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§ 1. Introduction.

1 the present paper we shall investigate a general problem con-
cerning an arbitrary enumerable system of linear congruences
th an enumerable number of variables

3301+ gyt -0 - 4 611,11 n, == 07 (mod 1)
Ay F Qg+ * ° * A dgp,Xp, =0, (mod 1)

‘  re every congruence only confains a finite number of variables
nd the a’s and the §'s are arbitrary (real) numbers.

By the consideration of certain classifications of the almost
iodic functions one of the authorsl) met with a problem con-
ning a system of congruences of the above form but in the
ecial case where all the a’s were rational numbers. The pro-
m was to give a convenient necessary and sufficient condition
n-the system of linear forms

1121 -+ Q1T+ * * * + Qip, Ty,
(211 + Aoy 7+ dgp, Ty,

order that it possesses the feilowing property: For every choice
the numbers 8y, 05, - - - for which any finite subsystem of the
tem of congruences (1) kas a solution®—or, what amounts
the same, for which for any N the system of the N first of

‘H. Bour: Unendlich viele lineare Kongruenzen mit unendlich vielen Un-
mnten. Kgl. Danske Videnskabernes Selskab. Math.-fys. Meddelelser, Bind VII,
In the following this paper is cited by (I). We do not, however, assume the
o be acquainted with (I). -

It will be convenient to interpret, not only a solution of the whole system
ut also a solution of a finite subsystem of (1) as a point (z,, z,, - * -) in the
e-dimensional space, although for a subsystem only a finite number of the
les really enters in the congruences in question (and the rest of the variables
ore, can be chosen quite arbitrarily). :
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ptem (1) has a solution, and by =, the set of points (6, 8,, * - ©)
which any finite subsystem of (1) has a solution. It is plain
7 S @, and that both sets contain the point (0, 0, - - ).
The previous, in (I) treated, problem was to indicate a neces-
rand sufficient condition that a given system of linear forms
‘with rational coefficients have 7, = @,. Before stating the
it we shall have to mention the notion of a substitution in

enumerable number of variables. A substitution is a linear
ansformation of the form

the congruences (1) has a solution—there shall exist a soluli
of the whole system (1). '

If instead of the congruences (1) we consider the correspondil
system of equations (now without limitation to rational co
ficients) there exists no analogous problem. In fact, it follo
from a general investigation of Toepliiz on such systems:
equations that for an arbitrary given system the existence of
solution of any finite subsystem always will involve the existeny
of a solution of the whole system of equations. A direct prog]
-of this special theorem can be found in the paper (I).

That the analogous theorem really is not true for congruen
(not even if we restrict ourselves to rational coefficients) cani:
seen from the following s1mple example where moreover, onl '

U1 = o0&y + @ + 00 - Ayp Lp,

Yo = a1 Q@+ ¢+ ¢+ @

.............................

ch establishes a one-to-one mapping of the whole infinite-
lensional space on the whole infinite-dimensional space. As
wn in (I) (cp. also § 4 of the present paper) a necessary and
cient condition that the transformation (3) be a substitution
hat no linear dependance exists amongst (any finite number
+the linear forms on the right-hand side of (3)-and that each
the variables x, can be ‘‘isolated”, i.e. written as a linear

&3, g, * + + having the coefficients 0)

Example 1. We consider the system of congruences

1
3
le = 0, (mod 1)

z, = 0y (mod 1)

1 ) mbination of a finite number of the linear forms. In particular,
g,;xl = 0p (mod 1) Substitution has an ‘“‘inverse substitution’’
h Ty = f13y1+ Prafe + - + ‘31quqL
—f, = -.. = —. Th lutions of the n' congruence.
for 6, = 0, 2 The solu 8 ®y = Bauys+ Pasyat+ Pyl
points (x, 2, * - -) wWhere z,, s, + - - are arbitrary numbers and : -

...........................

n B
number from the “‘lattice” x, = §2~ (mod 3™). These solutions ar

{ a substitution is appliedto a linear form we get a new
r form. The importance of substitutions in our problem is
-because a substitution applied to a system of linear forms
not change any of the sets w; and m, simply because two
r forms which correspond by the substitution will take the
.value for corresponding values of the variables.

The solution of the former problem can now be stated as
ws. A necessary and sufficient condition that a system of linear
with rational coefficients have m; = m, is that the system
ubstitution can be transfered into an integral system, i. e.
m with mere integral coefficients.

solutions of the (n—1) congruence, for if :c1 = il (mod 3%) th
3n n—1, . gn—1 n gn  gr—l
=5 (mod 3™ ), le xz = 5 (mod 3" ), smceE =3

‘Hence for every N the N first congruences have solutions, viz. g
N

solutions z; = 3— (mod 3N) of the Nt congruence. But nevert

-there is no solutlon of the whole system of congruences, for if (xv :
3 .

is a solution of the N™ congruence then | xl | > 5 which

for N - oo,

For a given system of linear forms (2) we shall deno
the set of points (0, 05, - - -) for which the corresponding
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We remark, for orientation, that the sufficiency of the con
dition is easy to prove. In fact, on account of the invarianc
the sets m; and 7, by a substitution (applied to the linear form:
we need only show that every integral system (2) has m; ==
Denoting by (6, 6,, * - +) an arbitrary point from =z, we sha
show that it also lies in 7. Let Py = (&, g~y be a sol
tion of the N first congruences (1), N = 1,2, - - -. Since all ¢
are integral we can assume all &s reduced modulo 1 to lie:
the interval 0 < & < 1. Hence we can choose a subsequen
Py, p=1,2,+ -, of the sequence Py, such that every coo
dinate sequence ENP (i fixed) converges towards a number.
for p — co. The “limit-point” (&, &, * - *) will then b.e. a s.olutl
of all the congruences (1), for if Ny is an arbitrary positive integr
number then (&, &, - --) from continuity reasons will satisfy
the N congruence because this congruence only contains
finite number of variables and the point (EQNP), D)Ly
every p = N, is a solution of the congruence.*Th.e.reaI .pyqbl
in (I) was to show the necessity of the condition, i.e. tha
amongst the rational systems there are no other systems th
those mentioned above which have m; = m,. ,

In the present paper we shall treat the corresponding pl‘qbl
for congruences with arbitrary coefficients. Also in this gene
case the systems with m; = 7, can be characterized as syste
which by substitutions can be transfered into systems of a cert
simple type, denoted by S, which obviously has 7; = @, 2
whose algebraic structure can be accounted for.

