between (1) and (2) are 11 per cent, 4 per cent. and 3 per cent.

L ; YA
}‘T‘:(lall‘(l.rx)lz a’)-cos i’ do'. | (50)

The notation r (4 Tx) is chosen in order lo show that the reflectivity

general will depend on wavelength, temperature, and 001{_
The examples treated above show that in case of a v ‘
unsymmetrical position of the inner body with respect to
outer one, it is often so that very little is obtained by applyin
Christiansen’s formula in calculating the heat transfer, beca
the error made may be just as large or larger than the correct
which the formula gives compared with the simple express
¢, A (TT—T3). We must conclude that if we aim at such:
accuracy that it is necessary to apply a corrected formula inst
of (1), then (18) must be used in case of unsymmetrical posit
of the inner body. This is also practically possible, bgcause |
order of magnitude of the correction factor ?Zégg

be estimated by simple geometrical or graphical methods.

ution of the surface as well as on the angles. The factor 1 is
JT

oduced for convenience. .
‘The intensity of the emitted rfrliiia'tion (emitted radiation from
it ol apparent area into unit of solid angle) in an arbitrary
.ecti.o_n can be calculated by means of Kirchhoff’s law, if the |
ecivity is known:

We shall write down an equation expressing that the resulting
ensity of radiation in a closed cavity, the walls of which all
ve the same temperature 7, must everywhere be equal to the
ensity of radiatiqn from a black body K,(AT). The resulting
('m_sity from a point = in the direction (i) is the sumn of th:
itted intensity Kr(ATx,ia) and the reflected intensity, an

pression for which can be written down by means of (50);
equation is: J

can ofl

Discussion of the assumptions made on page 3. = Kr (AT, ia) + Ko (4 T)-l'S(i’a’ r (A Tx) | ia)cos i do’ (51)
. : 7T ! :

solid angle 27

Equations analogous to (3), (4a), and (5) can easily b
tained in the most general case. The surface in the vicin

¢

{gl. Danske Vidensk. Selskab, Mal.-fys. Medd. XXIV, 8,
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e(Alx,ia) =

K, (ATx, ia) _ _15

K,(AT) (i'a \t(l Tx) I ia) cosi'dw’

solid angle 277

he heat transfer from the inner body is in analogy with (5)
or monochromatic radiation):

The black body intensity Ko (4T) is given by Planck’s radiationg
formula (it is independent of the angles). The ratio belween th
emitled intensity from the surface in question and from a blac
body, denoted by e (A Tx,1a) in (52), will be called the emissivi
for the given surface, wavelength, temperature, and d1rect10
(52) is wvalid for all wavelengths.

The ratio between the total hemispherical radiation of wav
length A emitted from unit of area of the surface in questio
and from wunit of area of a black body is:

By Ko (Ty) — 7z - \dxlus(lgazxg) ay (i 0) @ (wy25) dg. (57)
vA4, Az

he emitted intensity of radiation and the reﬂect1v1ty are still functions
(A7), although these variables have been omitted. To get the total
radiation the equation (57) must be multiplied by di and integrated
over all wavelengths. It is still assumed that the inner surface is convex
d the outer one concave, and that both bodies are opaque; further-
ore the inner body must have the same temperature and emissivity
erywhere if (57) is to be correct. Apart from this the equations are

ite general.)
E (A Tx) :%Se(l T, ia)cosido.

Of course the equations can only be solved exactly in special .
solid angle 27

ses, of which we are going to consider some in what follows,
‘ order to exemplify the applicability of the method of integral
(For the so called ““grey’” surfaces treated above we have 1 o Py Pl Y g
£ : uations.
equalities: |

¢ i B .
e(ATx,ia) = E(ATx) :To> ) Non-validity of Stefan-Boltzmann’s law.

