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§ I . Introduction.

n the . present paper we shall investigate a general problem con -
cerning an arbitrary enumerable system of linear congruence s

ith an enumerable number of variable s

allxl+ a12x2+
. . . + >a

inlxn~ 8 1 (mod 1)

a 21x1+ a22x2+
. . . + a 2nExnQ =8 2 (mod 1)

here every congruence only contains a finite number of variable s
nd the a's and the 8's are arbitrary (real) numbers .

By the consideration of certain classifications of the almos t
eriodic functions one of the authors l ' met with a problem con-
erning a system of congruences of the above form but in the
pec.ial case where all the a's were rational numbers . The pro-
lern was to give a convenient necessary and sufficient conditio n
u the system of linear forms

allxl+ a12x2+
. . .

+ alnixni

a 21x1 + a 22x2 +
. . .` ' + a 2risxn a

. . . . . . . . . . . . . . . . . . . . . . . .

order that it possesses the feilowing property : For every choice
'the numbers 01i 0 2 , • • for which any finite subsystem of the
stern of congruences (1) has a solution)-or, what amount s
He same, for which for any N the system of the N first of

1) H. BOHR : Unendlich viele lineare Kongruenzen mit unendlich vielen Un-
kanriten .. Kgf. Danske Videnskabernes Selskab . Math .-fys . Meddelelser, Bind VII ,
2 5, In the following this paper is cited by (I) . We do not, however, assume the

ir r .,o be acquainted with (I) .
It will be convenient to interpret, not only a solution of the whole syste m

I; but also a solution of a finite subsystem of (1) as a point (x 1 , x 2i • •) in the
qüitc-dimensional space, although for a subsystem only a finite number of th e

les really enters in the congruences in question (and the rest of the variables
,:e can be chosen quite arbitrarily) .
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4 Nr ..

the congruences (1) has a solution-there shall exist a solul i

of the whole system (1) .

If instead of the congruences (1) we consider the correspondi

system of equations (now without limitation to rational co

ficients) there exists no analogous problem. In fact, it foli o

from a general investigation of Toeplitz on such system ,

equations that for an arbitrary given system the existenc e

solution of any finite subsystem always will involve the existe

of a solution of the whole system of equations . A direct pn

-of this special theorem can be found in the paper (I) .

That the analogous theorem really is not true for eongruc i

(not even if we restrict ourselves to rational coefficients) ca n

seen from the following simple example where, moreover, onl

single variable x 1 explicitly enters (all the other varia l

x 2 , x3 , • • • having the coefficients 0) .

Example 1 . We consider the system of congruence s

3 x 1 °0 (mod 1 )

9-x1 6 2 (mod 1)

i x1 On (mod 1)

. . . . . . . . . . . . . . .

for Ø1 = 0 2 = • • • = 2 . The solutions of , the nth congruence are

points (x1 , x 2 , • • •) where x 2, x3, . are arbitrary numbers and x l

number from the "lattice" x1
2

(mod 3n ) . These solutions ar e

solutions of the (n-1)th congruence, for if x 1

	

(mod 3n) then

3n

	

3n-1

	

2 3n 3n-1
;j .

x1

	

2
(mod 3n-l), e . x 1 =	 2(mod 3n-l ), since 2 = 2

Hence for every N the N first congruences have solutions, viz . all
w

solutions x1 2 (mod 3N) of the Nth congruence. But neverthe

there is no solution of the whole system of congruences, for if (x1 , x
rr

is a solution of the Nth congruence then 1 x1 > 2 whic ,,

for N

	

co .

For a given system of linear forms (2) we shall denote b

the set of points (0 1 , B 2 , . •) for which the corresponding inl

. 12
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4m (1) has a solution, and by n2 the set of. points (81 , 0 2 ,

	

• )

r which any finite subsystem of (1) has a solution. It is plain
at a l az2 and that both sets contain the point (0, 0, • •) .

the previous, in (I) treated, problem was to indicate a neces-
ry and sufficient condition that a given system of linear form s
) with rational coefficients have n1 = n2. Before stating th e
sutt we shall have to mention the notion of a substitution in
i enumerable number of variables . A substitution is a linear
aneformation of the form

yl = auxl + a 12x2 + • ' + alp,,xp

Y2 = a 21 æ1+ a22x2 +

	

. . +
a2p zxp s

Lich : establishes a one-to-one mapping of the whole infinite-
nensional space on the whole infinite-dimensional space . As
awn in (I) (cp . also § 4 of the present paper) a necessary and
ficient condition that the transformation (3) be a substitution
that no linear dependance exists amongst (any finite numbe r

the linear forms on the right-hand side of (3)-and that each
(Ile variables x,n can be- "isolated", i . e . written as a linear
)bination of a finite number of the linear forms . In particular ,

substitution has an "inverse substitution "

X1 =
ß
/ 11y1 +

ß
/ 12y2 + • • + Nl0q,

x2 = ß21y1 + ß20'2 +
. .

. + 13 2 ga y q,

If a substitution is applied' to a linear form we get a new
ar form. The importance of substitutions in our problem is
n because a substitution applied to a system of linear form s
not change any of the sets n1 and aa2 simply because tw o

u forms which correspond by the substitution will take the
ae value for corresponding values of the variables .
The solution of the former problem can now be stated a s

tows . A necessary and sufficient condition that a system of linea r
in with rational coefficients have Jr ' = n2 is that the syste m
a substitution can be transfered into an integral system, i. e .
fjslen with mere integral coefficients .

3 n



6 Nr. . l

We remark, for orientation, that the sufficiency of the co n

dition is easy to prove. In fact, on account of the invariance ö

the sets acs and r2 by a substitution (applied to the linear form s

we need only show that every integral system (2) has ni =

Denoting by (0 1 , 0 2 ,

	

•) an arbitrary point from rca we sh, n

show that it also lies in n l . Let PN = e&N), • • •) be a sol o

tion of the N first congruences (1), N = 1, 2, • • • . Since all ai '

are integral we can assume all e ' s reduced modulo 1 to lie i

the interval 0 < 1. Hence we can choose a subsequen o

PN p , p = 1, 2, • • •, of the sequence PN, such that every coo n

dinate sequence e Np) (i fixed) converges towards a number

for p - 4- co . The "limit-point" (e 1, e2, • •) will then be a solutie

of all the congruences (1), for if No is an arbitrary positive integn

number then (syl , e 2 , • •) from continuity reasons will satis i

the Nol' congruence because this congruence only contain :

finite number of variables and the point ( 1Np ) , $ Np), .

every p > No is a solution of the congruence .-The real proble m

in (I) was to show the necessity of the condition, i . e . tha i

amongst the rational systems there are no other systems tha i

those mentioned above which have n1 = 7c2 .

In the present paper we shall treat the corresponding probte i

for congruences with arbitrary coefficients . Also in this gene r

case the systems with n 1 = UT2 can be characterized as system

which by substitutions can be transfered into systems of a cert r

simple type, denoted by S, which obviously has n 1 = n2 an y

whose algebraic structure can be accounted for .

By a system of linear forms of the type S we shall understa r

a system where certain of the variables (finite or infinite i i

number) have mere integral coefficients while each of the oth e

variables (finite or infinite in number) necessarily becomes O i

for a sufficiently large N (i . e . for N No where No depends c

the variable) one solves the N first "zero-congruences" cor -

responding to the linear forms, i . e . the congruences (1) wit h

Our purpose is to prove the following

Main Theorem s) . A necessary and sufficient condition thu s

1) Incidentally, our proof of the main theorem in reality yields a strm,, n

form of this theorem than the one indicated here . For the formulation of +}^

theorem in the stronger form we refer to § 5 .

Vr . 12
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;ilstem of linear forms have n1 = n2 is that the system by a sub-
rlitution can be transfered into a system of the type S .

Also in this case it is easy to prove that the condition i s
;ufficient . We only have to show that every system of the type

has acs = 7r 2 . Denoting by (O 1, 02, • • •) an arbitrary point from
r_, we shall show that it also belongs to n 1 . Let PN

_ (e1N), er, . • • )

e a solution of the N first congruences (1) . We may assume
hose coordinates which in all congruences have integral coef-
ficients reduced modulo 1 to lie in the interval 0 < 1 . Every-
hie of the remaining coordinates e(, N) will possess a constant
c-alue for N > No where No = No(i) is determined such that
every solution (x 1 , x 2, • •) of the No first zero-congruences will
have xi = 0 ; for as the two points

	

. • •) and ( 1N) ,

N ), •) are both solutions of the No first congruences (1) their
lifference (iN) -

	

. . •) will be a solution of the
No first zero-congruences and hence N)

E N
° ) = 0, i. e .

