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in good agreement with the value obtained .from the materi i

of rigorous calculations .
These considerations show that the phenomenon that nearl

parabolic orbits change systematically in the elliptical directi o

when epochs further and further back in time are considerec

is connected with the fact that the sun and Jupiter act as o n

combined mass when the cornets are at a great distance from t h

sun, and that the influence of Jupiter dominates over that 1

the other planets .
In conclusion it may be noted that the above consideratio n

of course apply also to the case of the change of a near

parabolic orbit throughout the time interval following t l

perihelion passage .
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1. The zeta-function of Riemann is defined in the complex
s = a + it plane for the half-plane a > 1 by

(s) = i -I- 2s -f- . . . +
ns

+ . . . ,

	

(1 .1 )

Here is valid also the product-representation of Euler

C (s)=JG 1
p 1 - .-

Ps

\here p runs through the consecutive grimes . From this represen -
ation it follows clearly tha t

c(s) � 0

	

for a > 1 .

	

(1 .2 )

is well-known, the function C (s) is regular in the whole plane
wept at s = 1, where there is a pole of the first order . It is also

,'11-known that the distribution of its roots is of fundamenta l
portance in the theory of numbers. We know from the func-
,iial equation

n 2r (2)~(s)

	

n
l2sr(1 2
	 IC (1 s)

	

(1 .3)

1ar in the half-plane a < 0 the only zeros are s = -2, -4, -6 ,
and that there are an infinite number of roots c) = ae + i to ,
so called "non trivial roots", such that

0<av<1 .

	

(1 .4 )

1 famous hypothesis of Riemann, unproved so far, states that
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these all lie on the line a = 2 .
Using the fact obvious from t h

functional-equation (1 .3) that they are symmetrical with respec t

to s.
= 2

we can express the content of this hypothesis in th e

form that

	

C (s) � 0 for a > 2

No one has yet been able to prove even the existence of a t wit h

1 < < 1 such that -
2 =

~(s) � 0 for a >

2. Next we consider the partial-sums

1

	

1

	

1
Un(s)

= 1s+2s+ . .
ns

of the series (1 .1) . They obviously converge to 4(s) for a >

We ask whether these partial-sums share with c(s) the properl :

of being non-vanishing in the half-plane a > 1 . We have fouie !

the somewhat striking

Theorem I. If there is an no such that for n > no the parti n

sums Un (s) do not vanish in the half-plane a> 1, then Ri t

mann's conjecture (1 .5) is true . l )

More generally

Theorem II . If there are positive numbers no and K sue ]

that for n > no the partial-sum Un (s) does not vanish in th ;

half-plane

nl- '

then 4(s) � 0 in the half-plane a > &
A further not uninteresting generalisation is given by
Theorem IV. If there are . positive no, K, Kl and [0 satisfying

(2 .3) such that for n > no the polynomial Un (s) omits in the
half-plane (2 .4) a real value cn withl )

[hen 4s) � 0 for a> 1 .
3 . All these theorems adntit a further generalisation which

sserts that these theorems remain true even if there is an infinit y
f exceptional n's provided that there are "not too many" . We

date explicitly only the analogue of theorem II .
Theorem V. If there is a positive K such that-denoting by

x) the number of n-values not exceeding x for which Ü n (s)

lim
a (x)
log =

0 ,

x+a

	

x

n Riemann's hypothesis (1 .5) is true.

Such connection between Riemann's hypothesis and the roots
1 he partial-sums seems not to have been observed so far . The
ry interesting question whether, supposing Riemann's hypo -
±sis to be true, we can deduce consequences on the roots o f

ie sections, remains open .
On the basis of theorem III we have an interesting situation
the roots of the partial-sums U1 (s) . If Riemann ' s hypothesis

11 The stronger statement that the omitted value e n must satisfy only

K,u[9 - 1 we cannot prove .

K
a >1 +
_

Vn

then Riemann's hypothesis (1 .5) is true .2 )

Still more generally

Theorem III . If there are positive numbers no, K and

satisfying

1) This elegant form of the theorem is due to Prof. B . Jessen ; my origü

form was more awkward .
2) This theorem is due to my pupil Mr . P. Ungar who observed that tl '

method of proof of thedrem I furnishes at the same time the proof of theorem 1I

(3.1)
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(1 .5) is not true, or more exactly sup o-(, = e > 2, then there is

an infinity of n' s such that Un (s) vanishes in the half-plane

a > 1 and even in the half-plane a > 1 + ne-1-e , where s is

an arbitrarily small preassigned number. But if Rieman) ' s hypo -

thesis (1 .5) is true, then, curiously, the method fails and nothin g

can be said about the roots of U1.(s) this way .

4. What can actually be said about the roots of Un (s)? Ac -

cording to a theorem of K . Knoppr) every point of the line a = l

is a condensation-point for the zeros of Un (s) . But in an interestin<

way this condensation happens at least for l tl > -ro, where ro i s

a sufficiently large numerical constant2) only from the left .

More exactly we can prov e

Theorem VI . There exist numerical ro and K2 such that Un ( l

does not vanish for

zo<Itl<eri,lognloglogn~

	

a>1,

	

n >no .

	

(4. 1

Further Un (s) does not vanish in the half-plan e

a>1
2logoogn,

	

n>no .

	

(4 .2 .	 n
g

In the estimation (4.1) of the domain of non-vanishing u

could replace log n log log n by log kn with a suitable k > 1, usint

estimations of Vinogradoff instead of estimations of Weyl .