By a system of linear forms of the type S we shall u'nder.sta
a system where certain of the variables (finite or 1nﬁn}te
number) have mere integral coefficients while each of the ot
variables (finite or infinite in nmumber) necessarily becomes
for a sufficiently large N (i. e. for N = N, where N, depends
the variable) one solves the N first “‘zero-congruences” ¢
responding to the linear forms, i.e. the congruences (1)
0,=0,="---=0.

Our purpose is to prove the following

ystem of linear forms have m; = 7, is that the system by a sub-
itution can be transfered info a system of the type S.

. Also in this case it is easy lo prove that the condition is
officient. We only have to show that every system of the type
as 7y = m,. Denoting by (8, 0, - - -) an arbitrary point from
swe shall show that it also belongs to =,. Let Py = (&), &M, .. )
¢ a solution of the N first congruences (1). We may assume
10se coordinates which in all congruences have integral coef-
cients reduced modulo 1 to lie in the interval 0 L E< 1. Every-
ne of the remaining coordinates &™) will possess a constant
alue &; for N = N, where Ny = No(i) is determined such that
very solution (@), xs, * - ) of the N, first zero-congruences will
ave x; = 0; for as the two points (&M, g&No .. ) and (&Y,
5.0, + + +) are both solutions of the N, first congruences (1) their
ifference (£ — &NV, gD gNo) .. ) will be a solution of the
V, first zero-congruences and hence &M — N — 0, i e
M) = §§N")= & for N = N,. We now extract a subsequence from
ur sequence of points Py = (&M, £ - *) such that any coor-
inate Sequence EN (i fixed) which does not end in being a
onstant will converge towards a number &;; this can be done
ince they are all lying in the interval 0 < £ < 1. The limit point
§; £y, -+ *) will obviously (for continuity reasons) be a solution
f all the congruences (1) and hence the point (0, 8,, - - +) will
ie.in ;. , : -

¢ That the main theorem above contains the main theorem in
[) can be seen in the following way. Since every integral system
also a system of the type S the “trivial” part of the main
iworem in (I) (concerning the sufficiency of the condition) is
tained in the trivial part of the general main theorem. To
how that the non-trivial part of the general main theorem in-
ves the non-trivial part of the main theorem in (I) requires
little consideration. We are to show that any rational system
with 7; = 7, can be transfered into an integral system. The
neral main theorem only states that it can be transfered into
system of the type S. By using, however, that the system is
lional we can easily prove that the resulting system of the type
always must be integral. Otherwise, in fact, there would exist
iis system a variable y,, which for N sufficiently large neces-
ily becomes 0 by solution of the N first zero-congruences. The

Main Theorem!’. A necessary and sufficient condition tha

1) Tncidentally, our proof of the main theorem in reality yields a stro
. form of this theorem than the one indicated here. For the Iormulatlon.(?f
theorem in the stronger form we refer to § 5.
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solutions of the N first zero-congruences in the original syst
would therefore satisfy an equation amax; + *** + Gmpy, Tpy =
whose left-hand side is that linear form which in the substitutior
used is put equal to y,. Denoting, however, by G a ‘commof
denominator of all the coefficients in the N first linear forms:i
the original system, obviously all points (f,G, hyG, - - ) wh
hy, hy, -+ - are arbitrary integers will be solutions of the corre
sponding zero-congruences, and these points cannot possibl
all satisfy the equation apx; + * ** + GmppLp, = 0 (Whos
coefficients are not all 0). Hence our assumption has led t
contradiction.

That the proof of the general main theorem cannot follo:
quite the same line as the proof in the rational case given in
is due to the fact that certain finite-dimensional sets which e
in the investigation (see §2), and which in (I) without re:
limitation could be supposed to be lattices, in the present cas
are modules of a more general kind. If, however, closures &
taken of the sets in question these closures will get properti
analogous to the sets in (I). But in order to obtain the substitutio
which transfers a given system of linear forms with m; = 7, m
a system of the special type S we should still as in (I) have:
consider the mentioned sets themselves and not their closure
Now, however, from the properties of the closures it would':b
possible to get at analogous properties for the-sets themselvi
which would allow the seeking out of the substitution wante
This would be a similar, though more complicated line to th
followed in (I) and until recently our intension had been to
this arrangement. Then, however, B. Jessen asked us wheth
in the infinite-dimensional space in question a structural theo
existed for closed modules analogous to that holding for s
modules in a finite-dimensional space. That this is really: e
case we could answer affirmatively by help of our main theor
Later on we found a more direct proof of this structural theo
for closed modules in the infinite-dimensional space by usingt ¢ while the four other sets (with lower index m) are point
dual connection between our space and another infinite-dint in the m-dimensional x; - - - x,-space. I, and Agl\’) are
sional space, a connection which in case of the finite-dimensi ously (vector-) modules and hence H,, and HYY are closed
space was introduced by M. Riesz. Now, conversely, it fu
out that a more perspicious proof of the main theorem ¢
be obtained by first establishing the structural theorem for cl

modules and then applying it to our problem. In fact, by applying

s structural theorem to the closed module I' formed by the
et-of all solutions of the zero- congruences corresponding to the
iven system of linear forms we could directly obtain the desired
ubstitution, i. e. the substitution which takes our system (1) into
ystem of the type S and thus avoiding all difficulties arising
ror(xil the consideration of the above mentioned non-closed
ules.

In the present paper we have prefered to give the proof in
latter arrangement.

J

§ 2. Some important sets,

Already by the definition of a system of linear forms of the
e S we had to consider the corresponding zero- -congruences.
our treatment of the arbitrary system of congruences (1) the
rrespondmg system of zero-congruences

an®y + Gy + -0+ @, = 0 (mod 1)
Ay + Agey + * * * F AgpLp, = 0 (mod 1)

I'play. an important role. In connection with. the zéro-con-
ences (4) we introduce the following notations.