``N)=(N°)=
for N No . We now extract a subsequence fro m

our sequence of points PN = (ÇN), (N)
-

. ~2 • •) such that any coon-
lirlate sequence e N) (i fixed) which does not end in being a
constant will converge towards a number e i ; this can be done
inte they are all lying in the interval 0 < 1 . The limit point
e,, ea, • • ') will obviously (for continuity reasons) be a solutio n

of all the congruences (1) and hence the point (0 1 , 0 2, . • •) will

lie in ni .

That the main theorem above contains the main theorem in
([) can be seen in the following `way . Since every integral system
is also a system of the type S the "trivial" part of the main
theorem in (I) (concerning the sufficiency of the condition) is
e ntained in the trivial part pif the general main theorem . To
show that the non-trivial part of the general main theorem in -
volves the non-trivial part of the main theorem in (I) requires
a little consideration. We are to show that any rational system
(2) with n1 = n2 can be transfered into an integral system. The
general main theorem only states that it can be transfered into
ar system of the type S. By using, however, that the system is
nlional we can easily prove that the resulting system of the type

sways must be integral . Otherwise, in fact, there would exis t
ia this system a variable y, which for N sufficiently large neces-

ihr becomes 0 by solution of the N first zero-congruences . The
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solutions of the N first zero-congruences in the original syste i

would therefore satisfy an equation amix l +

	

+ a mp,,, xpm

whose left-hand side is that linear form which in the substitutic E

used is put equal to tem . Denoting, however, by G a com m

denominator of all the coefficients in the N first linear forms ii i

the original system, obviously all points (h1 G, h 2G, • •) whcr

h1 , h 2, • are arbitrary integers will be solutions of the corn

sponding zero-congruences, and these points cannot possiLl ,

all satisfy the equation amix1 +

	

+ a,,,p,,,xpm = 0 (who,

coefficients are not all 0) . Hence our assumption has led to

contradiction .
That the proof of the general main theorem cannot folk

quite the same line as the proof in the rational case, given in 1 1

is due to the fact that certain finite-dimensional sets which 'ens

in the investigation (see § 2), and which in (I) without r s

limitation could be supposed to he lattices, in the present c€i s

are modules of a more general kind . If, however, closures .1 L

taken of the sets in question these closures will get propert k

analogous to the sets in (I) . But in order to obtain the substitutio j

which transfers a given system of linear forms with n1 = 7c 2 inh

a system of the special type S we should still as in (I) have t o

consider the mentioned sets themselves and not their closur (

Now, however, from the properties of the closures it would h e

possible to get at analogous properties for the ,- sets thenise1\ e

which would allow the seeking out of the substitution wante'i

This would be a similar, though more complicated line to t] i

followed in (I) and until recently our intension had been to U ,

this arrangement . Then, however, B . Jessen asked us whet)

in the infinite-dimensional space in question a structural theore m

existed for closed modules analogous to that holding for sin ,

modules in a finite-dimensional space . That this is really I t

case we could answer affirmatively by help of our main theore m

Later on we found a more direct proof of this structural théoh n

for closed modules in the infinite-dimensional space by using t h

dual connection between our space and another infinite-dhe(i i

sional space, a connection which in case of the finite-dimensiell L l

space was introduced by M . Riesz . Now, conversely, it turn

out that a more perspicious proof of the main theorem cun1 1

be obtained by first establishing the structural theorem for de g .

9

nodules and then applying it to our problem. In fact, by applying
his structural theorem to the closed module r formed by the
el of all solutions of the zero-congruences corresponding to the
Liven system of linear forms we could directly obtain the desire d
u stitution, i . e . the substitution which takes our system (1) into
ä system of the type S and thus avoiding all difficulties arising

ein the consideration of the above mentioned non-closed
nodules .

In the present paper we have prefered to give the proof in
his latter arrangement .

§ 2. Some important sets .

Already by the definition of a system of linear forms of th e
ype S we had to consider the corresponding zero-congruences .
n our treatment of the arbitrary system of congruences (1) the
orresponding system of zero-congruences

auxl +
a lzxz +

. . . +

	

= 0 (mod 1 )

azlxl + azzxz + ' + a 2nexna - 0 (mod 1)

i11 play. an important role. In connection with. the zero-con-
ruences (4) we introduce the following notations .

P

	

The set of solutions of the zero-congruences (4) .
: The projection of F on the x1 • • gem-space .

Hm : The closure of Tm . '
1(N) : The set of solutions of the N first zero-congruences in (4) .

The projection of A

	

on the x1 • • • gen s-space .
0,N) : The closure of AZ ) .

here r and A(N) are point sets in the infinite-dimensional
l .ue while the four, other sets (with lower index m) are point

in the m-dimensional x 1 • • • xm-space. Tm and AZ) are
i ,usly (vector-) modules and hence Hm and H " are closed
lutes . Further, for m l < m, the module rm is the projection
1 ,, on the x 1 • • xm[space, and similarly AZ) is the pro-
lion of d ) .
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As well-known the closed modules in the x i • xm spa
have an especially simple structure . Let H be an arbitrary clos e
module in the ln-dimensional space. Then it is possible to fi n
a system of linearly independent vectors F1 ,

	

Fp , V1 ,

	

,

(p + q rn) such that H consists of all vectors (points) of the for

P = 1F1 + s~2F2 +
. .

. + pFp + h iV1 + . . . + hgVq

where the 's are arbitrary numbers and the h's are arbitra r

integers . Conversely ; each such point set is a closed module . W

shall say that the vectors F1 , • •, Fp and Vq (togethe r
generate H with respectively arbitrary and integral coefficieni -

If H does not contain any vector space (with exception of tl ,

space 0 consisting only of the origin) there can be no F-vecto r

and H is a lattice . The parallelotope determined by the vectu
V1 ,

	

•, Vq is then called a fundamental parallelotope of the lattic e
The general closed module H can be called a lattice cylin e

erected on the lattice generated by the vectors V1i • , Vg (inn

gral coefficients) with the space determined by the vecte
F1i •, Fp as space of generatrix directions. Concerning ti

freedom by which one can choose a generating system of linearl

independent vectors for a closed module in the m-dimension s

space we state the following well-known

Theorem. If H is a closed module and T an arbitrary (vector -

space both lying in the m-dimensional space we can determin e

system of linearly independent vectors which generates H (wi t
arbitrary, respectively integral coefficients) by determining first inc ;.

arbitrary manner such a generating system of the closed submmdu [
HflT 1) , and next supplementing these vectors with certain otter
vectors (if necessary) .

Let us consider the sets (5) for a
of zero-congruences .

Example 2. Let the system of zero-congruences b e

x 1 - x 2 = 0 (mod 1 )

V 2x 2 ea 0 (mod 1)

2 (x i - x 2 ) = 0 (mod 1 )

2 j/2x 2 = 0 (mod 1 )

1) HnT denotes the common part of H and T .

.12

	

1 1

4 ( x1-
x2) - 0 (mod 1 )

41/2x 2 = 0 (mod 1)
. . . . . . . . . . . . . . . .

only the -two variables x1 • and x2 occur in these congruences . Hence
ism?: 2 the set d

m
) consists of all points (xi, . • •, x11 ) whose pro-

[[,ctions on the x1x2plane lie in AN), just as d(N) consists of all point s

l

1 1 , xz,

	

•) whose projections on the x1x2plane lie in AN) . The set
11) is the cloddl i thla

	

d i,se mouene x ix2pneetermned by x 1 -x 2 0
uod 1) (it may for instance be generatedby F1 - (1, 1) and V1 = (1,0)) .