The first part of theorem VI shows the indicated behaviou r

of the roots of Un (s) ; but to prove only this for all sufficientl }

large t we could use a more elementary reasoning . We wri l

Un (s) in the form

Un ( s ) = (s) - rn (s) ,

	

rn(s)

	

y 5 .

	

(` 3
v> n

In what follows we denote by K2 ,

	

. positive quantities, whor l

dependence upon eventual parameters will be indicated e

plicitly ; if no such dependence is mentioned they denote name'.

ical constants . If

1) See the paper of R . Jentzsch : Untersuchungen zur Theorie der I•'

analytischer Functionen . Acta Math . 41 (1918), p . 219-251, in particular »

2) This probably also holds with to = O .

1 <a<2,

	

Itl >4 ,
hen

(1±)1_s_-1_1_s<!2 ,

and summing over v > n

	 1-G	 !	

	

lrn(s)l<2nltl	
+ 2Kn t .

This is true for any s in the domain . (4.4) and obviously for
a > 1, I t I > 4 ; hence for n > t 2

l (s)j< It
Ii
i .

Since for a suitable positive K5 we havel) for a 1, I t I > 4

1	 c(s)
< Ïi5 logl t I ,

it follows from this, (4 .5) and (4.3), that forn>t2

I

	

1

	

K 4
Un(s) > KS .loglt! -

~t!
> 0 .

We do not know so far of a single Un (s) vanishing in th e
half-plane a > 1 . Beyond the obvious fact that Un (s) � 0 there
for n < 3, we know only from a remark of Prof. B . Jessen that
'4(s) as well as U5 (s) does not vanish in the half-plane a > 1 .
For the set of values of U4 (s) coincides "essentially" with that

the function

94(~P, ?V, a) = 1-~

	

el~+ 1

	

+ e2Lv
2'

	

6

	

4 G

1

	

1

	

1
91 9'4 (99 , yr, a) = 1 -{- 2G cos Ø -f- 3G cos v -1-

4G
cos 2 99 ,

`hat for fixed a = ao > 1
1) T. H. Gronwall : Sur la fonction a(s) de Riemann au voisinage de a = 1 .i . Circ . Mat . di Pal. T . XXXV, 1913, p . 95-102.

(4.4)

(v+
1)1-s-v1 -s__ 1 - s

vs

(4.5)
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N9 4 (95 , 1V, go) ? 1 - 3~n f min ( _o cos q9 +
4do

cos 2
6. Another interesting series for the zeta-function i s

1

	

1

	

1

30. 8

	

4'o

1

	

1

	

1

	

(- 1 )n+ 1

i-25+3S
- . . .+	 12S

and for a > 1

''U4 (s)>
7

24

N U 5 (s) = 24 -6 120l

which represents in the half-plane a > 0 the functio n

Similarly we hav e

5. We can prove all the corresponding theorems on replatin ,

Un (s) with the Cesaro-means l) of the series (1 .1 )

n-v =, 1 •v_s
n+ 1

~< n

To see what alterations are necessary in the proofs we shall tre y

explicitly only

Theorem VIL If there exist positive K and no so that tl ~

polynomial Cn (s) does not vanish in the half-plan e

then Riemann's hypothesis (1 .5) is true .

Though the numerical evidences that the polynomials C O '

do not vanish in the half-plane a > I are more numerous (e .

the non-vanishing of C G (s) in this half-plane follows quite l

vially), we cannot enlarge the domain of non-vanishing (4 .1 )

theorem VI for the Cesaro-means. For the Riesz-means

R (s)= ~ C1-

logv
lvs ,R.

	

log n

for which the analogous theorems would have a some-mil n

enhanced interest because of the fact that they converge t o

in the closed half-plane a > 1, our method fails in principle .

1) Analogous theorems hold for Cesaro-means of higher order .

(i
-

22s)
.(s) .

'1 his function vanishes in the half-plane a > 0 at the points
s A as well as at

21. 7c i
s = w~. = i +

k = + 1, , ± 2, •

Hence from the well-known 1 heorem of Hurwitz it follow s
'at the partial-sum s

V (s) -

	

(_ 1)m+lm- s

	

(6 .4)
m < n

'Ve roots "near" to wk if n is sufficiently large, and we prov e
HI these occur infinitely often in the half-plane a > 1 . Hence

analogue of theorem I is meaningless ; but the analogues o f
I corems II, III, IV and V are true. We shall prove only

Theorem VIII . If there exist positive no and K such that fo r

no the partial-sums V, ,(s) do not vanish in the half-plan e

1 +	 then Riemann's conjecture (1~.5) is true,
n

and

Theorem IX. There is an infinity of values of n for which
(s) vanishes in the half-plane a > 1 .
This will follow from the fact that those roots of V2n (s) which

diverge for a fixed k to wk may be expressed asymptotically a s

wk+ 4log2•'(wk

Cn (s) = (5 . 1

v <n

log 2 (6 .3)

1
~kn i

-1+
log 2

6.1 )

(6.2)
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7. Returning to the partial-sums Un (s) we have mentioned tin

fact that every point of the line a = 1 is a clustering point o f

the zeros of the polynomials Un (s) . Are these all the clusterii r;

points? The answer, as we can prove easily, is affirmative . Fo r

\\1-s

(v+1)1-s-vl-s-(1-s)v-s

	

((I{ v l -1- 1	
v
	 Sl

.1/v

= v1-s ~ (1 -s) (-s) (1 -I-r)-s - '
0

and summing over v

~(n+1)1-s - 1-(1-s) Un(s)C~ s ~ I s -1 v'-6

ti

max(1 +9)
-6-1

1 <v<n

	

o <y< i-7
~

<Islls- 1 l Z v 1-
6

=1

1
If a point s* = a* -I- it* in the strip e c 1 - e 0 < e <

could be an accumulation-point for the zeros of Un (s) then we ha y

for an infinity of values of n that Un (s) vanishes in the domai i

E <a< -£ ,

	

