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0 + it plane for the half-plane o > 1 by

C(s)=%+§+---+3§+---

I

| Here is valid also the product-representation of Euler

ion it follows clearly that

() #=0 for 6 > 1.

—S$

e =7 F G ea—y

e so called “‘non trivial roots”, such that

0<ag<1.

Printed in Denmark
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¢ L. The zeta-function of Riemann is defined in the compléx

(1.1)

vhere p runs through the consecutive orimes. From this represen-

(1.2)

s is'w.ell-known, the function {(s) is regular in the whole plane
cept at s = 1, where there is a pole of the first order. It is also
lI-known that the distribution of its roots is of fundamental

that in thé half-plane o < 0 the only zeros are s = —2, —4, —6,
- and that there are an infinite number of roots e = 0y + ily,

(1.4)

famous hypothesis of Riemann, unproved so far, states that

1*
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A

these all lie on the line ¢ = % Using the fact obvious from th

(2.3)

| =

functional-equation (1.3) that they are symmetrical with respe

uch that for n > n, the sum U, (s) does not vanish in. the half-

to s = éwe can express the content of this hypothesis in th lane

K -
6§1+n1‘_{,, | (2.4)

form that

L(s) =0 for a>%. (L

hen {(s) =20 in the half-plane ¢ > @.

A further not uninteresting generalisation is given by
Theorem IV. If there are positive ng, K, K; and ¢ satisfying
2.3) such that for n > n, the polynomial U,(s) omits in the
half-plane (2.4) a real value ¢, with?

No one has yet been able to prove even the existence of a & with;

l<z9<1 such that-

L) R

t(s)y=0 for o> 9.

2. Next we consider the partial-sums

1 e

U"(S):%+%+...+—I_f hen {(s) 20 for o > ¢.
» 3. All these theorems aduit a further generalisation which
of the series (1.1). They obviously converge to {(s) for ¢ > asserts that these theorems remain true even if there is an infinity
“We ask whether these partial-sums share with {(s) the property 48 of exceptional n’s provided ‘hat there are “not too many”’. We
of being non-vanishing in the half-plane ¢ > 1. We have found 4 State explicitly only the analogue of theorem II.
the somewhat striking Theorem V. If there is a positive K such that—denoting by

Theorem I. If there is an n, such that for n > n, the parti z) the number of n-values not exceeding x for which U, (5)
sums U, (s) do not vanish in the half-plane ¢ > 1, then R '
mann’s conjecture (1.5) is true.V

More generally :

Theorem I If there are positive numbers n, and K sucl
that for n > n, the partial-sum U,(s) does not vanish in .t
half-plane

Has zeros in the half-plane o> 1 —f—i—we have
: o n

alx)
T >0 logx -

(3.1)

ien Riemann’s hypothesis (1.5) is true.

Such connection between Riemann’s hypothesis and the roots
the partial-sums seems not to have been observed so far. The
‘interesting question whether, supposing Riemann’s hypo-

to be true, we can deduce consequences on the roots of
sections, remains open.

K

Vn

then Riemann’s hypothesis (1.5) is true.
Still more generally ' ,
Theorem ITL. If there are positive numbers n,, K and
satisfying

o1+

)

On the basis of theorem III we have an interesting situation .
: the roots of the partial-sums U, " Rie ’ :

1) This clegant form of the theorem is due to Prof. B. Jessen; my orlg i j P »(8). If Riemann’s hypothesis
form was more awkward. -
2) This theorem is due to my pupil Mr. P.Ungir who observed tha

“The stronger statement that the omitted .value ¢, must satisfy only
method of proof of thedrem I furnishes at the same time the proof qf theore! )

<Rn%—1 we cannot prove.




(1.5) is not true, or more exactly sup o, = & > %, then there i I<oz2, lfl =4,

an infinity of n’s such that U,(s) vanishes in the half-plan
¢ >1 and even in the half-plane ¢ > 1 4 n9—1—¢, where ¢ i
an arbitrarily small preassigned number. But if Riemann’s hypo
thesis (1.5) is true, then, curiously, the method fails and nothin,
can be said about the roots of U, (s) this way.

4. What can actually be said about the roots of U,(s)? A
cording to a theorem of K. Knopp® every point of the line ¢ =
is a condensation-point for the zeros of U, (s). But in an interestin
way this condensation happens at least for |t| = Ty, where 7,
a sufficiently large numerical constant” only from the left

More exactly we can prove ' :

Theorem VI. There exist numerical 7, and K, such that U, (s)
does not vanish for |

=

(v+r1)1*8_,,1—s~1vjs Ryt

< -
p2

(g

Y v

nd summing over v > n

1—0c
|7, (o)< 22" 2Kalt],
[] n

[his is true for any s in the domain ( i
n. (4.4) and obviously f
21, [t|>4; hence for n> #2 e

K,
|| = IXTI (4.5)

ince for a suitable positive X, . 1 . Ly
. 5 ‘we have"” for g >
ToéltléeI{,lognloglogn’ 0_21’ n > . (4 og=1, Itlz‘l

1 i
Further U,(s) does not vanish in the half-plane I C(S)|Y<K.5 log|t], (4.6)

s> 1 —|—21%, n > n,. (4. :TiOiIZOWS from this, (4.5) and (4.3), that for ¢>1, 1t > K,,
= n N > = =
In the estimation (4.1) of the domain of non-vanishing ¥ n m—m >0. Q.e. d.

could replace log n loglog nn by log kn with a suitable k > 1, usi
estimations of Vinogradofl instead of estimations of Weyl.