If the reflectivity depends on wavelength and temperature,
ut not on angles and position (x), the assumptions (3) on page 3
‘e not valid, but the rest is. In this case all the calculations in
e first part of this paper hold trug’ for the heat transfer caused
y radiation in a narrow interval di of wavelength - (monochrom-
fic radiation). (Fluorescence, etc., must of course be excluded.)
he total heat transfer is then obtained by integration over all
avelengths, The formula analogous to (18) mow is

We further define the absorptivity a (A Tx,ia), i.e. the fraeti
absorbed of radiation coming in from the direction (ia):

a(ATz,io) = 1 A-l\'(iah(l Tx) \ i) cosi'dw’.

T, solid angle 27
We now gel the equations analogous to (3) and (4a) by expressi
that the resulling intensity of radiation K (iax) emerging fr
the point = on one of the surfaces in the direction (ia) is the

. - .. 7w Ay Ey (AT) [Ko(} T,) — Ko (AT,)]

sum of the emitted and reflected intensities: E,QT ((p) (58)
1= 2 (11— Ey (4 Tz)) <1+L (A Tz) 3 ) :

' EGTy) =%

Ky (i ayer) = Ko (iay) + g (i | ra | ) Koy (ipayaes) @ (0, ) dovs.
QA;

. C . C ‘e s .
, . e ratios — and —= from the case of “grey”” bodies have been
R . . Jrorr .
Ky (in 0s) = Ko (izas) - S\(lz oy | 1y | i) [ By iy ayey) — Ko (35 05 X5)
Al

cp (2, 20,) doey + S (in | ra) s an) - Ko (i @ a2) @ (rq0y) dacy .

A
1 If the so called Helmholtz’s reciprocity law (H. v. HELMHOLTZ: Theoreli

Physik, Vol. 6, p. 161, 1903) is valid, we have: (ia|r|ia’) = ("a’|r|ia),
consequently e=a




20 Nr.

of thée angles (completely diffuse reflection). It is then easy
show from (55), (56), and (57), in a way similar to that whi
led to formula (18) or (58), that formulae analogous to (18)

surface, is reflected on the outer one, will -then hit the inner
surface again. If especially the reflectivities are independent of
wavelength and temperature, and the absorptivities are indepen-

7i—(p)? laced by dent of the angles, the reduction in loss of energy due to reflection
(68) hold, but the term T (p? must be replaced by must therefore be the same as if the inner body was closely sur-
3 ounded by the outer one. We then get in place of 2
=G | e
RO 4 S £ Ayey-(TH - TS
¢ =M i (6
' . 14¢ (———)
where
€1 (}L Ihia 1) ) d Ca €o
pad = § 2L ) d T ool
a B LT iis formula is alse due to Christiansen (footnote on page 4).
and

It 'can easily be generalised to the case of wavelength- and
at perature-dependent reflectivities.
As mentioned above, (63) is valid for concentric spheres and
axial cylinders. But as soon as the spheres or cylinders are
placed a little excentrically, or deformed somehow, the fraction
‘the reflected radiation that reenters on the inner surface will
decr'ease considerably, and the loss of energy. increases. It is
rth noticing that the loss of ener gy in case of specular reflection
the smallest possible in the conpcentric position, while it is
latgest in this position if the reﬂecfion_is diffuse. The formulae
) and (63) give the maximum and minimum values of the
ss of energy, while excentric position or unsymmetric form
ves formulae like (18) lying between (2) and (63).
It will often be a good approximation to assume that the
ter surface is reflecting a certain fraction s of the reflected
diation completely diffusely, while the rest — (1—s) — is
flected specularly. Furthermore we assume that s and the total
ﬂecuwty is independent of the angle of incidence. The heat
ansfer between concentric spheres or coaxial cylinders can
L easily be calculated, Either (55), (56), and (57) may be

ed (for the outer surface we may put (1a|12 |i'a’y = (1——%>.

e (1—s) o,

Sini-cost d(—1i")d(a—(a +n))}, where d(x—=x") is
ac’s d-function), or we may at once write down analogous
ations for the total resulting radiation from the two surfaces.
nly give the result in case the radiation conslants are in-
endent ‘of wavelength and temperature and the absorptwlty
he 1nner surface is independent of the angles:

ey f mOTRe)