(t(t* -+-1) .
2-

	

2

But from (7.1) it follows that in the domain (7 .2)

(n+l)1-s-1-(1-s)Un (s) I<
4 sIl sE - 1

1 1 -sIlUn (s)I> (n+1)2 -
4IsIlS-1L 1 > 0

if n > n 2 = n 2 (1*, e), which is a contradiction . For the half-p i

a < e the proof runs similarly . Analogous statements hold for

Cesaro-means Cn (s) and the Riesz-means Rn (s) . Similarly we

show that the complete set of accumulation points of zero s

Vn (s) consists of the points of the line a = 0, the non tri, I?.

roots e of the -zeta-function and the points W k of (6.3) .

8. These results suggest interesting further questions . Let there
be given the serie s

S a 2 + . + ane Zas+ . . .,

	

0<~.1 <A2 < . . .-->-, (8.1 )

which is convergent for a > O . We denote by H the clustering
et of the zeros of its partial-sums . Is it always true that H con-
ists of the zeros in a > 0 of the function f (s) defined by the
Ties (8 .1) and of the points of the line o• = 0? We can sho w

hat the set H can consist of the whole half-plane a < 0 ;
)y this we give the answer to a question raised by L . Fejér .
et r 1 , r 2 , . • be the set of all positive rational numbers, arranged
n such a way that every fixed one occurs infinitely often ; we
consider the product

v

	

.
9' (s ) =

	

(
t-ce ' s -w)2 ~ •

v= 1

JLL1+v
2' 6

v= ~

convergent for a > 0 the product (8 .2) can be expressed in
e form (8 .1) convergent for a > O. We observe that because of

,e, rapid growth of the numbers 2 ' every partial-product is a t
same time a partial-sum ; hence all the number s

1=0, .f 1,+2,•• •

2 v

	

v

	

1 2 .

roots of certain partial-sums . Since every fixed F itt occurs
finitely often, every point of the line a = - rF ,, is a clusterin g
int of such roots and so are all points of the half-plane ') a < 0 .
Somewhat more peculiar is the behaviour of the zeros of th e

tons of the series

I
e-2, + e.a(s+lo) + . . . +e-2ns+e-(2a+1)(s+lo) + . . . ,

P. Erdös remarked. As is easily shown, the set H consist s

1) Putting e-s = z, we obtain a power series, regular for I zi < 1 with the
.Terty, that the roots of the partial-sums cluster to every point in z - I .

--r dr
~v

	

,

(8 .2 )

s = 2 17r i

(s + 10)
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in this case of the lines a = 0 and a = -10 . Probably one can

prescribe in the half-plane a < 0 the cluster set H of a Dirichl e

series regular in a > O .
9. The . theorems I-V raise the question whether the zer o

of the partial-sums of a series (8 .1) convergent for a > 0 call

cluster to the points of the line a = 0 only from the left side.

That this is, indeed, possible is shown for example by series o

the type
oc

~aiP v .s

v

where the av's are positive and tend monotonously to 0 in su m

a manner that the line of convergence is the line a = O . Tlr

all the roots of all partial-sums of the series (9 .1) lie in t

half-plane a < 0, follows from the theorem of Eneström-Kakey

If the coefficients are chosen positive and increasing, then a 1

the roots of all partial-sums lie in the half-plane a > O. For ti

sake of completeness we mention that the function

ø

	

j
1( s) =

	

-
=L

where the sequence Iv --> 0 and contains an infinite number

both positive and negative terms, has an expansion of the for m

(8.1) (even (9 .1)) with the property, that every point of the 11 11

a = 0 is a condensation-point of zeros from the left half-pla t

and at the same time a condensation-point of zeros from Il

right half-plane .

10. Of course a direct• approach to the investigation of t l

roots of partial-sums or arithmetical means in the half-pb '

a > 1 seems to be very difficult ; the stress of this paper is I n

upon the connection between these questions and Rieman"

hypothesis . In any case the results raise the question how t i

roots of the function given by a Dirichlet-series can influence 1 1

roots of its partial-sums or suitable means . In this direction

results are known so far which hold for the means of fin '

index. If the function is given by a Taylor-series the situali i

changes. If e. g .

co

f(s) = ~av s"
v= 0

is an integral function of order 1, whose roots lie in the half-
plane a < 0, then all roots of all "Jensen-means" of f(s)

lie in the half-plane a < 0. The proof is very easy and runs o n
known lines .

I wish to thank Mrs . Helen K. Nickerson for linguistic assist -
dace in the preparation of the manuscript .

11 . Now we pass on to the proof of theorems I-IV. Obviously
it is sufficient to prove theorem IV. We base the proof on an
important theorem of H . Bohr 11 , combining it with a classica l
seasoning of Landau 2) . First we recall that given a sequenc e

.1 1 < .12 < . . . </1.R < . . . ---) oo

	

(11 .1 )

ite call the sequence B of linearly independent numbers

18 1, 18 23 • •

= ral ß 1 + ra, ß2 + . . . +
q,

ii rational ray 's . If f (s) is defined in the half-plane a > A by
Ille absolutely convergent series

f(s) ° Sav e- )`vs ,

	

(11 .3)
v =

Ii H . Bohr, Zur Theorie der allgemeinen Dirichletschen Reihen . Math . Ann .
1919, p . 136-156 . See in particular Satz . 4.