~ = The set of solutions «f the zero-congruences (4).

: The projection of I" on the x; - - - x,-space.

m i The closure of I',.:

: The set of solutlors of the N first zero-congruences-in (4).
w': The projection of A™ on the ;- - - xp-space.
@) The closure of A%M.

ere I' and A™) are point sets in the infinite-dimensional
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As well-known the closed modules in the ;- -+ x,-5pa
have an especially simple structure. Let II be an arbitrary closed
module in the m-dimensional space. Then it is possible to fi
a system of linearly independent vectors Fy, - - -, Fpy Vi, =0,
(p + g = m) such that H consists of all vectors (points) of the form

N
@
i

l
3
[
I

= 0 (mod 1)

l]/_isc2 = 0 (mod 1)

Only the-two variables x;- and x, occur in these congruences. Hence
.m =2 the set Agl\’) consists of all points (xy, - -, z,) whose pro-
tions on the x;x,-plane lie in AN, just as AN consists of all points
i (&, xy, -+ ) whose projections on the x,x,-plane lie in AN, The set

! is the closed module in the x,z,-plane determined by 2—xy = 0

P= §1F1+§2F2+"'+§pr+hlV1+..'+thq

where the &’s are arbitrary numbers and the h’s are arbitrary
integers. Coriversely, each such point set is a closed module. We
shall say that the vectors Fy, -+, I, and Vi, -+, V, (togethe{
generate H with respectively arbitrary and integral coefficients

If H does not contain any vector space (with exception of th

{mod 1) (it may for instance be generated by Fy = (1,1)and V, = (1,0)).
e sets ADDAG S - - form'a strictly decreasing sequence of lattices
the z;x,-plane; for instance A{ is the lattice generated by the vectors”

=(1,0) and V, =< 1 i), and more generally A{?) is the lattice

. - V2 V2 ) , o1 gnt
space O consisting only of the origin) there can be no F-vector nerated by the vectors V; = (2" %, 0) and V, — — = ) As
. . _ . tor L 5’ V3
and H is a. lattice. The pgrallelotope determme(_i by the vec.gr he projections on the x,-axis we see that A(11) is the whole x,-axis
Vi, ++ v, Vyis then called a fundamental parallelotope of the lattice e XD S A® S -+ - is a strictly decreasing Sequence of non-closed

The general closed module H can be called a lattice cylinde
erected on the lattice generated by the vectors Vi, - - -, V4 (inte
gral coefficients) with the space determined by the vector
Fy, -+, F, as space of generatrix directions. Concerning the
freedom by which one can choose a generating system of linearl;
independent vectors for a closed module in the m-dimensio
space we state the following well-known :

Theorem. If H is a closed module and T an arbitrary (vecto
space both lying in the m-dimensional space we can determin
system of linearly independent vectors which generates H (iv
arbitrary, respectively integral coefficients) by determining first in
arbitrary manner such a generating system of the closed submaod
HOTY, and next supplementing these vectors with certain of
vectors (if necessary). ’

Let us consider the sets (5) for a numerically given syst
of zero-congruences. :

odules which are all lying everywhere dense on the x;-axis. All these
ddules can be generated by a finite number of vectors, though of
urse not by linearly independent vectors; for instance AP is gener-

ed by the vectors V, =1 and V, = /i_ and more generally AR

i n—1
generated by the vectors V, — 2™ ana Vy, = 2 5 1) Since the

ts A are everywhere dense on the xp-axis it follows that their
osures H{W are all equal to the whole z,-axis. Finally we see that
={(0,0,x3x, -} where x,, a,, - - - are arbitrary numbers so
at the sets I and I', consist only of the origin.

- In the rational case the knowledge of I is sufficient to decide
hether m; = m, or not. In fact, }‘y help of the main theorem
' the rational case we can easﬂy show that a necessary and
icient condition that 7, = 71, 1s that I' by a substitution can
transfered into a set which contains the ‘“‘unit lattice” in the
finite-dimensional space, i. . the set {(h, hy, - - )} where the

are arbitrary integers. This can be seen in the following way.
Example 2. Let the system of zero-congruences be : Y
1) It can easily be seen that for any m and N the set AE}I) also in the case
0. arbitrary system of linear forms may be generated by a finife number of
erally non-independent) vectors with arbitrary, respectively integral coef-
nts. In fact if M > m denotes a positive integer so large that no variable
‘larger index than M really occurs (i. e. has a coefficient different from 0)

ny of the IV first linear forms we see that AS{}’) is a closed module in the
ry-space and that Aﬁ,‘\l) is its projection on the «; - - - xm-space. The pro-
on of a system of (linearly independent) generators of the closed module

- will therefore be a system of (in general linearly dependent) generators of /lf,f) .

x;—1Ty = 0 (mod 1)
. l/Exz = 0 (mod 1)
5(551—1'2) = 0 (mod 1)

I

V22, = 0 (mod 1)

1) HnT denotes the common part of H and 7.
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(i). If I’ by a substitution can be transfered into a set whic
contains the unit lattice, then the linear forms by the substitutio
must be transfered into linear forms whose corresponding zer
congruences amongst their solutions have all points (hy, Ay, -
If this is used for the points (1,0, 0,-++), (0,1, 0,0, - )
it follows that the coefficients of x;, the coefficients of x,,
are all integral. lence, on account of the main theorem, &, = 73

(ii). If 7, = m,, the linear forms can, on account of the mai
theorem, be transfered into an integral system. The correspondmé
system of zero-congruences of this integral system is’ obviously
satisfied by all points from the unit lattice. Hence, by the sub:
stitution, I"is transfered into a set which contains the unit lattice;

In the general case where the coefficients are arbilrary numbers
the knowledge of I' is not sufficient to decide whether 7y = 7,. In
fact we can easily indicate two systems of linear forms which
have the same I" but such that m; &= 7, for the one system and
7, = m, for the other. This we do in the following example

Example 3. We consider the two systems of linear forms

§ 3. The sets HY", H, and the condition n, = ,.

o I)n this paragraph we shall indicate as a statement on the sets
H;' a necessary and sufficient condition for the validity of
= 7, Moreover, in the case 7, = 7, we shall find a con-
nection between the sets HEY and H,,.