The first part of theorem VI shows the indicated behavio
of the roots of U,(s); but to prove only this for all sufficient
large ¢+ we could use a more elementary reasoning. We Wil
U, (s) in the form ‘

U,(s) = (s)—r,(s), r,(s) = Zv_s.

¥ >n

We do not know so far of a single U, (s) vanishing in the
f-plane ¢ > 1. Beyond the obvious fact that Up(s) 3£ 0 there
‘n < 3, we know only from a remark of Prof. B. Jessen that
1(s) as well as Us(s) does not vanish in the hélf—plane o=>1.

“the set of values of U,(s) coincides “essentially”” with that
the function '

‘ 94(‘77,1,0,0)21+%ei¢+ieiw+le2i¢p
In what follows we denote by K, ... positive quantities, w 2 3° 4°

dependence upon eventual parameters will be indicated e
plicitly; if no such dependence is mentioned they denote nu

1 1 ‘

§Rg4 (@, 9, 0) =1 +§TCOS¢+7COS'¥)+1€COS2§D,
ical constants. If . 3 4
that for fixe =

1) See the paper of R. Jentzseh: Untersuchungen zur Theorie der Fl : ' d o Go i 1

analytischer Functionen. Acta Math. 41 (1918), p. 219—251, in particular p DT, H. Gronwall: Sur 1 . i o
2) This probably also holds with 7, = 0. ‘ d. Cire, Mat. i Pal. T. X;}f(o\gft;glﬁg(;) ste 1;iloezl‘ﬂann au voisinage de ¢ = 1.

3 - . -




9
Ry, (g, y,00) =1 ——t——i—min ‘ 410 - 6. Another interesting series fpr the zeta-function is
1 1 1 (— 1)1 .
- ;5—5;+§~--'+~—n‘s—+---, (6.1)
and for 0 > 1 o . :
RU (s) > 7 which represents in the half-plane ¢ > 0 the function
o =0y
2
Similarly we have (1 _23):(3)' - (6.2)
7 1 11 .
> =
RV, () 29775 = 120

E This function vanishes in the half-plane ¢ > 0 at the points
5. We can prove all the cor1espond1ng theorems on replacing s = ¢ as well as at

s — wo— i 2 kmi (6.3)
Tn—v4+1 k log 2 :
Cn(s)z —n—+1—:1) .
Vén :vjil:.jﬁQ)

To see what alterations are necessary in the proofs we shall trea
explicitly only

Theorem VII. If there exist positive K and n, so that th
polynomial C,(s) does not vanish in the half-plane

Hence from the well-known theorem of Hurw1tz it followq
at the partial-sums

Vo) = 2 (— 1)y (6.4)

m=n

cz=1+ —1-{—,

Vn

then Riemann’s hy130t11631s (1.5) is true. ;
Though the numerical evidences that the polynomials C

do not vanish in the half-plane ¢ > 1 are more numerous (e
the non-vanishing of Ce(s) in this half-plane follows quite
vially), we cannet enlarge the domain of non-vanishing (4.1)
theorem VI for the Cesaro-means. For the Riesz-means

R, (s) = Z(l _i__‘;f ) —
fwl

v<n

ave Toots “near” to wy if n is sufficiently large, and we prove
at these occur infinitely often in the half-plane ¢ > 1. Hence
¢ analogue of theorem I is meaningless; but the analogues of
orems II, IlI, IV and V are true. We shall prove only
Theorem VIIL If there exist positive n, and K such that for
ng the partial-sums V,(s) do not vanish in the half-plane
14 —I%,then Riemann’s conjecture (15) is true,

nd

Theorem IX. There is an infinity of values of n for which
(5) vanishes in the half-plane ¢ > 1. :

: his will follow from the fact that those roots of Vy, (s) which
for which the analogous theorems would have a somew, verge for a fixed k to Wy, may be expressed asymptotically as
enhanced interest because of the fact that they converge 1o

in the closed half-plane ¢ > 1, our method fails in principl 2kl

N S )
wk+410g2-i(wk) n .

1) Analogous theorems hold for Cesaro-means of higher order.
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7. Returning to the partial-sums U, (s) we have m.entione.d the
fact that every point of the line o = 1 is a clustering pomt.of:
the zeros of the polynomials U,(s). Are these all the cl.llster}ng
points? The answer, as we can prove easily, is affirmative. For

8. These results suggest intere,sting‘further questions. Let there
¢ given the series

_I_aze——lzs__i_...._'_an?—}»lzs_i_..-’ 0é}_1<2‘2<7..__)00

)

Which is convergent for ¢ > 0. We denote by H the clustering
¢t of the zeros of its partial-sums. Is it always true that H con-
ists of the zeros in o > 0 of the function [ (s) defined by the
eries (8.1) and of the points of the line ¢ = 0? We can show
hat the set H can consist of the whole half-plane o0 <0;
y this we give the answer to a question raised by L. Fejér.
Let ry, s, - - - be the set of all positive rational numbers, arranged

1'such a way that every fixed one occurs infinitely often; we
consider the produet o

G+ D T =)y = w7t ((1 + t)l—s“i 1 :8>

£

and summing over v

—o 1 —G—
[ 1 1= Uy @I sl = 1] S pman (g™

<|slls—1] 2"
_ o ov=1

: o e

g =T~ ], (8.2)
y=1

/ Since the product

If a point s* = 0¥+ i{* in the strip Ei"él—ako =S

could be an baccumulation-point for the zeros of Uy (s) then we have;
. . ; i in the domat :

for an infinity of values of n that U,(s) vanishes in convergent for ¢ > 0 the product (8.2) can be expressed in

¢ form (8.1) convergent for o > 0. We observe that because of

¢ rapid growth of the numbers 2" every partial-product is at

same time a partial-sum; hence all the numbers

<oZ1-— HEIGESH] (

£
2,

DN | o

But from (7.1) it follows that in the domain (7.2)

s=—r+2lni A=0,+1,4+2,---
¥ ¥ == - . w
e <4\sHs—1| 2 v=1, 2,
(1) T —1—(0 = U, = —— —
roots of certain partial-sums. Since every fixed ry occurs
c : nitely- often, every point of the line o = — Iy is a clustering
11—s||U, )]= (n+ 1)5 _‘ML;_T_H_- 1>0 nt 6f such roots and so are all points of the half-plane® ¢ < 0.