'I he sets d 22)D 43)D • • • form a strictly decreasing sequence of lattice s
n the x ixzplane ; for instance 42) is the lattice generated by the vectors ' -

1 1= (1, 0) and V2 =

	

and more generally 42n) is the lattic e(-=
, 2 V2

aerated by the vectors V1 = (2n 1, 0) and V2

	

2
n-1 2n-1

=	 	 As
V2

	

V2 )
the projections on the xiaxis we see that A(» is the whole xiaxis

[I lie 42) D d13) D • • • is a strictly decreasing sequence of non-close d
adules which are all lying everywhere dense on the xiaxis . All thes e
idules can be generated by a finite number of vectors, though o f

nurse not by linearly independent vectors ; for instance dl2 ) is gener-
I o d by the vectors V1 = 1 and V2 = 1 and more generally A(2n)

V2

	

n 1
venerated by the vectors V1 = 2n-1 and V 2 =

2	
. 1 ) Since th e

s A(in ) are everywhere dense on the xiaxis it follows that thei r
esures H(l1) are all equal to the whole xi-axis . Finally we see that

{ (0, 0, x 3, x4 , • •) } where x3 , x4 , • • are arbitrary numbers s o
I rat the sets I'1 and P2 consist only of the origin .

Tn the rational case the knowledge of P is sufficient to decid e
aeth-er n 1 = n 2 or not . In fact, l help of the main theorem

n the rational case we can easily show that a necessary and
'ancient condition that ni = ßr 2 is that P by a substitution ca n

transfered into a set which contains the "unit lattice" in th e
finite-dimensional space, i . e . the set {(h 1 , h 2 , • • •)} where the
s are arbitrary integers . This can be seen in the following way .

1) It can easily be seen that for any m and N the set zed also in the cas e
in arbitrary system of linear forms may be generated by a finite number of

enerally non-independent) vectors with arbitrary, respectively integral coef-
{snts . In fact if M > m denotes a positive integer so large that no variabl e
all larger index than M really occurs (i . e. has a coefficient different from 0)

ey of the N first linear forms we see that AP is a closed module in th e
• xh-space , and that AT') is its projection on the xi • . • xm-space. The pro-

ainn of a system of (linearly independent) generators of the closed modul e
1will therefore be a system of (in general linearly dependent) generators of A .
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(i). If F by a substitution can be transfered into a set whic h

contains the unit lattice, then the linear forms by the substitutio n

must be transfered into linear forms whose corresponding zero

congruences amongst their solutions have all points (hl , h2, - • •

If this is used for the points (1, 0, 0, • • •), (0, 1, 0, 0, • •) ,

it follows that the coefficients of x 1 , the coefficients of x2,

are all integral . Hence, on account of the main theorem, n1 =

(ii). If nl = n2, the linear forms can, on account of the mai n

theorem, be transfered into an integral system . The correspondiin

system of zero-congruences of this integral system is obvious] ,

satisfied by all points from the unit lattice . Hence, by the sub

stitution, F is transfered into a set which contains the unit lathe ,

This

	

fnl = n2 for the other .

In the general case where the coefficients are arbitrary numbe r

the knowledge of F is not sufficient to decide whether nl = n2 . . i s

fact we can easily indicate two systems of linear forms whic h

have the same F but such that nl = n2 for the one system am t

ollowing example .

of linear form s

Ox 1

where the first system is the same as that used in example 1, § 1 . I

both systems only the one variable x 1 really occurs . It is clear th n

the two systems have the same T, namely the set {(0, x 2 , x 3, • • •)) when

x2, x 3, . . . are arbitrary numbers . The first system, however, has sr 1*a., -

in fact we proved in example 1 that the point
1 2

,
2

, • • • I was lying in .

but not in x 1-while the second system obviously has sc l = x 2 sin n

in reality it only contains a finite number (namely 2) of linear forhi

While, thus, a consideration of F alone cannot decide whetl i

rel = rte we shall see in the following paragraph that the know,

ledge of the sets HmN) is sufficient for that purpose .

1 3

§ 3. The sets Him, H„, and the condition sr1 = n2 .

In this paragraph we shall indicate as a statement on the set ste a necessary and sufficient condition for the validity Of
ci = rte . Moreover, in the case n l = n 2 we shall find a con-
nection between the sets Hm(N) and Hm .

Theorem . A necessary and sufficient condition that n1 = n 2 i s
that for every m = 1, 2, . • • the sequence of m-dimensional set s

H2) D. 1-11T . ) H2) D .

is constant from a certain step (depending on m) .

Additional Theorem. If H2 ) D H2) D Hm) D , • for every m
is constant from a certain step (and hence n1 = rte) this constan t
set is just the set Hm .

We remark that if for a given to the sequence

112)D H (n2)DH(2 ) D . .

isconstant (= Øm) from a certain step No then for every m 1 < m
the sequence

Him ) Hm' Him) D . . .

will also-at the latest,eriom the same step-be constant (=
the closure of the projection of Øm on the xi xmi-space) ; for
two sets (viz . Øm and Am) for N ? No) in the x l • • xm.space
with identical closures (viz . Øm) are projected into two sets in th e
xi xmi-space with identical closures, because the condition
that two sets have identical closures is that every point in eac h
of the sets can be approximated by points in the other and this
property obviously is preserved by projection .

We divide the theorem above, together with its addition, i n
i theorem A for the sufficiency and the addition and a theorem B
fir the' necessity .

Theorem A. If for every m the sequenc e

H(ml) H(n ) H (m) D . . .

instant from a certain step, then nl = n2 and the constant se t
plat to Hm .

Example 3. We conside r

1

3
xi

19x l

1
27 xi

the two systems
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Proof. We first show that n i = ßc 2 . Denoting by (0 i, 02 , • •

an arbitrary point from VT2 we are to show that it also lies in A ,

i . e . that there exists a solution Y (yi , y 2 , • •) of all the co n

gruences (1) . Let

H (1) D H (2) D H(3) D . . D H(N) ; . .
= m = m = - m =

be constant for N Nm where the integral sequence Nm mod

over is chosen to be strictly increasing (and hence --k co) .
We take our starting-point in an arbitrary positive intep ~

Ml) and in an arbitrary chosen solution Y(M) = (y iM) , yr), ,
of the NM first congruences (1). Next we choose a solutio n
X(M+1) = (x1M+l) 4M+1) , .) of the NM+1 first congruence

This solution can be altered by an arbitrary point Z(M+l) from

A(NM+ i ), i . e . for any point Z(M+l)
from A(NM+ i ) (and no oth( r

points) the point X(M+1) + Z (M+1) is again a solution of the

NM+i first congruences ; this is true since A(N M+ 1) is the set

solutions of the NM+1 first zero-congruences (4) . Hence we cu

alter the solution X(M+1) = (xiM+1), 4M+1) , . . .) such that ti

projected point (xiM+ l ) , . . •, xM+1) ) is altered by an arbitra .° n
point from A(mNM + 1) when only the other coordinates of X~ M
are altered in a suitable manner . Our wish is now that the alter f

point X (M+1) + Z(M+1) shall lie "near to" Y (M) . Since NM+i >

the point X(M+1) is as Y (M) a solution of the NM first congruent

and hence their difference Y(M)-
X(M+1) is lying in A(NM) . Th i

difference of the projected points (y(M), . . •, y(M ))

	

(x iM+1), -

xM+1)) will therefore lie in AÎM) and hence a fortiori in HN,

and hence also in H(:M+ i) . Since, as mentioned above, the solu -

tion X(M+l) of the NM+1 first congruences can be altered to a

other solution Y(M+1) = 0(M+1) , e+1) , . .) of these congruent

such that the difference (y(Im+1), . . ., y<M+1)) - (x iM+1) ,
xM+l)) becomes an arbitrarily chosen point of AÎM+1) aid

since the previous difference O1M), . • •, y(M )) - (x1M+1) .

xW+1)) is lying in the closure H(ÎM + 1) of the set A(mNM+ 1 )

is clear that to every em > 0 we can choose our solution Y(4'
such that the first of the two Al-dimensional point differem r

EM-approximates the latter, i. e. such that

1) For the proof of n1 = n 2 we could choose M = 1 . When M is choo-

arbitrarily it is in view of the proof of the additional theorem .

(y1M+1) - x 1
M+l)) - (Yiu) -- x1M+1)) = y1M+1) - y11V1) < EM

(UM +1) xM+1))
(yM ) x(M +1)) I = UM 1l) - g(f)

I < em .