‘ Theorem, A necessary and sufﬁczent condition that m, = m, is
at for every m = 1, 2, -« - the sequence of m-dimensional sets

Hg)EHg);Hg);...

‘constant from a certain step (depending on m).
~Additional Theorem. If HP D HR2 D H® 2 -+ for every m

constant from a certain step (and hence 7y = m, ) this constant
t is just the set H,,

- We remark that if for a given m the sequence

HR 2HP 2 HP D ---

1
1a xl constant (= D) from a certaln step N, then for every m; < m
1 _ the sequence
5 Y2z, HD 2 B ®
9 7 i H =2 Hy
5771 01 1

- i 11 also—at the latest, ifom the same step—be constant (=

: e closure of the projection of @p, on the x; - - - x,, -space); for

v 0 sets (viz. @ and AN for N = No) in the x; - - * x,-space
S 0x, h identical closures (viz. @,,) are projected into two sets in the

"t &y -space with identical closures, because the condition
at two sets have identical closures is that every point in each
the sets can be approximated by points in the other and this
perty obviously is preserved by projection.

We divide the theorem above, together with its addition, in
ecorem A for the sufﬁcwncy and the addition and a theorem B
1 -the® necessity.

Theorem A. If for every m the sequence

where the first system is the same as that used in example 1, §.
both systems only the one variable z, really occurs. It is clear t
the two systems have the same I', namely the set {(0, x,, g, * D) wh
Ty Tys - - - ATe arbitrary numbers. The first system, however, has nlzt:n
in fact we proved in example 1 that the point ( ?i ; . ) was lyingl
but not in s,—while the second system obviously has 7, = m, st
in reality it only contains a finite number (namely 2) of linear for,

While, thus, a consideration of I" alone cannot decide whet
7, = 7, we shall see in the following paragraph that the kn
ledge of the sets HYY is sufficient for that purpose.

Hg)gHg)gHg)g

'9nstant from a certain step, then m; = s, and the constant set
qual to H,,.
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Proof. We first show that s, = z,. Denoting by (0, 0,,

an arbitrary point from s, we are to show that it also lies in #

-i. e. that there exists a solation Y = (y,, y,, * - ) of all the co
gruences (1). Let

(M1, M+1 1
(-91 )—xg + )) - (yﬁw) - x(1M+1))l = Iy(lM“’—yﬁM) I < &

: M+1 M +
_~|(95\4 My (y%)-_x%ﬂ_))‘ —_ |y§é‘f’ P

Next, let XM+ — (M43 "oM+2) ...y be a solution of
he Nprio first congruences (1). Th_'LS solutlon can be altered by
n-arbitrary point from AMu+2) and hence XM+ can be
tered such that the projected point (af*?, ... 2@32y is
&ered by an arbitrary point from A(NM+2) when only the other
oordinates of X™*? are altered in a suitable manner. Our
wish is that the altered point shall lie “near to”” Y+, Since
 Nirya > Ny q the point XMH2 i ag YYD g golution of the
Ny+1 first congruences. The difference (y{™*%), - - -, gDy —
oM 2QA4D) s therefore lying in A(NM+1) and hence
fortiori in H{¥+1 and hence also in H(NM+2) Since, as
f mentioned above the solution XM+2) of the NM+2 first con-
ruences can be altered fo another solution Y™M+2 — (y(M+2)
3, -+ ) of these congruences such that the difference (M,

be constant for N = N, where the.integral sequence N, mor
over is chosen to be strictly increasing (and hence — o).
We take our starting-point in an arbitrary positive integer
M? and in an arbitrary chosen solution YD — (M) M)
of the Nj; first congruences (1). Next we choose a solution
XMAD (MDD MDY of the Npgyq first congruenc
This solution can be alteled by an arbitrary point Z®* from
AMM+1) | §. e. for any point ZM*D from A®M+1) (and no other
points) the point XM+ 4. ZGTHD g again a solution of fh‘
Nprpq first congruences; this is frue since AMN+1) is the set o
solutions of the Np, 4 first zero-congruences (4). Hence we cand
alter the solution XWMHV = (M, 2M+D ...y such that th

projected point (@4, - MYy s altered by an arbitrar , (M+2)) (a3, . (M+2)) becomes an arbmarﬂy
point from A§ M+ when only the other coordinates of X% hosen pomt of A(N_lfl”) and since the previous difference
are altered in a suitable manner. Our wish is now that the altere LR YDy — (@2 wo, 2MAY 45 lying in the

point XM+ 4 7(M+D ghall lie “near to” Y. Since Npgpq > Ny
the point X (M+D §5 a5 Y™ g solution of the Ny, first congruencé
and hence their difference Y™ — XM+ g lvmg in A(M2), Th
difference of the projected points Y, - - (M)) (M0

23 *+PY will therefore lie in A(NM) and hence a fortiori in H} (N3

and hence also in H gf;MH). Slnce, as mentioned above, the svo

re H(NM+2) of the set A("M+2) it is clear that to every

tvi1 > 0 we can choose the nO].llthH Y(M+2) such that the first
the two (M + 1)-dimensional point-differences ey, {-approx-
ates the latter, i. e. such that

(M4 (M2 M1 M ;
MDY (yg-i N +2))[ _ lng+2)__y(1M+1){ < eagen
ﬁonX(M+1)0fﬂleNM+1 ﬁrstcongruellces can be altéred to D T R T

: (M+2 (i1
other solution YMFD — (yMF+1) M+ ...y of these congruence — &) — (D — 2D | = [ — o8] < ey

such that the difference (g<M+1) e gy — (M, G
M+1) 3 Ny41
) becomes an arbitrarily chosen pomt of Agw ) a n general, i.e. for an arbitrary n= M-+ 1, let the point

since the previous difference (yi*, - -, g3 — @M+,
30y is lying in the closure H{T+1) of the set A{Yu+1
is elear that to every g, > 0 we can choose our solutlon yM
such that the first of the two M-dimensional point-differen
ey-approximates the latter, i. e. such that

(@™, a (”) *+) be a solution of the N, first congruences

This solutlon can be altered by an arbitrary point from A2
hence X®™ can be altered such that the projected point
* xﬁlnll is altered by an arbitrary point from A=)
n only the other coordinates of XY are altered in a suitable
ner. Our wish is that the altered point shall lie “near to*

1 o = 5 = i
) For the proof of @, = 7, we could choose M 1. When M. is ch 1) Since N,> N, _, the pOlnt X(n) is as y@a—1) a solution

arbitrarily it is in view of the proof of the additional theorem.