1 E . Landau : Über einen Satz von Tschebischeff . Math . Ann. 61, 1905 ,
7-550 . The whole method of 14 . is due to him. He proved moreover that
integral (14 .2) converges for a> y, but we do not use this fact.

(11 .2)
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Bohr calls every function

g (s) =

	

b1, e

equivalent to As), if for suitable Ti , T 2 ,

	

and n = 1, 2 ,

	

b n

	

an e- I(rn,Øi + rn,q~2 + . . . +rn
~Pq

,i )

	

n

	

n

	

qn

Obviously g (s) is also absolutely convergent for a > A . Now tilt

above-mentioned theorem of Bohr asserts that the sets of valurs

assumed by f (s) and g (s) resp . in the half-plane 6 > A al
identical .

We may apply this theorem to f (s) = Un (s) with

B

	

(log 2, log3,•••,logp,•••), q ,r (v=1,2,•• .) .

	

( 1

If v = pi=p28 . pa', then

logy
=

	

a i logpi ;
i= 1

hence

b v = exp (- in

	

= 2(v) ,
i=1

where, as usual, (v) denotes Liouville's number theoretic functio n
Hence the set of values assumed by (I n (s) in the half-plavc

a > 1 + Kn~-1

is identical with that assumed here by the polynomial

W(s) _	 (v)
v s

,,< n

If Un (s) does not assume the value c,, in the half-plane . (1 1
the same holds for W1(s). But then the functio n

Wn (s) - cn ,

	

(1 1

which is real on the real axis and is positive at infinit .

n > n1i where

1 5

K1 n'5' 1 < 1 ,

is necessarily positive on the whole positive axis in the half-plan e111 .6) and in particular non negative for s = 1 + Kn'9' * Thisives that if

n > K 7 = max (no, n1) ,

2(v)

1+Kn,-1 > cn .

	

(11 .10)
v < n v

12. Using the restrictions on cri, we may write (11 .10) for> K 7 in the form

(12 .1 )

-1 g-Kn 1o v _ 1 + Kny-1 log v I < 1	 K2	
lo m

2v ,n2 (1-6) b

he error made in replacing the left hand member of (12 .1) by

Z (v) Kn° - 1v

	

\? 2(v) log v 1

	

(2s-}- 2)C'(s + 1)-2“s-I-1) 4 `(2-I-2)
v

	

v

	

~(s-}-1) 2

(11 .9)

(v ) v
1 -Kn

v<

-1
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the usual method of complex integration shows tha t

(v) log v
v

v

2

is convergent and that its sum is - - . Therefore for n > K, w
6

L (n) = > ~	
(v

	

`

	

/

	 v) > - (2 + K1-f
6

1 n'~-1 = - K 11 n,5'-1 . (12 „ '

._~

' L(n) +K11n)-'-f > 0

	

(13 .1) '

for integral n > Kra (09) . Now we consider for a continuousl y

varying x > K l o (29) the function

L (x) + 2 Kil x&-f ,

and we assert that this is positive for all x > Klo(i9) . We consid,

the x-values belonging to the interval m < x < m + 1, m a

integer and > Kl o (i9) . For x = m our assertion is evident .
estimate this function for other x-values we remark that L(1
being a step-function is constant for m < x < m + 1 and hen r

L (x) + 2 K11 .xl91

-1 = L (In) + K11 n2'~-1 + K11( 2

	

> (L (nl) +K11 m'9-1
) + K11 (2 (m ;-

	

m'9-1) >

v
>K11(rn+1)~ -1 (2

	

1- '

	

1+

	

)0 .
-

	

nt

14. Now for o > 0 we have
• ~

/1.(v) . 1 - (2s+2) -
s

L(x)
dx ,

v vs

	

C(s +l)

	

s+
t

1

s
s+1-'

17

	

1 7

i I Tefore for a > 0

, L(x)+2K
11

x'F-1 dx

	

(2s+2)+ 2K 1 1

1

	

x

	

s~(s+1) s +1 - O
,

r . for a > 1

L(x) 12K11x.t- ' dx=
	 (2s)	 +2K11

	

14 . 1
xs

	

(s-1)(s) s-li

	

( )

f corn 13 . it follows that the numerator of the integrand is positiv e
tor all sufficiently large x ' s ; hence v e may apply the followin g
theorem of Landauf) : if a function g- (s) is defined for a > 1 a s

Ax)
g7(s)

	

s	 dx,

	

(14.2)

1
X

where A (x) does not change sign for x > xo and 92 (s) is regular
on the real axis for s > y (< 1), then g7 (s) is regular in the entir e
Half-plane o > y .

Hence we have only to consider the singularities of the righ t

4f (14 .1) on the real axis . The first term is regular for s > 2, the

coud for s > 69, hence their sum is regular for s > o. Then
Landau's theorem applied to (14 .1) shows that the function o n
nie right is regular in the half-plane o > 79 . But then (s) canno t

vanish in this half-plane and theorem IV is proved .
(., The basis of the proof is the observation that for given arbi -

1rarily small positive a and il we can find r, = r i (s, o) such that
for . o' > 1 -F- 77 we have

(s + Uri) -
- (s)) < e

.

15 . The proof of theorem V runs on the same line but instea d
f Landau's theorem we use the following theorem of P6lya . 2 )
unsidering functions of type (14 .2) let

f ) See above p . 13, note 2 .
2 ) G. Pelya : Über das Vorzeichen des Restgliedes im Primzahl-Satz . Gött .

1 ;'chr . 1930, p . 19-27. A special case of his theorem is given here in a slightl y
dered form .