Somewhat more peculiar is the behaviour of the zeros of the

.. ’ ions of the series :
if n > ny = ny (%, €), which is a contradiction. For the half-p

o < ¢ the proof runs similarly. Analogous statemepts. hold fo
Cesaro-means C,(s) and the Riesz-means R, (s). S.lmllarly we “
show that the complete set of accumulation points of Zeros{d
Vn(s) consists ‘of the points of the 1ine' o = 0, the non tpv |
roots ¢ of the -zeta-function and the points wy of (6.3).

,e—(s+10)+e——2s+e—3(s+10)+ +e—2ns+e—(2n+1)(s+10)+“_’

Erdés remarked. As is easily shown, the set H consists

utting ¢ * = z, we obtain a power series, regular for |z} < 1 with the

érty, that the roots of the partial-sums cluster to every point in fz] = 1.
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in this case of the lines ¢ = 0 and ¢ = —10. Probably one ¢
prescribe in the half-plane o << 0 the cluster set H of a Dirichlef:
series regular in ¢ > 0.

9. The. theorems- I—V raise the question whether the zeros
of the partial-sums of a series (8.1) convergent for ¢ >0 ¢
cluster to the points of the line ¢ = 0 only from the left sid
That this is, indeed, possible is shown for example by series
the type '

I3

f(s) = Z:ay s”

.

s an integral function of order 1, WhOSP: roots lie in the half-
plane o << 0, then all roots of all ‘““Jensen-means’ of f(s)

Jn(f) = a0+als+ a2<1‘%>Sz+a3<1—l><1——3>33+ . _|_.
’ I

n
bt 2= 2) - (25
I Iz_ It

lie in the half-plane ¢ < 0. The proof is very easy and runs on

known lines. » .

- I wish to thank Mrs. Helen K. Nickerson for linguistic assist-

ance in the preparation of the manuscript.

11. Now we pass on to the proof of theorems I-IV. Obviously

it is sufficient to prove theorem IV. We base the proof on an
portant theorem of H. Bohr, éombining it with a elassical

z}soning of Landau®. First we recall that given a sequence

Za,’, e, - (9

where the a,’s are positive and tend monotonously to 0 in such
a manner that the line of convergence is the line ¢ = 0. Tha
all the roots of all partial-sums of the series (9.1) lie in the
half-plane o < 0, follows from the theorem of Enestrém-Kakeya
If the coefficients are chosen positive and increasing, then al
the roots of all partial-sums lie in the half-plane ¢ > 0. For th
sake of completeness we meéntion that the function

o0

(=T~ (),

v=1-

A< < <A <> (11.1)

where the sequence [, — 0 and contains an infinite number
both positive and negative terms, has an expansion of the fo
(8.1) (even (9.1)) with the property, that every point of the
¢ = 0 is a condensation-point of zeros from the left half-pl
and at the same time a condensation-point of zeros from
right half-plane. _ _ :

10. Of course a direct approach to the investigation of:
roots of partial-sums or arithmetical means in the half-pl
o> 1 seems to be very difficult; the stress of this paper is:
upon the connection between these questions and Riemap
hypothesis. In any case the resulls raise the question how:
roots of the function given by a Dirichlet-series can influence;
roots of ils partial-sums or suitable means. In this direetio
results are known so far which hold for the means of fi
index. If the function is given by a Taylor-series the situaffon
changes. If e. g. . '

Bis Bas ... (11.2)
asis of (11.1), if

}'n:‘rmﬁ1+rnzﬁ2+'”+r ﬁqn

n
2

rat'ional ry,’s. If f(s) is defined in the half-plane ¢ > A by
absolutely convergent series

f(s) = ia,, e, (11.3)

y=1

1) H. Bohr, Zur Theorie der allgemeinen Dirichletschen Reihen. Math. Ann.
1919, p. 136—156. See in particular Satz. 4.

2)'E. Landau: Uber einen Satz von Tschebischeff. Math. Ann. 61, 1905,
:027—550. The whole method of 14, is due to him. He proved moreover that
tegral (14.2) converges for ¢ > y, but we do not use this fact.
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Bohr calls every function Kyn?~l<, ) (11.9)
g(s) = Z b,e Ay s necessarily positive on the whole positive axis in the half-plane

7 =1

1.6) and in particular non- negatlve for s = 1 + Kn%—1. Thig
(g ves that if

equivalent to f(s), if for suitable ¢;, @s, --- and n = 1, 2, -
‘ n > K; = max (n,, n,),
— —i(rnl(p1+l‘nﬂ(pz+...+rn (pqn) )
b, = a,e n SW A(») .
| 91 =Cq 11.
Obviously g (s) is also absolutely convergent for o > A. Now th = 1+ Kn? =1 " (t.10)

above-mentioned theorem of Bohr asserts that the sets of valus
assumed by f(s) and g¢(s) resp. in the half-plane ¢ >> A an
identical.