Next, let X(M+2) = (x(IM+2) , x2M+2) , . . .) be a solution of
me NM+2 first congruences (1) . This solution can be altered by

arbitrary point from A(NM+2) and hence X(M+2) can be
Lered such that the projected point (x(IM+2) , • • •, (V+1)) is

ikkered by an arbitrary point from A (mN + 2) when only the othe r

ordinates of X(M+2)
are altered in a suitable manner . Our

Ish is that the altered point shall lie " near to " Y(M+1) Since
'+2 > NM+1 the point X(M+2) is as Y(M+i)

a solution of the
4+1 first congruences . The difference (y(M+1),

.
_ y(M

li)) -

1M+2) , . . xnrvt
12) ) is therefore lying in A(Iliv + 1) and hence

fortiori in H(NM + 1) and hence also in H(NM + 2 ) . Since, a sM+1

	

M+ 1
sentioned above, the solution X(M+2) of the NM+2 first con -

_ruences can be altered to another solution Y(m+2) = (yiM+2) ,
m+ 2 ),

	

.) of these congruences such that the difference (yiM+2) ,

, y-12)) - (x(iM+2), '

	

(_&i )) becomes an arbitrarily
]rosen point of A(NM+ 2 ) and sMce the previous difference

4+1), . , yM +
(M+l )

1
) (xiM+2) ,

x(M+12)) is lying in the
Insure HM+M-1+ 2) of the set 11 (;Ø+2 ) it is clear that to every

!+1 > 0 we can choose the volution Y(M+2) such that the firs t
the two (M + 1)-dimensional point-differences EM+l -approx-

i rates the latter, i . e . such that

J1 M+2) - x(M+2)) - (y
(
l
M+1)

-
(

M+2 )) = I
y(lM+2) - (M+1) < E 34+ 1

~M12) -xM+1 )) - (~M+1
1) -

x(1Y,IMT
2))

	

t (M+2)

	

(M+1) < E .
. . .

= ~M+1 -- yM+ l

	

114 + 1 -

n general, i . e . for an arbitrary n � M + 1, let the point
(xln), 4), • •) be a solution of the Nn first congruences

This solution can be altered by an arbitrary point from A(Nn )
tidl hence X (n) can be altered such that the projected point

. • xn2 1) is altered by an arbitrary point from 11R"
(bien only the other coordinates of X(N) are altered in a suitabl e

manner . Our wish is that the altered point shall he "near to"
1)
. Since Nn > Nn_1 the point X (n) is as Y(n-1)

a solution
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of the Nn_1 first congruences . The difference (y n-1) , , . ynn '1 ?

- (x1n ) , • • , xnn)1) is therefore lying in A(N"1-1 ) and henc e

fortiori in H
n
N "1- 1) and hence also in H

n
N ") . Since, as mention

above, the solution X (n) of the Nn first congruences can be alter t

to another solution Y(n) _ (yin) , y (2n) , • •) of these congruent .

such that the difference (y (P), • , ynn~ 1 ) - (xin) , • • x(nn)1) 1-

comes an arbitrarily chosen point of An(N"i and since the previ o

difference
(yin-1), . yRn 1. )) - (x(ln ) , . . x (nn) 1 ) is lying in 1 1

closure H(Nn) of the set A(Nn) it is clear that to every en_1 .
n-1

	

n-1

we can choose the point Y (n) such that the first of the two (n- i

dimensional point-differences e n _ 1-approximates the other, i .

such that

(y1n)-x ln) ) - Cyln-1) - xln) ) = I
ÿ1

n) y(n-1)

	

en-

1

. .(n) . . . . (	

n--

	

('1

	

l

	

i

	

1

	

Il(yn-l -xn

n

-

)

1) - ( y

(

n 11)- xn-1) = .Y in-) - u 1) < en_l

Y(M) _ (y1M), y2M), . . . . )

Y(M+1) _ (y1M+1) , y 21YX~+1) . . . )

y(M+2) _ (y1M+2), y2M +2) . )

The M first coordinate sequence s

1, 2, • • , M) satisfy

I 0)) - 0) l <

	

E r
q

for p > q > n.

q

Hence, in particular, all the coordinate sequences cony, i

towards respective numbers y 1 , y 2 , • • . The limit point

Y = (y l, y2,
. . .)

1 7

then be a solution of all the congruences (1) . In fact, to se e
1 Y is a solution of the Nth congruence we observe that

(y 1
(n)

, y2
(n ) , . . .) from a certain step is a solution of thi s

ngruence . Since only a finite number of variables really Occurs
the congruence the statement follows from continuity reasons .

Hus (0 1, 02 , ) is lying in ,r1 and hence n1 = ßc 2 . Out of regard
the following we observe that the M first coordinates y 1i • • • ,
of Y satisfy the inequalities

l y1 - y1M) I Ç .~, er
. M

l yM- a ) I

	

e r •
M

Now, to conclude the proof of theorem A, we have to show
at the constant final set H(,»') in the sequence

HMHnr) ~HMD . . -

i• every M = 1, 2, - • is equal to HM. Since TM Ç A(M"') , it i s
ails that HM HM S') . In order to show that, conversely,
`h1 ") C HM for an arbitrarily given M we use the proof abov e
the case_ 0 1 = 0 2 = • • . 0 with our present M as the M in

e proof . The previous point Y(M) _ (y1M), y2M) , • •) is then an
hitrary point from A(NM) and the projected point (y1M),

•
.

• ,

[) is therefore an arbitrary point from AMM) . We are to show
of (y1M) , ., y<M )) can be approximated by points from TM .
ït this is an immediate consequence of the fact that (in the
went case 0 1 = 0 2 = • • = 0) the point Y constructed in the
Iofabove is lying in r and that its M first coordinates satisfy

e inequalities (6) where

	

er can be chosen arbitrarily small .
M

Theorem B. If n1 = n2 the sequence

112)QH2)H(2) . . .

/or every m be constant from a certain step .
Proof. Indirectly, we assume that there exists an mo for whic h
--)__ H;n?~ H2,) • • • is not constant from a certain step an d_,7. . Fl, Danske Vidensk. Selskab, Mat .-1'ys . Medd. XXIV, 12.

	

2

Choosing our s's such that

	

er is convergent we consu l

Mthe sequence

yvM), yv
M -}-1) ,

yv
M+2) ,

for p > q > M

while each of the following coordinate sequence s

y(M+2) , • • (n M + 1) satisfy

l unp) - unP l =

	

e r

(my
,

00
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Nr. . 1

are to show that ar l = are, i . e . that there exists a (0 1, 02,

which belongs to n 2 but not to irl . We first consider the geometr i

appearance of the sequence of modules Mar? (n = 1, 2 ,

This sequence is an essentially decreasing1) sequence of latti t

cylinders (see § 2) . It is therefore plain that from a certain st c

n ? No the least space (vector space) which contains Htm?, a ;, t

the space of generatrix directions of the cylinder Main.) , willi t

constant spaces Rp and Rp, of dimensions (say) p and pl . Furth, ~

more from this step the lattice base Gn of H(,n? can be chosen i

such a way that the least space which contains G n is a fi'r

space Rq (dimension q with p = pl + q) . The lattices Gn for s

from this step an essentially decreasing sequence in their cu

mon least space N. Therefore the q-dimensional content of il .

fundamental parallelotope of Gn ("fundamental content Gn") i

an essentially increasing sequence which -* co (since the fun d

mental content is at least doubled by the transition from

lattice to the next every time the lattices are different) .

By K (e) we denote the open sphere in Rq with radius e a

center O as also the q-dimensional content of this sphere . U

C (e) we denote the corresponding,sphere cylinder in Rp wi t

the sphere KO) as base and the space of generatrix directio n

Rp . We also consider spheres in R q whose centers are not lyin

in 0 and the corresponding sphere cylinders in Rq . In the followi n

we denote for abbreviation sphere cylinders with base-sphere i

Rq and space of generatrix directions Rp, as "sphere cylinde r

without further specification . By the sphere cylinder around U ,

point P in R p with radius e we understand the sphere cylintl ,

corresponding to the sphere with radius e and center in II I

projection of P on Rq in the direction of Rp, .
We first determine a sequence of strictly increasing posit t t

numbers N1 , N2, • , N,,,

	

• and the corresponding posi t

numbers e l, e2 , • -

	

- by the following procedure .