D. Kgl . Danske Vidensk . Selskab, Mat .-fçs . Medd . XXIV, 17 .

	

2

have >	 (v ) log v
> - 2 and for n > max (K7 , K8 (M, K 9 ) = K1

y<n

v< n

13 . The inequality (12.3) can be written in the form

v=1
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1 9
1 = xo< x i < x2 <

	

< xn <

	

(15 .1

be a sequencer) which does not cluster to any finite positive valu e

and with the property

(-1)'A(x) > 0

	

for x„ < x < x„+ .

	

(15 . 2

The values x„ are called sign-changing values . If B (x) is d e

fined by

	

B(w)

	

S1

	

(15 . L

x y< w

he assumes that A(x) has "not too many" sign-changing valu e

or more exactly

w

lim
B (co)

= O .
±' i Q b w

Then Pôlya' s theorem asserts that if O is the exact regularil .

abscissa of q~ (s) and T(s) is meromorphic in a half-pall

a > O - b (b > 0), then the statement of Landau's theorem holo

theorem to the function on the right in (14 .1) we see that ti .

condition of meromorphism is fulfilled . If we can deduce fro (

(3 .1) that the number of the sign-changing place s

L(x) + 2 Kii satisfies (15 .4) the proof of theorem V will 1

completed .

re monotonously decreasing for n

	

< n + 1, the second of
Riem is either positive throughout -n < n + 1 or negative
nroughout or finally positive for x = n and decreasingly negative
nr x --} (n + 1) from the left . Hence the number of sign-changes

w for L (x) + 2K11 xß- 1
cannot surpass three times the number

bad n's < co ; but then using (3.1) we see that Pôlya's further
nondition (15 .4) is fulfilled, indeed .

We can easily show that if Riemann's hypothesis (1 .5) is not
Tue, then the partial-sums Un (s) vanish infinitely often in th e
alf-plane a > 1 or more generally for every positive e and fo r
n infinity of n's Un (s) vanishes in the half-plan e

v>1-}-
n 1 e '

here sup ae = O > 2 . For if we, have an e1 with

ûch that Un (s) ~ 0 in the half-plan e

v > 1 f nr -D +f i

his reasoning fails completely if O = 2 ; the
lid

i . e . the point s = O is a singular point of ça (s) . Applying t h

We consider first the integral x-values . If n is a value sufi

q all sufficiently large n, then from theorem III we
ude that C(s) � O in the half-plane a > 0-el ,

could Ion-

a contradiction .

or a > 1
identity (14.1)

ciently large such that Un (s) ~ 0 fora > 1 + ~(%n - or briefly

S L)+2K11d
(2s-1)

	

(2 s)

	

Kit
n is a "good" value-the reasoning of 11 . and 12 . gives th

xxs
2 (s- 1) ~ (s) 1 '

L(n) + K11n' > O . Then the reasoning of 13. shows that L s- 2

	

s- 2

good n' s

L(x)+2K 11 x' > 0 n < x < n + 1 . (1 5

If n is not a good value-or let us rather call it a "bad" va h

-then L (n) + KY1 n° -r may be positive ; and in this case (15, .

is true again . Finally if n is a bad value for which L (n) + K 15 i e

is < 0, then since both of the functions2)

L (x) + K 11 x'5-1

	

L (x) + 2 K11 x,i- i

1) This can consist of a finite number of terms or even of the single ter n

2) Using the fact that L(x) is constant there, being a step-function .

hose right-side is continuable over the whole plane and behave s
e mptoticallyl) if s -± + 0 as

°es that the point s

	

2
is certainly a singular point .

' We use the fact-which plays here a decisive role-that C (2) is negative .

2K11 +1

~ g-)

2 *
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16. Now we turn to the proof of theorem VI . The second

part is only mentioned for the sake of completeness ; for in th e

half-plane
v s < K4 (16.2)

v>1{ 2 loglog n

=

	

log n

/

	

1
I Un (s) I = I(s)- rr,(s)II “s)I-Irn(s)I >_Jl

	

1
1 -{-

Obviously the same estimation holds for a > 1 as we have seen
n (4 .5) .

For Vt < n < t2 we have

> (a - ) log2 n
(4 (loglog n)2 -

K12%
> 0 To estimate I S1 I we split it into G (log t) sums of the form (16 .1) ;

applying (16 .1) to each of them with

for n > no .

For the proof of (4 .1) we use an inequality of Weyll) accordiri

to which for a > 0, r an integer, t > 3, N < N' < 2N we have

N'

(v-}-1) 5

v=N

1- r
< 217 loge

	

t

N1-21-
r-6 t(r+1)2r

+N
1-G t

1 r-1
(r+1)2r-1

	

r- 1
log

2

For a > 1 we have

valid for

< 2 14 log21r
t

.

appears from (16 .2) and (16 .4) this estimation i s
n>V .

Now we suppose only

(16 .5)

t>4 ;

1) See Landau : Vol.] . über Zahlenth. II . Theorem 389.
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Because of (16.5) we can split S 2 into 0 (log log t) sums of the for m

-

S2t`)
2

v

	

2
tk +2 <vtk + 1

s 2(k) can be split into 0(log t) sums of the form (16 .1) ; applying

(16.1) to them with
2

	

2

r=k,

	

k+2
<N<tk+

1

we obtain that they are in absolute valu e

2

	

1

	

1

	

1

	

k- 1

< K 18 log21- k t t
- k+2 2 k-1 +(k+1)2k-1

+
(1.+1)2k-L lOg2k-1 t < K19 1og

n

X (n -v -}- 1)
A

(v) 1 > 0
,

v=1

	

vi{Kn

and by an argument similar to that of 12 . we obtain for these n's

C(x) + 2K24V > 0

	

for x>K25 .