We may apply this theorem to f(s) = U, (s) with

12. Using the restrictions on s

we may write (11.10) fo
> K; in the form ( ). 1or

B=(log2,l0g3,  --,logp, --+), ¢,—=7 (r=1,2,--). = —Hn (12.1)

nce
If v = plrpgr - -+ p¥, then '

: ‘ 2
1 Kn?logy| < LK

2
2 nz(l—ﬂ)log &

Z’ o;log p;;
o1

hence € error made 'in replacing the left hand member of (12.1) by

b, = exp (— inZaj) = (),
i=t

¥=n v vr<n v

where, as usual, A(») denotes Liouville’s number theoretic functio =
Hence the set of values assumed by U, (s) in the half-planc i 'in absolute value

0>1+4 Kn?1 K® log® = K2 2

= 2 20— f S e pa—mlegn< I‘é‘“ﬁ;l
is identical with that assumed here by the polynomial v<n 6 n
> g =
W (s) = ZZ,(:) 1> ny; = Kg(9?). Hence for n > max (K7, Kg(9))
»<n

Q) $—1 § 71(1}) logv K2 .
E AN *— LAV 0BV BN 6
If U,(s) does not assume the value c, in the half-plane (1 Z v Kn ; <K1+ 6)“ Lo(12.2)
the same holds for W,,(s). But then the function '

Wn (S) — %ns

4 v -VC(S+1)2

which is real on the real axis and is positive at infinit
n > ny, where
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the usual method of complex integration shows that ‘ erefore for o> 0
. 200 L
§ A (») log v L@+2K,a" 02542 | 2K,
4 - - 7 i,
v . 271 sC(s+1) s+1—-9
2 : .
is convergent and that its sum is —%. Therefore for n > Ky for 0> 1
have ; A () log ¥ > __9and for n > max (K, Kg(9), ng = Kot} ® 61
L{x)+2K;a £(2s) 2 Ky
= . de = —>~220 L 20L (14.)
o . — 1 2 =D
= i G—1 —_ S$—1 . ) . ‘
L) < (2 Rt 6 > " Eyn™™. (12 om 13. it follows that the numerator of the integrand is positive
7/§_n

: r all sufficiently lalge x’s; hence we may apply the following
heorem of LandauV: if a function ¢ (s) is defined for o> 1 as

L Kyn®=1>0 B "4l |
() + Ky ( | ; @(s) = 4 \‘f) dx, - (14.2)
. xr .

13. The inequality (12.3) can be written in the form

for integral n > K, (#). Now we consider for a continuousl
varying x = Kqy(#) the function

L(x) + 2K 2% 1, on-the real axis for s > y (<< 1), then ¢ (s) is regular in the entire

and we assert that this is positive for all & > K;,(#). We considers
the x-values belonging to the interval m<x <m+ 1, m a

0 1
. . . of (14. . is. The | C i 3 >
integer and = Ky, (#). For * = m our assertion is evident. T [(14.1) on the real axis. The first term is regular for s the

2)
estimate this function for other x-values we remark that L(x cond for s> @&, hence their sum is regular for s> &. Then
being a step-function is constant for m < 2 < m + 1 and hence'# Landau’s theorem applied to (14.1) shows that the function on

e right is regular in the half-plane ¢ > &. But then {(s) cannot
anish in this half-plane and theorem IV is proved.

The basis of the proof is the observation that for given arbi-
arily small positive € and 5 we can ﬁnd 71 = 73 (&, ) such that
or 6 > 1 -+ 5 we have

L{x)+ 2K, 2 = L(m)+ K, m" 7+ K, (2 2% —m*—1)
> (L(m) + Ky m* ) 4+ Ky (2(m -+ 1) — 1) >

1—9
_zmwm+wﬁ*@~@+%) Fo.

. 2
C(3+171)_i_) i £.
14. \IQW for o> 0 we have £(s)
e 15. The proof of theorem V runs on the same line but instead
z@l £(25+2) L () oo 6P : eal
L = =3 sri dx, f Landau’s theorem we use the following theorem of Pélya.
- v EG+D) X onsidering functions of type (14.2) let
_ 8 yp
3—1 1) See above p. 13, note 2.
s L dr = s . 2)} G. Polya: Uber das Vorzeichen des Restgliedes im Primzahl-Satz. Gott.
s+1 s+1—9° achr. 1930, p. 19—27. A special case of his theorem is given here in a slightly
x P
oy : ltered form.

D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXIV, 17. 2
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ire mf)notonously decreasing for n < x < n 4+ 1, the second of
hem is either positive throughout T’z Sw<<n —f: 1 or ne at'o
hroughout or finally positive for = — n and decreasingly negat'lzrfe
or & — (n -+ 1) from the left. Hence the number of sign;chin;ez

< o for L(x) + 2Ky 2?1 cann
= - : ot surpass three times th
fbad n’s < w; but then using (3.1 s the number

qndition (15.4) is fulfilled, indeed
' We can easily show that if Riemann’s hypothesis (1.5) is not
;rulc; tlhen the partial-sums U,(s) vanish infinitely often in the
alf-p ane o > 1 or more generally for every positive ¢ and for
ninfinity of n’s U,(s) vanishes in the half-plane

1 = dy < By < Ty - < X<t (15.

be a sequencel) which does not cluster to any finite positive valu .
and with the property

(—1)A(x) =0 for wx, e <XT,41- (15.2

The values x, are called sign-changing values. If B(x) is d

) we see that Pélya’s furth
fined by | y .