/
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en be a solution of all the congruences (1). In fact, to see
t-Y is a solution of the N™ congruence we observe that
@™, g, - - +) from a certain step is a solution of this
gruence. Since only a finite number of variables really occurs
he congruence the statement follows from continuity reasons.
hus (04, 65, - - *) is lying in #; and hence &, = x,. Out of regard
e following we observe that the M first coordinates Y1, "
of Y satisfy the inequalities

g1 — g = > e,
. M

: (n—1) ...
of the N,_; first congruences. The difference Wi,

. . N o
— (&, -+, 2 y) is therefore lying 12 A®n-) and henc ‘
fortiori in H{"n-1) and hence also in H ("), Since, as ment né
above, the solution X™ of the N, first congruences can be alterv
to anc’)ther solution Y™ = (g™, yi, - - ) of these con(gl;uen'c‘

n) ... n
such that the difference (y{™, *- -, y® ) — (ac1"'), ,xat )b
comes an arbitrarily chosen point of Ag\ﬁ‘% and since the previo)
difference (yg""l), R ) Ty 2 ORI Y )-is lying in {
N ¢z .

closure H Sf‘i’_‘)l of the set 447 it is clear that to every 8n-—1?
we can choose the point Y™ such that the first of the two (n .
dimensional point-differences ¢, _j-approximates the other,_l-l

b

such that | e &,
N T R O S e ly— 3P| < S s,
| (g —af™) — (o ™| =g —yi n 2

................... _ -
‘(y(l':l)—l_xgln)—l ‘_(ygl—ll)—x(#)—l)‘ = \,yg)—l—ynn—l | < Ept;

Now, to conclude the proof of theorem A, we have to show
at-the constant final set H'J™ in the sequence

S nt we c HQY 2 HP2HY -
Choosing our &’s such that Z g is convergent we const | ] ad )
the sequence M very M =1, 2, - - - is equal to Hy;. Since Iy C AgVIM), it is

M) ...
YOO = (', v ’,ﬁj D
yOT+D) (D) OB Ly

n that Hy Hﬂ"’). In order to show that, éonversely,
" C H,, for an arbitrarily given M we use the proof above
the case 0; = 6, = - - =0 with our present M as the M in
proof. The previous point Y — (y{*0, g, . -) is then an
ary point from AY® and the projected point (yi, - - -,
)} is therefore an arbitrary point from A$*. We are to show
t PP, - - -, g) can be approximated by points from I7,.
t this is-an immediate consequence of the fact that (in the
sent case ) = 0, = + -+ = 0) the point Y constructed in the
f'above is lying in I" and that its M first coordinates satisfy

M+2) ..
yM+2) (y§M+2)’ y(2 +2) )

; M
The M first coordinate sequences yd )

1,2, -+ -, M) satisfy

@© . . . .
|y —y@|= > e for p>q= M
q

(M+1) (M+2)
¥ H

’y yV ’..-'

: : (M)
while each of the following coordinate sequences Yrp

y(;fw+2) , o (n =M+ 1) satisfy

s Un nequalities (8) where > ¢, can be chosen arbitrarily small.
P <~

< heorem B. If 71, = m, the sequence
D) _ 9| < g, for > q = n.
‘yn ynlzér p Hg)gHg);Hg)g
Hence, in particular, all the coordinate sequences €0
towards respective numbers i, ¥z, " " - The limit point

Y = (Yo yz”")

r-every m be constant from a certain step.
roof. Indirectly, we assume that there exists an my for which

SHP D H® S -+ - is not constant from a certain step and
lygl. Danske Vidensk. Selskab, Mat.-1ys, Medd, XXIV, 12,
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jstem of representatives>in R, modulo H{™. To this N, we
oose the positive number g, so large that évery sphere iil R
ith radius g, contains a Gomlﬂlete system of representatives in
mQ.dulo Gy, and hence also a complete system of representa-
s in li?p modulo- H 5,1,:7‘). In particular, everyone of 6ur sphere
ylinders in R, with radius g; will contain a complete systeﬁl of
eprisentatives in R, modulo H{YY, |
. Next .We determine N, > N, such that the fundamental
: tent Gy, is larger than' K (p;+ 2). Then the sphere cylinder
{01+ 2) cannot contain a complete system of representatives in
modulo H SX”). To this N, we determine the positive number
;80 large that everyone of our sphere cylinders in R, with

dILlS ‘92 con taIIIS a com plete S y p
Odlllo H (N l) " P

are to show that m, = m,, i.e. that there exists a (0y, 0, '
which belongs to 7, but not to ;. We first consider the geomelri
appearance of the sequence of modules Hffl? (n=1,2,-*
This sequence is an essentially decreasing! sequence of lat
cylinders (see § 2). It is therefore plain that from a certain s
n = N, the least space (vector space) which contains Hg,’l‘f, ali
the space of generatrix directions of the cylinder Hf;}o), will by
constant spaces R, and R, of dimensions (say) p and p;. Further
more from this step the lattice base G, of H® can be chosen i
such a way that the least space which contains G, is a fixe
space R, (dimension ¢ with p = p;+ g). The lattices Gy for
from this step an essentially decreasing sequence in their com
mon least space R, Therefore the g-dimensional conlent of t_k/x
fundamental parallelotope of G, (‘“‘fundamental content G,”)
an ecssentially increasing sequence which — oo (since the fund
mental content is at least doubled by the transition from o
lattice to the next every time the lattices are different).
By K (p) we denote the open sphere in R, with radius ¢ an
center O as also the ¢-dimensional content of this sphere. ‘B
- C(p) we denote the corresponding sphere cylinder in R, wi
the sphere K(g) as base and the space of generatrix directio)
R,. We also consider spheres in R, whose centers are not Iyi
in O and the corresponding sphere cylinders in R, In the followi
we denote for abbreviation sphere cylinders with base-sphere.
R, and space of generatrix directions R, as ‘‘sphere cylinder
without further specification. By the sphere cylinder around t
point P in R, with radius ¢ we understand the sphere cyli
corresponding to the sphere with radius o and center in:
projection of P on R, in the direction of R, L
We first determine a sequence of strictly increasing positi
numbers N, Ny, -+, Ny, -+ - and the corresponding positt
numbers g1, 05, > 0 - - - by the following procedure.
1°. Let N, = N, be chosen such that the fundamental cont