1° . Let N1 ? No be chosen such that the fundamental C0 -W11 1

G AT, is larger than the sphere content K(1) . Then the sphere h ( t

cannot contain a complete system of representatives in Rq modul l

GN, and hence the sphere cylinder C (1) cannot contain a comple t

1) An essentially decreasing sequence of sets is here and in the follow . -

sequence where every element is contained in the preceding and which it

constant from a certain step . The expression, an essentially increasing se w

of numbers, used below, has an analogous meaning .

`r. 12

	

1 9

}-stem of representatives) in Rp modulo Hrn' ) . To this N1 we
hoose the positive number el so large that every sphere in Rq
eith radius el contains a complete system of representatives in

modulo GN, and hence also a complete system of representa-
ives in Rp moduloH(„N' ) . In particular, everyone of our spher e
Minders in Rp with radius ei will contain a complete system o f
epresentatives in Rp modulo H,n1)

2°. Next we determine N2 > Ni such that the fundamental
(intent GN, is larger than ° K(e l + 2) . Then the sphere cylinder

2) cannot contain a complete system of representatives i n
modulo H t„NE) . To this N2 we determine the positive number

2 so large that everyone of our sphere cylinders in Rp with
adius q2 contains a complete system of representatives in Rp
odulo Ht,rl,\0 ' .

v° . After having determined N,,_ 1 and e„_1 we determine
V,, > N,,_ 1 such that the fundamental content GNy is larger than

v) . Then the sphere cylinder C(ey_1 + v) cannot contain
complete system of representatives in Rp modulo HZ°. To

lis N,, we determine the positive number ey so large that every -
ne of our sphere cylinders in Rp with radius e y contains a
ornplete system of representatives in Rp modulo H„ ô ') .

After having determined and ev (v = 1, 2, • • •) we now
ass to the direct searching of a point (0 1 , 02 , • •) which belongs
the set are but not to the set ar l . The idea in this (successive )

etermination modulo 1 of the numbers 0 1 , 0 2 , • • •, the kernel o f
hick can be found in example 1, § 1, is that we try to see tha t

set of projections (x1 , • • •, x,no ) on the x 1 • • xn, .-space of al l
uluti.ons (x1, x2, • • •) of the N first congruences (1) will lie
anther and farther away from 0 for increasing values of N .
lore precisely, we will see that the set of projections for N = N„
g ill - he in Rp and outside C (v) .

I step . We first choose an arbitrary point P(l) = (x(l1) x21) , , . , )

1he infinite-dimensional space which only satisfies the con-
atiun that the projected point P,T = (x1 1), • , xg)) is lying

h and has no equivalent point modulo H(„N') lying in C(1) .

2*



2 0

Such a point exists on account of 1° since C(1) does not conto )

a complete system of representatives in Rp modulo Hmo'° .
substitute (x1, x2 , • •

	

= (xll) , x21) ,

	

•) in the N1 first Hui ~

forms (2) . The numbers thus determined (but only consider,
modulo 1) shall be our numbers 0 1, 02, 0N . We obser

that the total set of solutions of the N1 first congruences (1) (w-i'.
the 0's just chosen) is the set PM+ A(N') because A(N') is the s

of solutions of the N1 first zero-congruences . From the cho p
of P(1) i t follows that the projection of this set P )+ A (N') on

xi • • • x„1o-space-i . e. the set Pml?-}- AI,N' > which consists of
points equivalent to Pm? modulo A („Ni)-is lying in Rp and o l
side C(1) .

2na step . Next we choose (which is possible from the cho i
of N2 ) a point D7122) = (d12), •, ea)) in Rp which has no en'

valent point modulo HZ') in C (2 1 + 2). The sphere cylinde r

Rp around Dtm) with radius 21 contains (on account of the cho i
of ei ) a point equivalent to Pmlo modulo Since AZ' )
lying everywhere dense in HZ') this cylinder also contains a po i

Pm2? = (x12) , •, xm?) equivalent to PnT modulo AZ' ) . We c

therefore choose a point P (2) = (x12) , x22), • •) whose projecti

on the xl

	

xm,-space is P pm0 and which is equivalent to P
modulo A(N' ) . In particular P (2) is a solution of the N1 firs t
gruences (1). We now substitute (xi, x 2 , • •) = (x12 ', 42),

in the N 2 first linear forms (2) and denote the numbers i
determined (modulo 1) by 01 , •

	

0k , . The N1 first of 11 ~

numbers coincide with the numbers Ol,

	

O N,. determined

the first step, since P(2) satisfies the N1 first congruences (for e
with these 0 ' s) . We now consider the set of solutions (xi, x 2 ,
of the N2 first (with the above 0's formed) congruences (1) ,
the set P(2) + A(N ') . Then the projection of this set on the a
xmo-space-i . e. the set P(2)o + Atm') which consists of all po i

equivalent to Pm) modulo AZ' t-is lying in Rp and out s

C(2) ; that the set is lying in Rp is plain, and the second st i
ment follows from the fact that P tm? is lying in a sphere cvli n

around D;n? with radius el where Dmo has no equivalent poin

C(e 1 + 2) modulo
J__(N_)

and hence a fortiori no equiv a

point modulo A ,N')

12

	

2 1
ut` step . We choose (which is possible from the choice of Nv )

point M''? = (d ), •, d,.',?) in Rp which has no equivalent point
clulo Htmv) in C(py._ 1 + v) . The sphere cylinder in R aroun d
) with radius w-1 contains (on account of the choice of O v _1)
oint equivalent to Pima-1) modulo H„Nv-1) and hence also a

int Pmo) _ (xiv > ,

	

•, xm) ) equivalent to Pmo -1) modulo A„Nv-1) .
can therefore choose a point P(v ) = (x1v>, x2v>, • • •) whos eajection on the xi • xm,-space is Pn1? and which is equivalent

19(v- 1) modulo A(Nv-1) . In particular P(v) is a solution of the
first congruences (1) . We now substitute (x1, x2 , • • •) =

', x; yt , •) in the . Nv first linear forms (2) 'and denote th e
nnbers thus determined (modulo 1) by 0 1, • , ON , . The

N,,_1st of these numbers coincide with the numbers 0i, • •, O Nv_ 1
termined by the (v - 1) th etep . . We consider the set of solutions
r, x2, • • •) of the Nv first (with the above 0's formed) con -
aences (1) . Then the projection of this set on the xi • xmo _
iee-i . e . the set Pmo) -f- ,1tmv) which consists of all points equi-
nt to Pm? modulo A0-lies in Rp and outside C(v) ; that the

t is lying in Rp is plain, and the second statement follows fro m
fact that P,n? is lying in a sphere cylinder around Dm? with
us ey_1 where D71? has no equivalent point in C(ov_1 + v)

dulo HmNv > and hence a fortiori no equivalent point
dulo 1117-No '') .0 ) .

In this manner we have got a point (Ol , 0 2, • •) with the
sired properties . In fact, the point is belonging to

n2 since for
r?iv v the N,, first (with these 0's formed) congruences (1) have
relation PO") = (x v) , xiv ), •), and here N,, -->- oo for v -* co .
the other hand the point ( 0 1, 02, - -) does not belong to n 1,
there is no solution of the whole system of congruences (1) ;

r every solution of the N,, first congruences has a projectio n
the x i - xmo-space which lies in Rp and outside C(v) .
)temark . The theorems of this paragraph connect the con-
ion n1 = n2 with the closures Htmt and Hm of the module s

and

	

We shall mention that analogous theorems hol d
ir the sets AV and Tm themselves, viz .
Theorem. A necessary and sufficient condition that n1 = n 2 is
t for every m = 1, 2, - • the sequence
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point X = (x i , x 2 , • • •) in R oe may' have quite arbitrary
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A(m ) Q A(2) Q A ((3 ) Q . .

is constant from a certain step (depending on m) .