	

(17.1)

Next we have to find the analogue of formula (14 .1). Generallyif for 6 > 0

d = Dn ,
v< n

3 < k < 21og log t .

	

(16 .7 )
-sv

	

,

-v+ 1) 2(v) >- K
v

	

24V--n=

and -

v =

I	 	 K1 sS 2 I < log2 t .

Dn -
n<m

	

v<m
- v -I--1) d = Sm ,

and hence

then
	 1

Thus for t > K20 , n > tl °gl °gt , > 1

Irn(s)I<
K2 02.

log t

The inequality n > 11°gl°gt can obviously be written in the for a

t < e
K"1og n loglog nI l

Finally using Gronwall's inequality (4.6) we obtain for o'> 1

t> K2 2

I U (s ) I � I( s) I- I r(s) I>

	

1	 - K20 > 0 .n

	

n

	

K 5 1og t

	

log' t

17 . Next we sketch the proof of theorem VII . A reasoai s

similar to that of 11. shows that from our hypothesis it foi l

that for n > K 23

(16 .8

S S (x) (x-s-1 -(x + 1)-s-1) dx =

Çs

	

('1= s (s -F-1)

	

(x)
`J
~` (x + )-s-2 drd dx .

))

	

~~1

	

o

(17 .2)
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Nr . l ;

s(s -F- 1) (C (x) -{- 2 K24 Vx) (x+ y)-5-2 dy) dx =

	

r, l

	

e . 0

_	
((s++

1)

	

1
	 2)

s -E- 2

Hence for cc > 0

C (2s+ 2)

	

s (s + 1)

~
C (x)

((

x -f- y )- S -2	 _

	

dy~ dx .

	

(17 .3 )

•,1

	

c o

~

	

/ 1

J s(s -I-1)~V x Ç(x-f y)
s
-2 dy dx =

\..o

1
-s-2

1 -f-
X /

But then

sio~s (s -I- 1) x-s

< 2x

	

2dx

	

dy dx .

“s-F1 )

Let

and since for a > - 2 the last expression is in absolute valu e

S''

it represents a function (s) regular and bounded in every hal l

plane a > - 2 + e . Hence for a > 0

(
s (s + l) \ i/x \(x + y)_s_o ciy)dx =

► 1

	

`•, o

1 -~s(s--1) .(s~-2)~(s)

s
-F-

2

and from (17 .3) and (17 .4)

or for Q > 1

S

. ~
-- 2 K24 Yx) (~ (x -{ - y) s -1 dy)dx =

~ 1)C(s) s+
2K21

-Ir 2K24 (s+l)~(s - 1
s- 2 .

This is the required analogue of (17 .1). Now Landau's theore m
cannot be applied directly ; but we can apply his method .
Suppose we have proved the following Lemma . If

00

	

1

4~1( s )

	

SE(x)((x +~

	

y)-s -1 dy) dx

	

(17 .6)
. o

is convergent in the half-plane a > 1 with E(x) non negative fo r
41 sufficiently large x and is regular on the real axis fo r
> y (< 1), then T1 (s) is also regular in the whole half-

olane a > y .
Then (17 .1) and the representation (17 .5) give that the require-

tents of the lemma are satisfied with y = 2 ; hence (s-1) c(s) ~ 0

In the half-plane a > 2 and theorem VII is proved .

Now we prove the lemma following Landau ' s paradigma ; we
prove more, viz . that the representation (17 .6) is convergent for
> y: Suppose the representation were convergent on the real axi s

only for s > a where y < b < 1 . Then (p i (s) is obviously absolutely
onvergent in the half-plane a > 8 and regular here . Hence the
Taylor-expansion around s j = 2 is convergent at least in the
c ycle s- s 1 < 2 - 6 ; since according to our hypothesis (pi (s)
is also regular for s = â the radius of the circle of convergenc e
is greater than 2 - 6 and hence there is a (S I < 6 such that th e
Taylor-series is convergent at s = SI . But this Taylor-series i s

dx ,

s(s -}- 1)
(

(17 .5)
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.
'0

1
(-8

	

I2)v
(pi (~1 ) _ ./' v i

	

~ E (x) ~ (x -I- y)-3 log v (x -I- y) dy) dx ;
v=o 1 0

since the integrand and all terms are positive we can interchang e
the summation and integration and hence

Nr.1 7
2 7

Hence for a > 0

ao

s xs
	 (x)

dx =
1

2

	

C (2s -{- 2)
1 + 2s+1

'(s-}-1 )

1

	

\
991 (b ) = Ç0E(x) ~ (x + 0-4=- 1 dy dx ,

c1

	

o

	

~

L1 (x) +2 K26 x 2

xs+

	

dx ,-
Ç

1 	 2	
1
)	 (2s+2) + 2 K2 6

s C( s +1)

	

s+1
,

2
i . e . the integral is convergent for s = 6 1 < b, a contradiction.
Hence the lemma is proved and the proof of theorem VII i s
completed.

18. Now we sketch the proof of theorem VIII . The arguments
of 11 . and 12 . show that for n > K2 5

(-1)v +1
,1

(v) v 1-xri 2 >

0 ;_
v <n

or for a > 1

.