Gy, is larger than the sphere content K(1). Then the sphere .
cannot contain a complete system of representatives in R, mod
Gy, and hence the sphere cylinder C(1) cannot contain a com

q

v°. After having determined N, 3 and g,_, we determine
__>, N, _4 such that f[}Le fundamental content G, is larger than
(¢s—1+»). Then the sphere cylinder Cloy_1+ az,)f, cannot contain
omplete system of representatives m R, modﬁlo HM, To
,‘,N,, we determine the positive number g, so large, 'thaltnneve'ry-
; -of our sphere cylinders in R, with radius p, contains a
omplgte systemn of representatives in R, modulo'HE,iVi’).

A_fter having determined N, and or (v =11, 2, ) we now
s to: the direct searching of a point (81, 65, - + -) which belongs
he §et 7y but not to the set 7;. The idea in this (successivé)
ermination modulo 1 of the numbers 6, 6,, - - -, the kernel of
ph can be found in example 1, § 1, is that we try to see that
"set of projections (x,, - - -, Zpm,) on the xy - - - x,, -space of all
tions (x;, ,, -+ ) of the N first congruencesb(l) will lie
her and farther away from O for increasing values of N
e Precisely, we will see that the set of projections for N = N .
lie in R, and outside C(¥). ’
t tep. We first choose an arbitrary point P = (2P, 2, - - )
¢ infinite-dimensional space which only satisfies the ’con-

»'()&nb that the projected point P,(,}a) = (P, -, Ly s lying
and has no equivalent point modulo H{™ lyih“g in C(1).

2*

1) An essentially decreasing sequence of sets is here and in the follo
sequence where every element is contained in the preceding and whic
constant from a certain step. The expression, an essentially increasing se
of numbers, used below, has an analogous meaning. -
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Such a point exists on account of 1° since C(1) does not cont

a complete system of representatives in R, modulo H,(ﬁ‘). W
substitute (xy, @y, +* +) = (&, 8, -+ +) in the Nj first lin
forms (2). The numbers thus determined (but only conside
modulo 1) shall be our numbers 0, 0,, + -, On,. We obse
that the total set of solutions of the N, first congruences (1) (
the ’s just chosen) is the set P 4+ AMN) because 4™ is the
of solutions of the N; first zero-congruences. From the cho
of PY it follows that the projection of this set P AN op
@+ Tp-space—i. e. the set PS) Ag\f‘) which consists of
points equivalent to P& modulo AW —is lying in R, and o
side C(1). : ‘

2" step. Next we choose (which is possible from the cho
of Ny) a point DR = (df®, - - -, d2) in R, which has no equif
valent point modulo Hffl\j’) in C(p;+ 2). The sphere cylinder
R, around Df,i) with radius g, contains (on account of the che
of ¢,) a point equivalent to P{) modulo Hﬁ,ﬂf‘). Since A,(,Z:f‘
lying everywhere dense in H gﬁ‘) this cylinder also contains a p
PP = (P, - - -, 2f”) equivalent to P& modulo AP We:
therefore choose a point P® = (x, 2§, - - -) whose project
on the x; * -+ xp, -space is Pfi’ and which is equivalent to
modulo A™Y, In particular P® is a solution of the N, first:¢
gruences (1). We now substitute (1, @, * * ) = (@, ¥,
in the N, first linear forms (2) and denote the numbers t
determined (modulo 1) by 6, -+, 6y, The N; first of-thex
numbers coincide with the numbers 6,, -+, Oy, determined
the first step, since P® satisfies the N; first congruences (forr
with these 0’s). We now consider the set of solutions (a;, x4
of the N, first (with the above 6’s formed) congruences (1);:
the set P® 4 ANY Then the projection of this set on the ;
Xp,-Space—i. e. the set Pﬁ?%— Aﬁrﬁ”) which consists of all:
equivalent to P,‘,i) modulo Ag\:’)—is lying in R, and
C(2); that the set is lying in R, is plain, and the second
ment follows from the fact that sz is lying in a. sphere cy.
around Dl(ffn) with radius p; where D},?;D) has no equivalent p'é
C(oy+ 2) modulo HY® and hence a fortiori no equi
point modulo AL g

hoice of N,
SEES (gY’, "+, dG))in R, which has no equivalent poilﬁ
dulo Ho, " m C(gy_1-+ »). The sphere cylinder in R, around
. with radius ¢,_; contains (on’account of the choice of Or_1)
point equivalent to Pf,’;u__l) modulo H }ﬁ”—l) and hence alsgla
int Pf,'{n) = (), - -, )Y equivalént to Pﬁ,ﬁ*” modulo Aﬁ,ﬂv"*l);
can therefore choose a point P® — @, 2, - whose
ojection on the x; -« - - Ty, -Spdce is Pﬁ,‘{} and which is equivalent
Py—1) modulo AMN»—1), In particular P is a solution of the
1 first congruences (1). We now: substitute (xy, x,, * + *) =
(&), 2, - - -y in the. N, first linear forms (2) "and -denote the
Ir_r_lbers thus determined (modulo Dybya, - fn,. The N,
st of these numbers coincide with the numbers §,, - - -, GN,,—I
termined by the (v — 1)%® rtep.. We consider the set of solutio;;
b Ty ") of the N, first (with the above 6’s formed) con-
;_ences‘_(l). Then the prejection of this set on the Tyt @y, -
pace—i. e. the set P4 AS which consists of all points eq:{—
nt to Pin) modulo A% lies in R, and outside C(»); that the
is lying in R, is plain, and the second statement follows from
act that P,(,‘l’) is lying in a sphere cylinder around DY) with
lius Q,,_I(N“;here D,(,‘{o) has no equivalent point in C (g,,jl—l— V)
g:ﬁz Alzi Jiln;:)y and hence a fortiori no equivalent point