Additional Theorem. If A(,,V Q A(m) Q A(m ) Q . • for every

is constant from a certain step this constant set is just the se t

If these theorems, as their analogues for the closures ,

divided in a theorem A for the sufficiency and the addition a ~

a theorem B for the necessity, the theorem A is even simj ,I

to prove than the previous theorem A . Theorem B, however, l

deeper than its analogue. We can obtain the new theorem B f r

the old one by the following

Theorem . For an arbitrary system of linear forms (1) (w i

n 1 = ßc 2 or 7.c1 7r) there exists to every positive integer m

integer M �m and a positive integer N such that the sequ ,

A(m) Q A(m
+1) Q A(„N+2) • • . is the projection on the xi

xmspace of the sequence Ham) Q H+1) H(Ivl+2) • .

We omit, however, the proofs of these theorems whic h

unnecessary for the proof of our main theorem in its pres É

framing (cp . p . 8-9) .

§ 4. The structure of closed modules in th e

infinite-dimensional space .

In this paragraph we shall study the closed modules in

infinite-dimensional space-which from now on is denoted

R~-where the underlying convergence notion, occasionally u

in the previous paragraphs, is that of convergence in eac h

the coordinates . As we shall see the closed modules . in the sr ,

R s° possess quite a similar structure as that of the closed ma d

in the usual m-dimensional space Rm (see § 2) .

In order to prove the structure theorem in R G0 we shal l

the analogous structure theorem in Rm , m = 1, 2, •

transition from the finite-dimensional case is, however, iï

trivial one . We shal have to put in an intermediate splice

between the finite-dimensional spaces Rm and the space R ' I

space R . is as

	

an infinite-dimensional space, but whir,

mates, a point A- (a1 , a 2, o 0 0)1) in R . always has coor-
inates which from a certain step (depending on the point) are
, i, e . an = 0 for n > N = N(A) . .

Between the spaces R . and R oe there exists, when a con-
rgence notion in R .0 is suitably chosen, a duality . Once esta-
lished this duality permits us to get at the structure theorem
r closed modules in

	

from an analogous structure theore m
r closed modules in R. . Now, as mentioned, the space R oe i s
ing nearer to the finite-dimensional spaces Rm than does R`° ,
fact it can be exhausted by the a la 2 • • am-space for m -~ co .

Lis is the reason why, as we shall sec, the structure theorem
R oe can easily be obtained from the finite-dimensional case .
The duality, mentioned above, between R . and Rx is ana-

gous to a duality considereii by M . Riesz between two m-
mensional spaces Rm = {(a l, • • •, am» and R m {(x 1, • •, xm)} .
If M is an arbitrary module in An Riesz considers the point

t in (the other space) Rm consisting of all points A = (a1 ,
)from this latter Rm for which

A • X = a1x1+ a2x2+ . . . + amxm = 0 (mod 1 )

r every point X = (x 1, x 2 , • •, x71 ) from M. This point set is
dosed module in Rm and is called the dual module of M. We
note it by M' . If we repeat the operation of passing to th e
1a1 module we get a closed module M" _ (M') ' in (the origina l
ace) Rm . The relation between M and M" appears from th e
llowing important theorem. .

Niesz's Theorem. If M is an arbitrary module in Rm the dual
le M " of its dual module M' is the closure M of M, i. e .

111" = Nl .

r a closed module H in Rn 5 we get in particular H" = H .
e now pass to the establishment of the duality between

ind R 00 , or rather that side of the duality which will be
led in the following . A full account of the duality can b e

en(l. in another paper) where the topic of this paragraph is
r`o :ssed in more detail .

I or points in R. we use the notation (a l, a 2i ° ° °) in order to make apparen t
I,eir coordinates are all zero from a certain step .
l Bona and E . P'oaNER : On a structure theorem for closed modules i n

ii unite-dimensional space, to appear elsewhere .
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Let T be an arbitrary linear. transformation in R and I '

the fundamental points (1, 0, 0, o o 0), (0, 1, 0, o o 0), • by 1 ,

transformation be taken into the points

T{(1, 0, 0, o o 0)1 = Sl = (trl, t 2r,
o 0 o )

T{(0, 1, 0, o o 0)i
= S 2 = (t r2, t 22, o o o)

from R oo . The arbitrary point A = (al , a 2 , o o o ) from R„ i i

then be carried into the point

B = T(A) = a1S.r -{- a 2S 2 -}- o 0

Introducing the matrix T = {t, .s ) the linear transformation 'ni t

be written B = TA . In the following we denote a linear tran

formation in R oo and the corresponding (uniquely determine(

t rr t l2

	

a r

t 2r t 22

	

a 2

q 0 0

q O ° '
o o 0

where the column vectors are arbitrary points from R. is

linear transformation in R .

We now define the scalar product between two pi t
A = (al, a 2 , o o o) and X = (x l , x 2 , • • •) from R o, and R

respectively. We put

A . X = X A= a1xrT a2x2 + 0 0 0

In matrix notation the scalar product is expressed by A"X ç

X*Al) when we agree on considering the points as column v e

tors (for convenience we usually write them horizontally) .

For a given linear transformation T in R oo and two variai

points X and Y from R 00 we now set up the condition

(7)

	

A • X = T(A) Y for every A from R oo .

1) The star denotes the operation of transposing a matrix .

'e shall show that this condition on X and Y is equivalent to
linear transformation in R 00 (expressed by linear expression s

s (3), § 1) of Y into X (and thus, in particular, that to an y
ven Y there exists one and only one X satisfying (7)) .

In matrix notation the condition runs as follow s

A*X = (TA)*Y or A *X = A*T*Y.

uRing successively A* = (1, 0, 0, o o o ), (0, 1, 0, o o o ),

	

• in
is relation we get

X = T* Y

of conversely the former condition follows from (8) by left-
nltiplying it with A* .

Putting (8) into (7) and Changing Y to X we get the relation

11 .

	

A • T*(X) = T(A) • X for every A from R. and

every X from R te .

We now define a substitution in R . as a linear, one-to-one
ansformation of R onto R .00

If T is a substitution the condition (7) is equivalent to the
edition

A Y = T-1(A) • X for every A from R ,

fact we have only substituted T-1(A) for A and interchanged
e two sides of the equation (7) . Here T-1 denotes the invers e
bstitution of T . Since (7) is equivalent to (8) we see that (10 )
equivalent to

Y = (T-1)*X.

enee also the relations (8) and (11) are equivalent which show s
at T* is a one-to-one transformation of R ø onto R 00 and there-

ore what we have called a substitution in R 00 (see § 1). Putting
(T*) -1 and replacing X by T'(X) in (9) we obtain the

raving .

Theorem 1. If T is a substitution in R. then T* is a sub-

' ition in R °° and there exists a uniquely determined, substitution
ill R 00 such that

matrix by the same letter T.

Conversely, each such matrix equatio n

l

bb

2

0
0
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(12)

	

A • X = T(A) T'(X) for every A from R . and

every X from R °° ,

viz . the substitution T'

	

(T*)-1= (T-1) * .

We call T ' the dual substitution of T.
In order to speak of closed modules in R ., and R °° we mn

know the underlying convergence notion of the two spaces . \-4

have already mentioned that in our convergence notio r

that of convergence in every coordinate . In order to defin e

suitable convergence notion in R . we first observe that our cc ~

vergence notion in R°° may also be stated as follows :

A sequence X(n) converges towards X if and only if

A • X(n) -} A • X for every A from R
co

.

hi fact, since a point A from R. only . contains a finite numb

of non-zero coordinates the former condition involves the lath

and conversely, the former condition is obtained from the lab

by putting successively A = (1, 0, 0, ° ° o), (0, 1, 0, ° ° °), .

In the new form the notion of convergence in R °° has a du ;

notion of convergence in R oo :

A sequence A (n) of points from R OD is said to converge Iowan

a point A from R. if and only if

X • A(n) -- X • A for every X from R .

This is going to be our convergence notion in R
.