B(w) = >1 (15. .
£y L0

he assumes that A(x) has “‘not loo many’’ sign-changing value

or more exactly

im 2@ _ 5.

w0 108 @

1
o1 +n—1‘-—,@+£ ’
Then Pélya’s theorem asserts that if @ is the exact regularit
abscissa of @(s) and @(s) is meromorphic in a half-pla ‘
6> 6@ —b (b > 0), then the statement of Landau’s theorem holds
i. e. the point s = @ is a singular point of @ (). Applying thi]
theorem to the function on the right in (14.1) we see that t
condition of meromorphism is fulfilled. If we can deduce fr
(3.1) that the number of the sign-changing places 0
L(x) + 2Ky, x” satisfies (15.4) the proof of theorem V will K¢
completed. ‘
We consider first the integral x-values. If n is a value su

1
ere sup g, = 6 > 5 For if w: have an & with & — & > L
h that U, (s) 20 in the half-plane

1
o>14+——
—f_nl-@+45'1

or all sufficiently large n, then from theorem ITI we could con-
de that £(s) £ 0 in the half-plane ¢ > @ —¢,, a contradiction.

is reasoning fails completely if o1

lid for ¢ > 1 5’ the 1dent'ity (14.1)

K o
ciently large such that U,(s) =0 for ¢ =1 + [—:— or briefly
n :

L) +2K 2™t (25—1)¢(29)

. . 1
nis a “good” value—the reasoning of 11. and 12. gives | , x = mg"ﬁ+2Kli,
L(n) + Kyn?—*> 0. Then the reasoning of 13. shows that L : s&5 s
good n’s ' ose Ticht-side 1 . .

L(x)+ 2Kuz* ' >0 n<x<n+1. (1558 - 1ght-side is continuable over the whole plane and behaves

If n is not a good value—or let us rather call it a “bhad” va
—then L (n) + Ky;n?~! may be positive; and in this case (15.j)
is true again. Finally if n is a bad value for which L(n) + Ky
is < 0, then since both of the functions? '

1 A ‘

1 (2Fu—— 5\ = 2K11+% 1
T I SR
2 2 2 s 9

1

L(x) + Kypa®t, L(x) + 2K a® !

1) This can consist of a finite number of terms or even of the single ferr
2) Using the fact that L(x) is constant there, being a step-function.:

s that the point s = L i i i

| he point s 5 s certainly a singular point.

). We use the fact—which plays here a decisive role—that (: (1) is negative
‘ _ ‘ 2 '

2%
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16. Now we turn to the proof of theorem VI. The second’} summing over »
part is only mentioned for the sake of completeness; for in thef.
~ ()| = eSS
half-plane n YolET (16.2)
¥
o>142 loglogn veR
= logn

Obviously the same estimation holds for ¢ > 1 as we have seen
in (4.5). N '
For }/t < n < #* we have

10 ] = 126 —r D] 2@ =& | 2 T[—— —

—G

N e [(20) =
vgnv t(a) o—1

Ky, ( o 1)
.. - S— VY | ——1>0
T G—1Dlogn (loglog n) K~

> Kip(o—1)— (6—1)log*n

o o
Ir, ()] < ZW—SIJF%EISIH%. (16.3)

n<v<i?

o est.ima‘te |S1' we split it into € (log #) sums of the form (16.1);
pplying (16.1) to each of then with

for n > no.

For the proof of (4.1) we use an inequality of Weyll) according

to which for ¢ > 0,r an integer, > 3, N<N <2N we ha

Nl
7 1 1—r
E m < 2'7log? -
y=N ) .

1 _r r—1

—— - =
1—2' T+ D2 -+

(i _1 :
<K14l/logt{t Wy g 61/10gt}< Klg? s
log® ¢

K
e [8:] < log126t’ and from (16.3) for ¢ > K;; we have

AN ¢ + N log? Nj.
' K
r ()< —A . ' ,
For 6 =1 we have ) log™t . (160
: N appears from (16.2) and (16.4) this estimation is valid for
7 1 <21710g2‘_rt- Ilgl/t. :
§ — :
< (»+1) Now we suppose only
1
1 _ 1 r—1 loglog¢
.[N_zlfrt(r+1)2r_l 4t +pe Tt gr=T ‘ s n ) ' ‘ _ (16.5)
l hen using (16.4) we have
To estimate r,(s) for ¢ > 1 and n > * we start from (] < S,,”_s + E el lfgi;t 4 § ’v_s _
. 2 : T i _ |
v+ 1)1_3—_1}1_s_1 - s <K32f ’ P> 4 n<r<Vi »>Vi n<vr<lt (16.6) »
4 v Kiq ,

1) See Landau: Vorl. tiber Zahlenth, IL. Theorem 389.
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Because of (16.5) we can split S; into O (log log ¢) sums of the form: = 1
: : 2 (n—v+ 1)& >0,
) —s ‘ v = 14+EKn *
Sy = SV v o, 3< k< 2loglogt. (16.7) Y
2 2
FHE T
Sg‘) can be split into O(log t) sums of the form (16.1); applying'
(16.1) to them with
. 2 2
_ TFe oo EFT o
r=k, t =Nzt C(x)—I—ZKM[/xiO for x > K,,. (17 1)
we obtain that they are in absolute value Next we have to f ‘ '
: ind the anal:
2 1 1 1 k—1 f for o> 0 ogue of formula (14.1), Generally
_ Thig g1t k—1 (K k-3  gk—1 ' »
<K1810g21 kply Btz (kD2 (k+1)2 1og2 t) << Kyglog £(s) = ydy Sﬁ
F: i d =D )

=1 vy<n
and hence -
lSl< Ky 4‘<,Dn=§ (m—v+1)d =8 |
2 logzt‘ nzm y<m
1 o ' L
Thus for > K, n > 198180 g>1 _ _
20 = &= 0,07 =0+ 1)7) =
P=1

K .
— ~ -—3 —
. ; . 2 ST =264+ 1) L O+2)7) =
P =1
The inequality n > #'°8'°¢! can obviously be written in the fo N
: 7 v +1 v+ 2
l tIS eK,llognloglogn. = § S, sgm_s—ldm_s 51 doe b —
- y=1 vy . VES]

Finally using Gronwall’s inequality (4.6) we obtain for ¢
1> Ky

2, e+l k
= 2 Sv§ (& T = 1) Y o =
' v=1 vy .