n this manner we have got a point (0, 8,, - + ) with the
ed Properties. In fact, the point is belonging to z, since for
v the N, first (with these 6's formed) congruences (1) have
solution P(‘f) = (x(), ), - - ), and here N, —> o for # — oo
he otlller hand the point (1, 05, - - -) does not belong to =,
t}lere 18 no solution of the whole system of congruences (1);
very solution of the N, first congruences has a projection
®17 7" Tp-Space which lies in R, and outside € ).
; emark. The theorems of this paragraph connect the con-
01 7m; = m, with the closures H§,1,V> and H, of the modules
and’ I',. We shall mention that analogous theorems hold
e sets ALY and Iy Ehelnselx?es, viz.

! Orem. A necessary and sufficient condition that Ty = 7Ty IS
foz'. every m = 1, 2, - -+ the sequence
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ates, a point A = (a;, a,, coo)? in R always has coor-
linates which from a certain step (dependmg on the point) are
Le a=0 for n = N = N(4).

Between the spaces R_ and R” there exists, when a con-
gence notion in R_ is sultably chosen, a duality. Once esta-
blished this duality permlts us to get at the structure theorem
“closed modules in R® from an analogous structure theorem
closed modules in R_. Now, as mentioned, the space R_ is
ng nearer to the ﬁmte d1mens1onal spaces R, than does R

fact it can be exhausted by the a;a, * - - ay-space for m —» oo,
is is the reason why, as we shall see, the structure theorem
-Raa can easily be obtained from the finite-dimensional case.
he duality, mentioned above, between R_ and R” is ana-
ous to a duality considerec: by M. Rlesz between two m-
mensional spaces R,, = {(ay, - - -, am)} and R, {(:cl, T
If M is an arbitrary module in Ry, Riesz considers the point

In (the other space) R, consisting of all points 4 = (ag, -~
) from this latter R, for which

1 2 By ...
AP 2 AP 2 472

is constant from a certain step (depending on m).

Additional Theorem. If AND AR A2 -+ for every
is constant from a certain step this constant sel is just the set |

If these theorems, as their analogues for the closlln.'es, :
divided in a theorem A for the sufficiency and the addlth.Il a
a theorem B for the necessity, the theorem A is even si
to prove than the previous theorem A. Theorem B, however, lig
deeper than its analogue. We can obtain the new theorem B fr
the old one by the following

Theorem. For an arbitrary system of linear forms (1) (w
7, = my OF 7, &+ my) there exists to every positive integer m
integer M = m and a posztwe integer N such that the sequ
A(N)D AWHD o AN+ 5 ... s the projection on the x;

N1 (N+2)
a,-space of the sequence H(N) D H{ o HYT 2 -

We omit, however, the proofs of these theorems Whmh
unnecessary for the proof of our main_theorem in its pre
framing (cp. p- 8-9).

>

4 X = a4 agxy+ 0+ apey, = 0 (mod 1)

every point X = (xy, 5, - * +, @) from M. This point set is
closed module in R, and is called the dual module of M. We
note it by M’. If we repeat the operation of Ppassing to the
I module we get a closed module M" = (M’ in (the original

ace) Ry. The relation between M and M appears from the
]lowmg important theorem..

§ 4. The structure of closed modules in the
infinite-dimerisional space.

In this paragraph we shall study the closed modules i
infinite-dimensional space—which from now on is denote
R”—where the underlying convergence notion, occasmnally
in the previous paragraphs, is that of convergence in eag
the coordinates. As we shall see the closed modules in the ;
R" possess quite a similar structure as that of the closed mot
in the usual m-dimensional space Ry (see § 2)'00 . |

In order to prove the structure theorem in R~ we shall
the analogous structure theorem in Ry, m =1, 2,
transition from the finite-dimensional case is, however,
trivial one. We shal have to put in an intermediate spa}
between the finite-dimensional spaces R, and the space R-
space R ‘is as R* an infinite-dimensional space, ]?ut W
point X = (xy, xp, ~© ) In R” may have quite arbltrary

iesz’s Theorem. If M is an arbitrary module in R,, the dual
odile M" of its dual module M’ is the closure M of M, i.e.

M’ = M.

a closed module H in R, we get in particular H” = H.
We now pass to the establishment of the duality between
and R”, or rather that side of the duality which will be
d in the following. A full account of the duality can be
in another paper® where the topic of this paragraph is
distussed in more detail.

or pomts in R,, we use the notation (a,, a,, o o o) in order to make apparent
eir coordmates are all zero frem a certain step.

.Bomr and E.FeLNgr: On a structure theorem for closed modules in
1te-d1menslonal space, to appear elsewhere.
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Let T be an arbitrary linear transformation in R_ arvld}
the fundamental points (1, 0, 0, °ce°), (0, 1, 0, °cc°), * by t
transformation be taken into the points

¢ shall show that this condition on X and Y is equivalent to
linear transformation in R” (expressed by linear expressions
(3), §1) of Y into X (and thus, ‘in particular, that to any
. en Y there exists one and only one X satisfying (7)).
j T {(1, 0,0, c0 °)} = S; = (t11, tar, °°°) In matrix notation the condition runs as follows
T{(0, 1, 0, o=°)} = Sy = (f1a, tas, °°© - ‘ |
{( )y = 82 = (he fa 00) CARX = (TA)*Y or A*X = A*T*Y.
fling successively A*—(l 0, 0, ©o°), (0 1, 0,000), --- in

from R_. The arbitrary point A = (a;, a3, °°°) from waﬂl
@ s relatlon we get

then be carried into the point

X =T*Y
= T(4) = ayS1+ a,5, + °ce.