. 1 )

Remark . Our substitutions in R °° are obviously bicontinuon

In order to show that our substitutions in R. are also hie( )

tinuous we remark that on account of (9) every linear tra i

formation T in R OD is continuous ; in fact, when A (n) -4- A w e

from (9)

X • T (A (n) ) = T *(X) • A (n) -4- T*(X) • A = X • T(A)

for every X from

	

which shows that T (A(n)) -->- T(A), It e

1) In the following we shall only use the definition of convergence in ß« '
the above form ; we may, however, mention that this definition, as easily s o
is equivalent to the following (more direct) one : Convergence of a sequ€we

R~ means convergence in every coordinate and moreover the existence o f
only depending on the . sequence, such that all points of the sequence haw . 0

the coordinate places with higher number than p

Self (in the case of R cc nothing is left to prove) .
For an arbitrary closed module H in R oc, we consider the

vint set H' in R °° which consists_ of all points X for which

0 (mod 1) for every A from H .

hviously the set H ' is a module. Furthermore H' is closed, for
t x(n) --> X in R°° and all X (n) are lying in H', then for ever y

from H we have 0 - A . X (n) --s- A . X so that A • X - 0 . We
ill the closed module H' the dual module of the closed modul e
f . The following simple theorem indicates the connection betwee n
J. two notions, dual module and dual substitution .

Theorem 2. If we sublet! a closed module H in R . to a sub-
'tution T and subject the dual module H ' in Rw to the dual sub-
tution T ' then the resulting module T '(H ') in the latter case is

dual module of the resulting module T(H) in the former case ,

T'(H') _ (T(H))' .

This is an immediate consequence of the relation (12) when
only observe that T(A) runs through T(H) and T '(X) runs

rough T '(H') when A runs through H and X through H' .

We have defined above the dual module of a closed modul e
m R oo . Analogously, we define the dual module H' of a closed

odule H from R °° as the point set (eo ipso closed module )
nsisting of the points A from R., for which

X • A - 0 (mod 1) for every X from H.

lien we have the following important

Theorem 3 . For an arbitrary closed module H in Re' the dual
odule H" of its dual module H' is the module itself, i . e .

H"=H .

hviously H" D H. Thus we only have to prove that H" ç H.
et then Y = (y1 , t12, •) be an arbitrary point from H". In
sier to show that Y is lying in H, let ni be an arbitrary positive

Nr . 1 2

4silÿ be shown that our substitutions in R `° or R. are just the
near, one-to-one, bicontinuous transformations of the space ont o

27 '
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integer . We consider the points (a1, a2, •, am, 0, 0, o o o) = (ai,

a2i • ., am) from the common part L of H' and the ala2 •

space . Then for every point in L we have

(13)

	

(yr, iY2' . . . gm)
. (al a2, . . . am) = 0 (mod 1) .

Next, let M denote the projection of H on the xix 2 - xm-spae é

(i . e . the set of points (xi, x2, , xm) arising from the poini

(x1 , x2, • - •) of H by cancelling all coordinates with indices > m

M is again a module, but not necessarily a closed module . Plainl

L = M ' and thus on account of (13) the point (y,, y2, - •, g, ;

belongs to M". Now, according to Riesz 's theorem

M" = M

and hence (Up y 2, • • , Um) can be, approximated by points (x i ,

x2, • , xm) from M . Since ni is' arbitrary it follows that Y

(yi , y 2 ,

	

•) can be approximated by points (x 1, x 2 , • •) from

H, i . e . Y must lie in H = H, q . e . d .

We shall now prove the following structure theorem to r

closed modules in Rte .

Structure Theorem R. . A closed module H in the infinite

dimensional space R . is a point set E which by a substitution can

be transfered into a point set of a special form, in the followin g

denoted by S oo , namely a point set { (a 1 , a2, 0 o 0) }
of the followir r

structure : The indices 1, 2, • , n, • • • can be divided into thrr ,

ffixed classes { nr }, { ns} , {of } depending only on the point

such that the coordinates an, independently run through all ntu

bers, and the coordinates an ., independently run through all ir !

gers, while all the remaining coordinates ant are constantly ze r

Only, of course, the simultaneous variation of the an, and the

in the set is limited by the obvious demand that (al , a2,

always shall lie in R oo , i . e . have 0 from a certain coordinate pi (

(depending on the point) . Conversely, each such point set E is

closed module .
The latter part of the theorem follows immediately from t i

remark on p. 26 .
In order to prove the first (and real) part of the theore m

let Hm denote the common part of H and the x, . xm sp m

Then, obviously, Hm is in the usual sense a closed module ia

. 12
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Nile . a1 • • • am-space . Furthermore, Hm is the common part o f
=tm}1 and the a1 • • • a m-space. Hence it follows from the the-
orem on p . 10, for m = 1, 2 . • -, that we can generate succes-
sively the closed modules Hi, H2i • . • by linearly independent
-ectors with arbitrary and integral coefficients in such a way that
he generating vectors of Hm+i are the generating vectors of H71
\ith the same types of coefficients, in connection with othe r
vectors (if necessary) . In this way we get a sequence of linearly
independent ectors G 1, G2 , . . • which provided with suitable
types of coefficients (ini egral or arbitrary) will generate H (gene-
ration of course in the sense that for each vector of H only a
finite number of generators is used) . With arbitrary coefficients
the vectors spann a subspace R(H) of R , o . Let R1 denote the
common part of R(H) and the xi-axis. If the space R1 is not
the whole . x 1-axis, but only the 0-vector we place a non-zero
rector on the x1 -axis . Then this vector together with R(H) will
spann -a space R (1 which contains the x 1-axis . If R(H) itsel f
contains the xi-axis we put R(1) = R(H). Next, let R 2 denote the
common part of R (1 and the x1x2plane. If the space R 2 is not
he whole xix2-plane, but only the xlaxis we place a vector in
he x lx2-plane outside the x i-axis . Then this vector together with
''1) will spann a space R (2) which contains the x 1x 2 -plane. If
(1) itself contains the xlx 2-plane we put R (2) = R (1) . In this way

continue . If the vectors thus found in some way or other
put into a sequence with the vectors G 1 , G 2 , • . • we get a

pence of linearly independent vectors U1 , U2, • . . which pro-
] led with suitable types of coefficients (zero, integral or arbi-
uy) will generate H and with mere arbitrary coefficients the
hole space R ø . The linear independence of -U1, U2, • • • secures

hat each point in R. has only one representation by this gener -
]!ion . Hence

B = a 1 U1T a2 U 2 T o 0 0

1 substitution in R oo of A = (al, a2 , 0 o o) into B. It takes the
udamental vectors (1, 0, 0, ° ° °), (0, 1, 0, o o .), . • • into the
'tors U1 , U2 , • . Therefore the inverse substitution, whic h
es U1 , U2, • • into the fundamental vectors, will take th e

Dosed module H into a set { (a 1, a2, . o 0)) determined by
0 for certain i, a i arbitrary integral for certain i, and
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ai arbitrary for the remaining i . This proves structur e

theorem R. .

By help of structure theorem R . and the duality betwee n

R . and R °° we shall now obtain the main result of this para -

graph, viz .

Structure Theorem 1i . A closed module in the infinite-dime. -

sional space R °° is a point set E which by a substitution ca n

transfered into a point set of a special form, denoted by S

namely a point set { (xi, x 2 ,

	

) } of the following structure : Ti

indices 1, 2, • • ., n,

	

can be divided into three fixed class

{ n, }, {n0), {Ili ) which depend only on the point set, such th y

the coordinates xnr independently run through all numbers, art

the coordinates xns independently run through all integers, whi

all the remaining coordinates xn, are constantly zero . Conversele

each such point set E is a closed module .

Again, the latter part of the theorem follows immediately fro:

the remark on p . 26 .

In order to obtain a proof of the first (and real) part of ti r

theorem by help of the corresponding theorem in R . let us filn,

show that the dual module of a closed module of the speci . J

form S . is a closed module of the special form S oe . More precise:

we shall prove

Theorem 4. For a closed module H in R. of the special for a

S. , explicitly { (ai , a 2, ° ° °)) with the coordinates am arbitrary, ,

the coordinates ans integral, and the coordinates an, zero, the dua, i

module H' in R °° is of the special form S oe , and more precis e

the dual module is { (x 1, x2, - •) } where the xn,. are zero, tI

xn s integral, and the xn, arbitrary .

We first observe that obviously all points X of the for:: r.

mentioned are lying in H' . Conversely, we have to show th ,

all points in H ' have the form mentioned . Since the points 1

in H' have to fulfill

( o 0 °

	

o ° o ) • X = 0 (mod 1) for all values S~nr

it follows that the n,th coordinate of X must be zero, and sua

(° ° ° 1 O 0 °) • X = 0 (mod 1 )
12• • . ns• - -

Nr.12

	

3 1

it Follows that the ns' coordinate of X must be integral . This
, , roves theorem 4 .