OIS HOIE PO Ksllogt—lfgzgt

>0. Q. »
=s\S(x) (x—s~1_(x+ 1)) g =
. . : 1
17. Next we sketch the proof of theorem VII. A reaso '
similar to that of 11, shows that from our hypothesis it foll

o 1
=56+ D\ @\ @4 ) ae.
that for n > K o

/1

(17.2)
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Hence for ¢ > 0

0 (3 )
2ot oy e |\ )
C(S+1) el 20

Let . -
J=s(s+ 1)%1/3? g(m -+ y)ws_2 dy) dr =
ol 2.0 / .
w Wl s
s 3 y )
:s(\s—kl)gx 2 (1 +;> dy | dx.
(Y28 0
But then
Jis(s —1—11) .-,
s—|—§ J—s(s+1)\x  2dx
1
s(s+1)(s+2)= s(s+1)(s+2)

¥

'w 1 () x
—_ _Rx——s% dy C_S—Bdc da:,
v L

1 0

2y i is in absolute valu
and since for o> —35 the last expression 1S 1

"0

it represents a function ¢ (s) regular and bounded in every ha’l}i

plane o‘i~%+a. Hence for o> 0

400

* 1 .
s<s+1>\V:c §<m+y)‘s"2dy dow =
o1 .0

1

= M+s(s+ D(s+2)8(s)
st 9

"

and from (17.3) and (17.4)
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0 B 1 ‘
s(s+1)<(0(oc)+2K24Vm) Q(ery)_s—zdy dx =
vl 00
73) ~ %%_—%2+2K24S—(8—_’_—12+2K243(3+1)(s—|—2)19(s)
+_
or for o> 1
oo ol .
(C‘(x)+2K24V;> (J"f‘y)—s‘ldy dx =
o1l 0
_ @9 2K i ~ (17.5)
G- S+ Bt & —}‘21&24(3%—1)?9(3‘—1).
2

“This is the required analogue of (17.1). Now Landau’s theorem
cannot be applied directly; but we can apply his method.
uppose we have proved the following Lemma. If

7 = \E@ (x+y) " dy|de (17.6)

s convergent in the half—plane o > 1 with E(x) non negative for
Il sufficiently large = and is regular on the real axis for
>y (< 1), then ¢;(s) is also regular in the whole half-
lane o > y.

Then (17.1) and the representatmn (17.5) give that the require-
nents of the lemma are satisfied with y = %; hence (s—1){(s)==0
.0 the half-plane O‘>% and theorem VII is proved.

Now we prove the lemma following Landau’s paradigma; we
prove more, viz. that the representation (17.6) is convergent for
¢>y. Suppose the representation were convergent on the real axis
ly for s > § where y << 8 < 1. Then ¢, (s) is obviously absolutely
nvergent in the half-plane ¢ > ¢ and regular here. Hence the
Taylor expansion around sy = 2 is convergent at least in the
rele ‘s — sll <2 —4J; since according to our hypothesis ¢; (s)
-also regular for s = J the radius of the circle Qf convergence
greater than 2 — ¢ and hence there is a 01<< d such that the
aylor-series is convergent at s = §,. But this Taylor-series is

(17
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¢, (6,) = Yﬁfﬁgmm (S (x+ ) *log" (x +y) dg>dxg

v=20

27

s41

L@ =142 ) festD
X

since the integrand and all terms are positive we can interchange

. ¢ (s +1)
the summation and integration and hence . B |
2 ’
- T L@+ 2Ky * (14 S2+1>C(23+2) 21{1
g1 (0) = \E(x)(S(ery)“ﬁ“ldy da, , ° sC(s+1)
(28 5}

2
1. e. th(; integral is convergent for s = §, < §, a contradiction.

Hence the lemma is proved and the proof of theorem VII is
completed.

18. Now we sketch the proof of theorem VIII. The arguments
of 11. and 12. show that for n > K,

r for ¢ > 1

J

Ll(m)+2K26x Z‘dxz(l—{—i) £(2s) 2 Kys .
« (s—1)L(s)

Do =

ow the remainder of the

1
N (—1Y T Ay TE P > 19. Finally we show tha
mred .

y<n

L=yt g

»<n

proof is similar to that of theorem Iv.
t for an infinity of n’s the partial-sums®

V,, () :27(_ 1)v+1 yS

Y=2n

for these n's

anish in the half-plane ¢ > 1. For this purpose we consider the

2kmi
alues V, (w,), k fixed and wy =1 Tog?

and for x > K,

=1+iy,.
1
Li(@)+2EKyx *> 0, (18.1

0. First we show that

1)1’ +1 vl (P
Next we must find the generating functions of (— v
We assert that for ¢ > 1

. 2
14 n(wk)+41(n + 1y 2o o) +nlzv"')

(20.1)
perd (v) 2\2@29) ) - farting from the identity
g0 —Z( R = (1 55 sl | o 1
r=1 (1 —_s) UH(S) = Vgn(s) 2 _—S( s >
For A2 (n+1) (2 n)
g (s) = Zl(v) Z" A() —9 ﬂ _EQ@y) ¢ obtain, on setting s — wy,

v odd p>2 1+‘— £ 1 1
) B e e C0)
2@ (L 210@s) < (at 2y »
:{2(1 +§)"1} o = 23) 2Gs)