	

1

	

L t (x) + 2 Km x s

	

2

	

s

	

dx =- 1 +

	

x

	

2

	 (2s)	 +2K2
5s

)(s-1)(s) s 11

2

Now the remainder of the proof is similar to that of theorem IV .19 . Finally we show that for an infinity of n's the partial-sums 1 )

for these n's
V2n (s) = )v+1 v-s

L1(n)-~
	 i(-1)v+1

2 (v)>K26n s

	

v<2 n

vanish in the half-plane a > 1 . For this purpose we consider th e

Ven (wk)+4 (n + l)-1+vk

carting from the identity

	

(1- 2s)u (s) = V2n (s)-21-s 	 + . . . +
(n+ 1) s

	

(2 n)s )

obtain, on setting s = wk ,

	 1	 1	 1

)

	

(n + 1)wk + (n + 2)wk+
. . .

+ (2 n) k (20.2)

1 ) The restriction to even indices is only for the sake of convenience .

v <n

_ 1
L 1 (x)+2K26 x 2 > 0 .

Next we must find the generating functions o f

We assert that for a > i

9(s) =-1)v +1 2(S) = (1 +2 ) “2s) .

2'(v) 2 J C 	 1	 j (2s)
v

s
p>2 1-{-

	

(s)

P .

=12(1+	 1

	

1 “2s)
= 1 + 2 ~(2s)

1

	

2s)

	

~ ~ ( s )

	

(

	

2S ) ~ (s )

and for x > K 27

(18 .1 )

_ 1)v+1 2	 (v)
s •

For

g (s ) _
v odd

~(v )

vs v=1

20 . First we show that

values Ven (wk), k fixed and mk = 1 + 2 kxi = 1 + iUk .log 2

(2 + 1Uk1) 2<
n2 (20.1 )
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Putting v = (n + 1), (n + 2), - • • 2n and summing we obtain.

The first two bracketed terms can be written in the for m

((2n+1)iUk_(2n+2)iVk)+((2n+2)iu,,-(n+1)i ) =

'(2

	

v ,.

-
n+1 k 1

	

+(n+1)ivr.(21v/_1) =)iU C + 2n+1)

	

1)

	

l

we use the transformation (20 .4) again the sum of the tw o
'leted terms is
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((2 n+ 1)1+iak-(2 n+2)-1+ivk ) +

+

	

2-1+iuk-1)(n+1)1+iak_ (n+1 -1+ivk
-

(2

	

2

	

4

	

)

	

(4 ~

1 + irk

	

- 2 (2n 1)-1+tuk (
1(1 + 2n-I-1)

	

-1 ) .

Since the second term of the right-hand member of (20 .8) is i i
absolute value

3

	

1	 //

	

1

	

3 (2 + IUk 	
I)2

< 2 2n--1 ll+IUkI) 2n+1 < 8

	

n 2

Nr .17

	

3 1

Prom this (21 .2) and (21 .1) we obtain

	

V2 n (w k)-log 2• (wk)I < (2 +I wkI) lo g	 n .

	

(21 .3)

Now we consider the expressio n

	

Fen (s) = VVR (w c) + V2n (wk) (s- wk),

	

(21 .4 )

_

	

Ven(wk)
w kn - wk-

V2n
(~k) ,

we obtain from (20 .7) and (20 .8)

1

	

1 + iv"+
4

(n+1)
) 2

(2+ I vk
<

	

n 2 wk + 41og 2 1 (wk) (n +
1)-1

+ tu k
+ 03 7'27 (k) 1	g2 . (21 .5)

i . e . (20.1) is proved .

Now we consider V2 n (wk) . Obviously

V2n (wk) =- ((1 -
2

) ~ (s))

	

+

	

(	
1)

v+1
log

v (21 : 1
2

	

swk

	

v

	

u k
y>2n

The first term is obviously

log 2 • C(wk) .

To estimate the second term of (21 .1) we observe that

log (2 1-}- 1)

	

log (2 1-{- 2 )

(2 1+1)wk

	

(2 1+2)wk

+log(21+2)1(21+1) wk -(21+2)-wk
j< ( 2 +IUkI)log(21

T

(21+1)2

hence for n> 10 the second term of (21 .1) is in absolute v .al u

log(2 v + 2)

	

log n

loaI

	

1 .

22 . We show that for fixed k and

LWkn = Wk +

	

1
og 2 (Wky(n

+ 1)-1+
tak

4 1

the asymptotical expression of that root of V2n (s) which

if n -- co . To show this we consider the circl e

m2

n = I~27 (k) lon ;

	

(22 .2)
n'

(21 .5). and (22.1) show that wkn lies in this circle. We have

For Fen (s) we have identically

FL (s)

	

V2n (wk)(s wkn ) ,

1

	

21+ 2
<	 log-	

+21+111+ 1

< (2 +I Uk I)
v >n

< (2+ IUkl )(2 v+ 1)2

	

n

n --->- co

(22 .1 )

V2n ( s )

	

F2n ( s ) + ) (V w s -wk)'•

	

(22 .3)j I 2n (
J =2
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so that on the whole circumference of the circle (22.2), if n i s

sufficiently large,

	

(w)
I Ka7(k)2log'

n = K2s (k) lon2 n
(22 .4 ,

Since on the circle Is- wk I
< 2

V2n (s)

	

K29 (k)

independently of n we have from Cauchy ' s estimation of coef-
ficients

~J )V`Ln(wk)
j !

and on the circle (22 .2)

log" n
+wkn -wkIÇ K27 (k)

	

+n

+ K3o(Ir) + K27 k) logn < K31 (k) l ;n

	

(

	

n2

	

31 ( n

From (22.4) and (22 .3) we obtain for n > K 33 (k) on the circus

ference of (22 .2)

hence it follows from Rouché 's theorem that the circle (22 :2 1
contains as many zeros of V2n (s) as of Fen (s), i . e . exactly o n

But this circle is contained in the circle

23. To prove finally that for an infinity of n's the polynomials

V21t (s) vanish in the half-plane a > 1 we have only to observe

that for fixed k

vk log (n -j- 1) - v k log n

	

0 .