We have now got all 'means necessary to prove structur e
theorem Let first H be an arbitrary closed module in R , .
Then on account of structure theorem R there exists a sub-
stitution T in R . such that T(H) has the special form S. . The
dual module H' of H is a closed module in R°° . We shall show
t',at H' by a substitution can be taken into a closed module o f
he special form S " . In fact, the dual substitution T' of T has
his property, for it follows from theorem 2 that T'(H') = (T(H)) '
,nd from theorem 4 that (T(H)) ' , as the dual module of a
dosed module of file special form Ste , is itself a closed module
if the special forci . Hence we see that every closed module
in R

.
which is the dual module of a closed module in R . by

a substitution can be taken into a set of the form S°° . In order
to complete the proof of structure theorem R" we therefore only
have to show that every closed module H in R " can be written
in the form K ' where K is a closed module in R„ . This, how-
ter, is a consequence of theorem 3 which tells that H = H"
oo that for K we may use H' .

§ 5. Proof of the main theorem .

Already in § 1 we have formulated the main theorem an d
proved the simple "half" of it, namely that a sufficient conditio n
[hart a system of linear forms (2) have nl = n2 is that the syste m
o• a substitution can be taken into a system of the type S . We

hall now show that this condition is also necessary, i . e . that
egery system of linear forms which has n1 = n2 by a substitution
.an be taken into a system of the type S .

For a system of congruences (1) the set I' of solutions of th e

irresponding zero congruences is obviously always (i . e . whether
i t --r n2 or not) a , closed module in R°° . Hence the structure
theorem R° from § 4 states that there exists a substitution T
ølüch takes I' into a point set of the form S °°, corresponding
(say) to the classes { ns }, {ni ) . By this substitution T the

s stem of linear forms will be taken into a system where the
coefficient columns corresponding to the variables xn, are zero
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columns while the coefficient columns corresponding to tit '

variables xns are integral columns. This is seen by puttirn
( 0 o 0 nr 0 00) with arbitrary n r , respectively (0 o o 1 n o) into tl

12 : . .n,s . . .
zero-congruences. Conversely, a coefficient column of zero

corresponds to a variable xnr and an integral coefficient colum :

which is not a zero column to a variable xn s .

Now, we shall show that if nl = n2 for the original systen
and hence also for the transformed system, the latter of thes ç

systems will be of the type S .

Obviously it makes no real difference if all the coefficie n

columns corresponding to the variables xnr are removed togeth e

with their respective variables . For since all these columns consi s

of zero's this removal will neither change the property of havis:

or not having sr = n 2 , nor the property of being or not bein

a system of the type S .

	

`
We shall use theorem A and B from § 3 on the system aft)

the removal . Since s 1 = n2 the modules H() of this system wi l

for each an be constant from a certain step N No = No (m) ai l

equal to the modul Hrn . Since I'm is a module of the for a

{ (x i, x 2 , • •, xr„) } where the indices 1, 2, • , m can be divides

into two classes {ns ) and { nt } such that the coordinates a „

are integral and the coordinates xn, are zero, I'm is in particul r

a closed modul so that Hrn = I'm = { (x 1 , x 2 , , xm) } _ {(mi ,

gral, zero)) . Hence from the step No also H() = { (integra l

zero)) . Finally, using that A i(,,,> L H(N) we find the followi i

property of our new system : Each of the variables xnt becos

zero if one solve the N first zero-congruences for sufficienll t

large N (depending on the variable) . Hence the system is of th ,

type S . This proves the main theorem . Furthermore we see tll r

each of the variables xns becomes integral if one solve th e

first zero-congruences for sufficiently large N (depending on i l i

variable). The same of course is also true for the system befu i

the removal of the variables xnr with mere zero coefficients . -

This proves the following

Stronger form of the main theorem. A necessary (and se

ftcient) condition that a system of linear forms have n1 = ni

that the linear forms by a substitution can be transfered infe

system which is of the type S and moreover possesses the prop

hat each of the variables belonging to the integral columns
;cessarily becomes integral if one solve the N first zero-congruences ,
(,responding to the linear forms, for sufficiently large N (de-

)ending on the variable) .
Remark. A (necessary and) sufficient condition that a system

;f , linear forms of the type S have the additional property men-
toned in the theorem above is that the variables mentioned
ieessarily become integral if one solve the system of all the
;ro-congruences corres Sonding to the linear forms .

In fact, to prove this, we may use theorem A and B from
°, in a similar way at, above .

§ 6. A remark on the algebraic structure of a syste m
of the special type S.

The notion of a system of linear forms of the type S wa s
ldined in § 1 as a system of linear forms where certain variable s
ad mere integral coefficients while each of the other variable s
ecessarily became 0 by solution of a suitable finite selection
f the zero-congruences corresponding to the linear forms .

The question, therefore, naturally arises how a finite syste m
of zero-congruences (in a finite number of variables) can force
ise of the variables to be zero. In this final paragraph we trea t
As problem by giving a necessary and sufficient condition tha t
system of linear zero-congruences in xi, • , xn

a 11x1 ,T a12x 2 +
. . . +

alnxn

	

0 (mod 1 )

a 21x1 + a 22x 2 + . . • + a2nxn - 0 (mod 1 )

am1x1 + am2x 2 +

	

+ amnxn = O (mod 1 )

if1 involve x1 = 0 .
Let in the corresponding matrix

3

a11a12 • ~ • aln

a21a22 . . . a 2 n

amlam2

	

am n
Kgl . Danske Vidensk . Selskab, Mal.-fys . Medd. XXIV, 12.
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the system of row vectors R 1, R 2, • , R,n have the maxima

rank g . Then we can find g linearly independent vectors amon g

these row vectors . Let it be, for instance, R1, R 2, • •, Re . Th e

numbers a exist such tha t

Re+1 = a 11R1 + a12R 2 + .
. + a1 P R P

Re+2 = a 21 R 1 + a22R 2 +
. . .

+
a2PRe

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rm

The column vectors in the abridged matrix

( i . . . a in

aPl . . a ()rz

are denoted by Si, • •, Sn . They have the maximal rank

The column vectors in the matrix

are denoted by C~ 1, • • •, CA P .

Instead of the congruences we can equally well consider th

equations
+ . . •

+ a lnxn

+ . . + a2n xn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aolxl + . . +
aenxn = he

a O+1,1x 1 + • . • + aP+l,nxn = hP+ 1

amlxl + . . . + amnxn = h rn

where the h's are new integral variables . This system of equ

tions can be solved for a given choice of hl , • • . , he if and only i

Iz 1 C~ 1 + h22 +
. + heSe - 0 (mod 1)1) ;

1) Here, by A

	

0 (mod 1) we mean that A is an integral vector.

r the g first equations can always be solved and they involv e
it; validity of the others if the condition above is satisfied, whil e
herwise at least one equation is not satisfied. In particular, the
edition is satisfied if hi = h 2 = • • = he = 0 .

If the vectors S2 , • . •, Sn have the maximal rank g we ca n
tuose x 1 arbitrarily by the solution of the g first equations wit h

, _ • = he = 0. If our congruences have no solutions with
0it follows that S 4 , • •, Sr, must have the maximal rank

- i . Let this necessary condition be satisfied . The integral
tutions (h1, h2, • • •, h,,) of

h1S1 + h2 C 2 4- . . . + h,e e

	

0 (mod 1 )

In a lattice . Then obviously a necessary and sufficient con-

lion that every solution .. of the equations (14) has x 1 = 0 is

it the lattice { (hi , h 2 , • • •, he)) is contained in the space span-
IA by S2 , • •, Sn . Hence we have the result :

A necessary and sufficient condition that the congruences involv e

0 is that S2, • • , Sr, have the maximal rank g - 1 and

It the lattice ((h1, h2 , . •, he) ) of integral solutions (h1, h2,
he) of

h 1 C 1 + h22 + . . + hPLP - 0 (mod 1 )

Indleveret tit Selskabet d . 31 . Oktober 1947 .
Færdig fra Trykkeriet d. 12. Juli 1948.

all	 a l e

arn -P, 1
. . .

am-P P

allxl

a21x 1

= h 1

= h 2

(14)