1) The restrxctmn to even indices is only for the sake of convenience.
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Now we have ’(1 L 1 >w“_1_ 1 - l|”k| (1 —f—lvkl).
Y ; 2n+1 2n-+41 2 @2n+1)yY
1% \1 (i) 1 LA RN S
(1 +$> _1_( 1 )?M(Q)v_z :3(3 (Z_y) 9™ Bence trom (20.5)
X 0 N -
. - —‘1+iu' . w,, N —2 4 ip
hence —i, (2n+1) C—iv V,, (w,) — 5 _S_ y ok
i i, (W) 1 v, LA C+|oD" 1§ . A
L Y E et 4 R PRKCECNI S o (110d) _ o] (24w 1
<o 12 F_{_g PR 4 ‘n*
Putting » = (n 1), (n+ 2), -+ - 2n and summing we obta ’
iv & w % In ' 2
v, v, [k § —14ipk [tV § —2 iy ' 14, l—iv et i 24+, )" 1
@2n+1) k—(n 4 1)™ (1) 4 (2) ¥ Bl << k)+(211+1) Iviy,  — Tk E y 2t <M_2 (20.6)
v=n-+1 . v=n-+1 2 4 n
Y=n-+1
@+ 1 :
< | v ] 15 gp urther

. 2n
. Wy : i N .
—(2n+1)“”<((1 +2nlﬁ> *1)—% Vzn<wk)~<;k) } 2

-

The first two bracketed terms can be written in the form

1 —1+iv, ] 1
<1+;> Tl tiy) - =

Yy

1 — iv . .
=\ (G ) ™ My 1 i) (2 iy

0

(@ +1)"—(2n+2)") 4+ (2 n+2)% — (n + 1)) =

. mk . .
R (S D) 1) (e 1) =

>

. it et 11 2
i Wk R D e R <= @4 )
=—(2n+1)”’1"(<1 +;> _1); < ) ( ) | R l kl)

2n+1

summation over » — (n+1), .-+, 2n gives
hence from (20.2), (20.3) and (20.4)

1t S E ‘ 3
+1) 1+lk+ (n+1) 1+lyk'_1_wk >zll7v—z+ivk < (2 +luk ) i
2 2 2 4 2

y=n+1 V%I1+1
< o] Q-+l 1 fting this into (20.6) we oblain
k 12 n?’
2
Now L (3 1+ v, 1 —14ip, 1 (2+[UI<DJ '
L )+§(2Il+1) 71—5(11'}‘1) k <§T (20.7)
221 1

n .
1o\ @y, 1 =g ' in the | : .
- = _ 3 : we use the transformation (20.4) again the sum of the two
‘_).n—i—l) YT <2n+1 y>(1+9) dy (ivy) : (20.4) ag

cketed terms is . v |
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g(@n-}—1)_1+ivk—(2n—i—2)_1+iuk) + rom this (21.2) and (21.1) we obtain
. . . , logn
+<%.2‘1+“’k__%>(n+1)—1+wk — i(n_i_l)_l"'wk__ | Von(w)—log2- S (wp) | < (2 +|wk|) & (21.3)
—14ip, - : .
- 2(2 n4 1)—1+ivk <<1 i 1 ) + ko 1). Now we consider the expression
2 2n+1
2 () =V, (w )+ 2n (W) (s—wy), (21.4)
Since the second term of the right-hand member of (20.8) is i '
absolute value hich is linear and has its zero at -
1 3 (2 + o) Vo (w)
<sg gt |y < it R TS
2 2 1 k9 1 2 w, = w 7 ;
n+1 n+ 8 n kn kv, (wy)
we obtain from (20.7) and (20.8) smg (20.1) and (21. 3) we get
1 . 2 - 2 . o 1 —1+ip logn
VouCi+ G ol < ELAL a0 Bt = wot g s D70, K R (215
i.e. (20.1) is proved. |6, 1.
Now we consider V, (w,). Obviously
22. We show that for fixed k and n— oo
(— 1)v+1 log » : ’
Voo (w,) = ((1 ——) (s)) g (2 1 s
n 3 : * 1 Pk 22.1
V>2Tl : Wi +410g2-§( )(H+ ) ( )
The first term is obviously
_ the asymptotical expression of that root of V,, (s) which
log 2-{(w,;). (21 -w,if n - oo. To show this we consider the circle
To estimate the second term of (21.1) we observe that Is_wknl — Ky, (&) 10b (22.9)

log (214+1)  log(2142)

1 21+ 2
lo
QI+1)% (214 2)™

< g
21+1 ll—|—1

1.5) and (22.1) show that w;, lies in this circle. We have

e - +|Uk|)1og(2l+
—}—log(2l+2)‘(21+1)‘ @1+2)7%|< 21+1)

hence for n > 10 the second term of (21.1) is in absolute va

log (2v+2) _
@v+1)°

Von () = F2n(s)—|—2j VO (w) s—w) . (22.3)
=2

logn F,,(s) we have identically

2 +|v.|)

vy>n

< (2+] kl)
Fo, () =V, (w) G—wp,),
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- 23. To prove finally that for an infinity of n’s the polynomials
V;,(s) vanish in the half-plane ¢ > 1 we have only to observe

that for fixed k

so that on the whole circumference of the circle (22.2), if n i
sufficiently large,

1 K, (1) log®
[Fan(9)| > 3| £ (R logn

= Ko

v log(n-F1)—uv, logn— 0.

Since on the circle ls— wklgé

hen for an infinity of n's we have

1 1
510g2|€wk)[ nt1

| Van ()] < Kag (k) Ruwp, > 1+

ence from (22.6) the real part of the corresponding root of
4 (5) 1s

independently of n we have from Cauchy’s estimation of coef
ficients
1
VZII( k)
T

1 1 2Ky (k)log?n
510g2|é’(wk)‘n—{—1 n?