L4 (‘12) - SArl El (ZT) (111‘2) 1
w and ¢ are straightforward generalisations of the functio]
¢ (x,) for emission and reflection, respectively. The definition
(52), (53), and (54) together with the definition of <p(:c19c2) shoy
that

plan) = ¥ = 92 =

It is worth noticing that Christiansen’s formula (2), perhap
modified in order to take into account a possible depende
of the reflectivity on wavelength and temperature, still holds fo
concentric spheles and coaxial cyhndels in which cases w(a;f
and ¥’ (x,) are constant. But v (xy) and ¢ "(;) are not necessa
constant in all cases where @ (x,) is so. They are not so, e.g
in the case treated on page 6 and 12, where the ouker surfac‘et‘
a sphere and the inner body a disk covering the.equalorial plan
In such cases Christiansen’s formula therefore is only correcl,:
the inner body radiates according to the cosine law. .

(¢) Non-validity of the cosine law for the reflect
from the outer surface. :
The case which gives the largest deviation from the un

rected formula (1) is the following: The system consists of

conceniric spheres or coaxial cylinders of which the oute

reflecting specularly, Every ray which, coming from the 1

1 If Helmholtz's reciprocity-law holds, then y(x.) = y (x,).
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Co — 1 S
1— L= h — N oty N .
H=A4c(T{—T3)" Ham ‘ e b= Si (@) da’ is the mean value of I(x) over the
1 2 : . . . :
[1+c1 (Lﬁ_1_> ]—F(l—s) {1_*_61 (_1___ : rface. Taking mean values of the terms in (66), we get
Cy Co Az Ca : *

s - - | T=c 4+<1_L>’7’ | (67)

This shows that the heaf transfer is nearer to the value for diffus "Whence. Cp ;

reflection, i. e. larger, than that obtained by simply adding ex . 7

pressions of the form (2) and (63) in the ratio s: (1 —3). I =c,- CE , 7 (68)

It has not been found possible to obtain a general formul
in case of angle-dependent reflectivity of the outer surface.

cT”‘ )
| J (69)
(d) The temperature and emissivily of the outer bod
varies over the surface. Resulting radiation fiel
within a closed cavity.

Let all assumptions made on page 3 be correct, except th

T, and ¢, are functions of x,.

stead of :
We only lreat the case of a very small inner body <%§ Vea of (1)
2

corresponding to the “zero'™’ approximation (1). Consequent H = A4,¢ [Ti‘: _1 I(_r)__cp;(r)] _ l

we must solve the equation for I, (x,) without contributions fro Co p(x) ;
an inner body. For convenience we omit the index 2 in I, © = Ay {T;’ _E_Lﬁj?+ 1 ET_[IE‘;} J (70)
¢y, ete.: c P = = 67 .

I(x) = c(x)- T(w)4+(1—@>.81(m') cp(xa)dx’. ( Emay define a "resulting radiation temperature” 7, of the

Co 4 ere with respect to the small inner body as the uniform
This equation is a straightforward generalisation of (4a)" d were to exchange the same amount of heat as (70) with
specialisation of (56). If T is a constant, it has of course
solution I(x) = ¢,T* irrespective of the values of c(x) and
form of the enclosure (black body radiation). In general, hio
ever, it can only be solved numerically, e. g. by replacing i
a number of linear equations qorresponding to the requir
accaracy. If the cavity is a sphere, it can be splved‘exactly,

Hy = 410, (T1—T9), (71)

pp— LAy _cTT 1 Ty 1 T ey

Co @ ¢ & @ o ¢ @ (72)

18 strictly correct for a sphere and will probably be a good
proximation in many other cases. If the temperature does not
Iy too much, it may be a sufficient approximation to use the

peratures in °C in (72) instead of the fourth powers of the
solute temperatures.

so that (65) takes the fo

. . 1
in this case we have ¢ (xx’) = 0

I(x) = c(a:)-T(x)“—{-(l—%?) T




24 : ;-

8 N 25

(e) Cavx.‘Fles in a surface.. . o o (x) = 1~£. amn
A cavity the walls of which have a certain emissivity, m Ay

be replaced by a surface covering the cavity, but with anoth
emissivity, which generally will vary over the surface and depend
on the direction of emission. The method of integral equatio
can also be used lo find this apparent emissivity.