Then for an infinity of n "s we have

Rtv
k
n

> 1 + 5log 2 I wk ) I n + 1 '

hence from (22 .6) the real part of the corresponding root o f

V21 (s)

1

	

1

	

2 K27 (k) log' n

	

1 ,
>+ 5log21 (u) k)I n+1

	

n"

if n is sufficiently large.

We remark finally that for fixed k and n> 00 these roots

in the half-plane a > 1 lie in half-planes of the form

1 F K33(k) ,

n

i . e . their location does not refute the hypothesis of theorem VIII .

It would be interesting to study these roots if k is not fixed .

It is perhaps of some interest to note that for fixed k th e

behaviour of the corresponding roots of the Riesz-means is dif-

ferent . Denoting by wkn that root of the nth Riesz-mean of the

eries (6 .1) which for n --->- 10 tends to wk , we have

u~ ,, - av -I

	

< K34(k)
kn

	

k loge

	

log" n

Hence these roots converge to wk from the left in a particularly

simple way. Thus there is some chance that the behaviour o f

the roots of the Riesz-means is more regular .

1

Added in proof .

24. An easy modification of the proofs gives also a mor e

Ioral theorem from which I mention only two special cases .

Theorem X. If for a modulus k there is a character x (n)
Kgl . Danske VIdensk . Selskab, Mat .-fys. Medd . =IV . 17 .

	

3

I
F2n (s)

< K29 (k) 2 1

llJk l

	

Is - wk

1 1

is
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such that the partial-sums of the corresponding L-function o f

Dirichlet

n

do not wanish in the half-plane a > 1, then Riemann's hypo -

thesis (1 .5) is true .
I cannot prove that this property of the partial-sums of (24 .1 )

implies the non-vanishing of L (s, x) itself .
Of course theorem X admits all refinements similarly as

theorems II-V refine theorem I .

The interest of theorem X compared to theorem VIII lie -

obviously in the fact that the function L (s, x) has no roots (N J

2
the line a = 1, in contrast to (1 - 2S (s) .

Theorem XI . If for real sequence ß 1 , ß2,

	

the partial-sum s

of the series

1
f+

6
(s) -

~

	

i Q v
v=1 - e

p v

do not vanish in the half-plane a > 1, then Rieman n's hypothesi s

(1 .5) is true .

Prof . Jessens) proved that for "almost all" ß-sequences ih r

functions f~ (s) do not vanish in the half-plane a > 2 . To obtai n

an explicit Vs) which has this property, we may choos e

according to a remark of Prof . A . Selberg

eißv = (- 1)v ,

where p i = 2, p 2 = 3, . . . denote the increasingly ordered

sequence of primes .
Theorem XI admits the same refinements as theorem X

25. We proved implicitly that if the partial-sums

1) B . Jessen : Some analytical problems relating to probability . Journ

Math . and Physics . Mass . Inst . Techn . vol . XIV (1935), p. 24-27 .

35

	

L (n) = 2
v

	

(25 .1 )
v< n

are of one sign for all sufficiently large n ' s or are for these n's

> - K11
n,9-1

	

(25 .2 )

then the hypothesis (1 .6) is true . P61yas) remarked, that i f

Ls (n) =

	

2(v)

	

(25 .3)
v< n

non-positive for all sufficiently large n ' s, then Rièmann ' s
1 ypothesis (1 .5) is true ; with the same reasoning he could prove
That from the inequality

	

L 1 (n) < K35 na,

	

(25.4)

valid for all sufficiently large n's, the conjecture (1 .6) follows .
It seems to me that the condition (25.2) is somewhat less deep
[han (25 .4), i . e . one can deduce (25 .2) from (25 .4) . If we re -
place, however, (25 .2) and (25.4) by twosided inequalities, the ,
corresponding statement follows by partial summation .

Pôlya showed by computation the validity of (25 .3) for
_n< 1500 ; this has been extended by H . Gupta') up to 20,000 .

l'he young danish mathematicians Erik Bilertsen, Poul Kristen -
sen, Aage Petersen, Niels Ove Roy Poulsen, and Aage Winther

iculated the values of L(n) for n .5_ 1000 . They found all o f
ien1 to be positive ; for L(1000) they found the valu e

L (1000) = 0,028970560 . .

is remarkable that in this range the minimal value is attaine d
!r = 293 and that

L(293) = 0,005102273 ,

ouch smaller value than L (1000) .

1 , G . Pôlya : Verschiedene Bemerkungen zur Zahlentheorie . Jahresb . der
[-ch. Math. Ver . 28 (1919), p . 31-40 .
-[)H. Gupta : On a table of values of Lj (a) . Proc. Indian Acad . Sci . Sect .
nl . 12 (1940), p . 407-409 .

x(n)
n3

s,
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26 . I conclude with two remarks . As Paul Erdös remarked,
he can prove that to any given closed set H in the domain I z I> l
which contains the circumference of the unit-circle one can

giv

rapower-series, convergent in l z < 1, such that the roots of it s
partial-sums cluster in l z > 1 to the points of H and only l c
those .

As Prof. Sherwood Sherman remarked, my statement on p .
about the Jensen-means is true only if we suppose in additic J
of the roots of the function f(s), that the sum of their reciproc a
values is convergent .
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