<K29(k)2j >1+4+ >1,
f n is sufficiently large. ‘ ‘
We remark finally that for fixed & and n— o these roots

n the half-plane o > 1 lie in half-planes of the form
Kaq (k)
n 3

and on the circle (22.2)

|s—w, | < |s—w,mt+xwkn—wkl<sz<k>l°g n

K3o (k) log n

1+

T + Koy (k) < Ky (IC) —
.. their location does not refute the hypothesis of theorem VIIIL.
It would be interesting to study these roots if & is not fixed.

Tt is perhaps of some interest to note that for fixed k the

behaviour of the correspondmg roots of the Riesz-means is dif-

absolute value ‘

SRE (2 2En OV e

=2 rent. Denoting by w,,, that root of the ™ Riesz-mean of the

ries (6.1) which for n — o tends to w,, we have

1| _ Ke(B)
logn log®n~

From (22.4) and (22 3) we obtain for n > Ky (k) on the circum
ferenece of (22.2)

| Fan @] > K ) 287 K (0 Z V) =)

"
Wy Wy -+

ence these roots converge to w, from the left in a particularly

mple way. Thus there is some chance that the behaviour of

hence it follows from Rouché’s theorem that the circle (22 be Tools of the Riesz-means is more regular.
contains a )

a . s 1na1.1y zeros of V, (s) as of F, (s), i.e. exactlyo "Added in proof.
But this circle is contained in the c1rcle : :
%4. An easy modification of the proofs gives also a more

eneral theorem from which I mention only two special cases.

‘Theorem X. If for a modulus k there is a character y (n)
D: Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XX1V. 17 3

: log®n

n?.

‘S*Ll);m1< 'S_w;cnl+}w;cn_




34 35
such that the partial-sums of the corresponding L-function of - § L(n) = Sﬁﬂ”_) (25.1)
Dirichlet ,,—;_E/ v .
_ § X(ﬂ) (24.1 - are of one sign for all sufficicntly large n’s or are for these n's
n=1 9 1' .
_ > —Kyn" T, ‘ (25.2)
do not wanish in the half-plane ¢ > 1, then Riemann’s hypo . . )
thesis (1.5) is true. ” then the hypothesis (1.6) is 1rue: Polya? remarked, that if
I cannot prove that this property of the partial-sums of (24.1) : ' \~ ,
implies the non-vanishing of L(s, g) itself. Li(n) = > 2(») (25.3)

Of course theorem X admits all refinements similarly a
theorems 11—V refine theorem I. ' '
The interest of theorem X compared to theorem VIII lie
obviously in the fact that the function L(s,y) has no roots o

2
the line ¢ = 1, in contrast to (1 — E) £(s).

v=n

Is non-positive for all sufficiently large n’s, then Riémann’s

hypothesis (1.5) is true; with the same reasonmg he could prove
at from the inequalily

Ly (n) < Ky n”, (25.4)
Theorem XI. If for real sequence f;, f, ... the partial-sums i . B
of the series alid for all sufficiently large n’s, the conjecture (1.6) follows.

seems to me that the condition (25.2) is somewhat less deep

£.05) :7'3[ 1 . _’in an (25.4), i. e. one can deduce (25.2) from (25.4). If we re-
# o1 e b — * lace, ho“’f‘?"er, (25.2) and (25.4) by twosided inequalities, the.
—_E orresponding statement follows by partial summation.

‘Pélya showed by computation the validity of (25.3) for
< n=< 1500; this has been extended by H. Gupta® up to 20,000.
Le young danish mathematicians Erik Eilertsen, Poul Kristen-

. Aage Petersen, Niels Ove Roy Poulsen, and Aage Winther
culated the values of L(n) for n < 1000. They found all of
m to be positive; for L(1000) they found the value

do not vanish in the half-plane ¢ > 1, then Riemann’s hypothes
(1.5) is true.
Prof. Jessen! proved that for “almost all” f-sequences th

C oy 1
functions fﬁ (s) do not vanish in the half—plane,a>§. To obta

an explicit fﬂ(s) which has this property, we may choo

_ L (1000) = 0,028970560..
according to a remark of Prof. A. Selberg ) 0

s remarkable that in this range the minimal value is attained
n= 293 and that

. eiﬂy — (_ 1)‘1}’

where p; = 2, p, = 3, ... denote the increasingly orders L(293) = 0,005102273,
sequence of primes.
Theorem XI admits the same refinements as theorem X
25. We proved implicitly that if the partial-sums

uch smaller value than L (1000)."

) G. Pélya: Verschiedene Bemerkungen zur Zahlen! i
gen z theorie.
ch. Math. Ver. 28 (1919), p. 31—40. corte: Jatiresb. der

). H. Gupta: On a table of values of I,(n). Proc. Indian Acad. Sci. Sect.

1) B. Jessen: Some analytical problems relating to probability. Jour ol. 12 (1940), p. 407—409.

Math. and Physics. Mass. Inst. Techn. vol. XIV (1935}, p. 24—27.
3*
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26. 1 conclude with two remarks. As Paul Erdés remarke
he can prove that to any given closed set H in the domain [z[g
which contains the circumference of the unit-circle one can giv
a power-series, convergent in Iz[ <1, such that the roots of i
partial-sums cluster in ]z| =1 to the points of H and only t
those. .

As Prof. Sherwood Sherman remarked, my statement on p- 1
about the Jensen-means is true only if we suppose in additio
of the roots of the function f(s), that the sum of their reciproc
values is convergent.
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