We assume that the walls of the cavity ate
reflecting diffusely and independently of wa
length, temperature, and direction. The rad
tion constant is ¢; and the uniform tempera
ture T,; the emitted intensily of radiation.i

In '(76) it is assumed, that 4, is plane.) :
- With this value of ¢ (z,), K, may be found from (73) and (74):

eEen

Ve define the apparent radiation constant ¢z by putting

: 1
then %E—clTi in all directions. We are going Ky = Ty, (79)

find the resulting radiation intensity K, (xgig'
in an arbitrary point x; on the replacing sui
face 4, and in an arbitrary direction (i, ay) (cf. fig. 7). First,
have that the intensity sought for is equal-to the resulting inten
sity from the corresponding point @, (cf. fig. 7):

Ky (2gigay) = Ky (21)

K, (x;,) is independent of direction owing to the comple
diffuse reflection and may be found from an integral equa
expressing it as a sum of emitted andl reflected radiation as usual

79) and (78) then lead to

L:L.iuri(l*ﬁ)_ (80

C3 Cl A 1 Co o A 1/

that o A
tis seen that c; — ¢, if 742_) 0, as it must, because we then get
) £
n artificial “‘black body”.

If rp(.ocl) is not constant, (74) may be solved numerically or
y iteration. ¢ (a;) is constant, if the cavity is a spherical cap
cf. page 12). If the distance from the centre of the sphere with

- . adins R to the plane 4, is p-R e rvfers .
_ 1 c . , , 3 18 p-R (p positive to the interior of the
K(x) ="—¢ T4+(1~~]~>-\K )@ (ax)) de) . e A4
(y (1) 2l . .A]1( Vg () dry avity), we get Zi = L—g—p», whence
- 1
Tt is seen that only if the function 1 I 1+p 1 1—p
o o 2ty Cl<p<bh. (8D

pla;) = \(P(x] x) dey =1 “S‘P(xxmfz) dy '
JA, J4, e re‘sults and methods used in this section and section d may
useful in estimating the deviations of the radiation from a

is independent of x;, we find a constant value of K, (x,)," ,
ity from black body radiation.

only in this case, therefore, K; is independent of a3 and _the di
tion (izas) .
If @ (x;) is constant, the value of it may be found, bec 3 R '

B ummary. The net loss of energy suffered by a radiating
(%.y eptirely surrounded by another body of different temperature
;nvestigated with special respect to its dependence on the
m and mutual position of the bodies. Integral equations are
en which determine the heat transfer ((3), (4a), and (5) for

Sda:l S o (1y75) dg = S dxy S @ (x1y) dx, = Ay,
Ay

A, YA, Ay

From this and (75) it follows that




26 ' Nr ,
DET KGL. DANSKE VIDENSKABERNES SELSKAB
ATEMATISK-FYSISKE MEDDELELSER, Binp XXIV, Nr. 9

“grey’” radiation, and (55), (56), and (57) in the general cas
The equations for “grey” radiation are solved approximately a
a formula for the heat transfer is given — (18) — and appli
to several examples. The radiation between surfaces which a
not grey is treated in some special cases. On page 22 (section
the case of variation in temperature on the outer body is treate
and formulae for the radiation field inside a sphere and for the
heat exchange with a small body inside a sphere are obtamed
(formulae (69) — (72)). Finally, in section (e), page 24, equa‘uons
determining the apparent emissivity of a cavity are obtained and
solved for a cavity shaped as a spherical cap.

" The methods and results may be of some interest in the
heating technique, the illumination technique, and optical pyxo:
metry. :

SPECTROSCOPY
AND THERMODYNAMICS

I :
MOMENTS OF INERTIA OF METHYL BROMIDE

1I.

EQUILIBRIUM CONSTANTS OF THE REACTION
CH;Br+ HCI == CH3Cl+ HBr

MOMENTS OF INERTIA OF METHYL BROMIDE
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