_ = d conversely the former condition follows from (8) by left-

Introducing the matrix 7T = {t,s} fhe linear transformation mg :

be written B = TA. In the following we denote a linéar tra

formation in' R and the cmrespondmﬂ (uniquely determined

matrix by the same letter 7.

~ Conversely, each such matrix equation

»»»Puttlng (8) into (7) and changing Y to X we get the relation

4- T*(X) = T(4) - X for every 4 from R_ and
every X from R”

by tulis - - - | | We now define a substitution in R_ as a linear, one-to-one
byl _ Jtafe -+ - |2 ansformation of R onto R_ '

o ° o 11 - Tis a substltutlon the COIldlthIl (7) is- equlvalent to the
: . : ndition

where the column vectors are arbitrary points from R i A-Y = T7Y(4) - X for every A from R,
linear transformation in R

We now define the scalar product between two' po
A= (a, @, °°°) and X = (x, %, *+*) from R_ and R
respectively. We put ‘ '

act we have only substituted 77'(A) for A and interchanged
two_sides of the equation (7). Here T denotes the inverse
ubstitution of T. Since (7) is equivalent to (8) we see that (10)
quivalent to
A X=X A= amx;+ayxy + oo, Y=,(T_1)*X.
In matrix notation the scalar product is expressed by A%Y
X*AYD when we agree on considering the points as column
tors (for convenience we usually write them horizontally)
For a given linear transformation T in R_ and two val
points X and Y from R” we now set up the condition

e also the relations (8) and (11) are equivalent which shows
T#is a one-to-one transformation of R” onto R” and there-
e what we have called a substitution in R (see § 1). Putting
(T%)~! and replacing X by T'(X) in (9) we obtain the

heorem 1. If T is a substitution in R_ then T* is a sub-

jon in R™ and there exists a uniquely deteImmed substltutlon
® ‘such that

(M A-X = T(A) Y for every A from R _

1) The star denotes the operation of transposing a matrix.
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. ,
y be shown that our substitutions in R” or R_-are just the
inear, one-to-one, bicontinuous transformations of the space onto
iself (in the case of R_ nothing is left to prove). ‘

For an arbltrary closed module H in R_ we consider the
point set H’ in R” which consists of all pomts X for which

(12) A+X = T(A) - T'(X) for every A from R and
every X from R”

viz. the substitution T' = (T*) 1= (T™1)*
We call 77 the dual substitution of T. »
In order to speak of closed modules in R and R” we mu
know the underlying convergence notion of the two spaces. W
have already mentioned that in R” our convergence notion
that of convergence in every coordinate. In order to defin
suitable convergence notion in R _ we first observe that our co
vergence notion in R” may also be stated as follows:
A sequence X™ converges towards X if and only if

A-X = 0 (mod 1) for every A from H.

viously the set H’ is a module. Furthermore H’ is closed, for
X™— X in R” and all X™ are lying in H’, then for every
fiom H we have 0 = A X™-» 4 - X so that 4+ X = 0. We
call the closed module H' the dual module of the closed module
The following simple theurem indicates the connection between

A- XWX for every A from R he two notions, dual module and dual substitution.

- Theorem 2. If we subject a closed module H in R to a sub-
stitution T and subject the dual module H' in R® fo the dual sub-
ution T’ then the resulting module T'(H") in the latter case is
¢ dual module of the resulting module T(H) in the former case,

In fact, since a point A from R_ only contains a finite numbez
of non-zero coordinates the former condition involves the latle
and conversely, the former condilion is obtained from the latt
by putting successively A = (1,0, 0, cc<), (0,1,0, °°°) s

In the new form the notion of convergence in R” has a du
notion of convergence in R_

A sequence A™ of points from R is said to converge fowar
a point A from R_ if and only if N

T'(H') = (T(H))'.

This is an immediate consequence of the relation (12) when

only observe that 7'(4) runs through T(H) and 7"(X) runs

rough T'(H") when A runs through H and X through H'.

. We have defined above the dual module of a closed module

This is going fo be our convergence notion in R, D :m R._. Analogouily, we deﬁnfz the dual m-odule H' of a closed
Remark. Our substitutions in R” are obvlously bicontinuo d. 16.3 H from R . as the point set (eo I.PSO closed module)

In order to show that our substitutions in Rw are also bico sisting of the points 4 from R, for which

tinuous we remark that on account of (9) every linear fra

formation T in R_ is continuous; in fact, when A™@— A w

from ¢))

X T(A™) = T#(X) - A™ - T*(X) - A—X- T(A)

X AW XA for every X from R”

8
b
1]

0 (mod 1) for every X from H.

n we have the following important

Theorem 3. For an arbitrary closed module H inh R” the dual
lule H" of its dual module H' is the module itself, i.e.

H' = H.

for every X from R” which shows that T(4™) — T(4). If

1) In the following we shall only use the definition of convergence in:1
the above form; we may, however, mention that this definition, as easi
is equivalent to the following (more direct) one: Convergence of a seque
R,, means convergence in every coordinate and moreover the existence o
only depending on the sequence, such that all points of the sequence have
the coordinate places with higher number than p

ously H'" 2 H. Thus we only have to prove that H'' < H.
hen Y = (g, y», - - *) be an arbitrary point from H". In
o show that Y is lying in H, let m be an arbitrary positive
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he a, - - - ay-space. Furthermore, H, is the common part of
me1 and the ay - - - aq,-space. Hence it follows from the the-
rem on p. 10, for m = 1, 2; © - -, that we can generate succes-
ively the closed modules H;, H,, - -+ by linearly independent
vectors with arbitrary and integral coefficients in such a way that
he generating vectors of H,,.; are the generating vectors of H,,
with the same types of coefficients, in connection with other
}ectors (if necessary). In this way we get a sequence of linearly
independent vectors Gy, G,, - - - which provided with suitable
ypes of coefficients (infegral or arbitrary) will generate H (gene-
ation of course in the sense that for each vector of H only a
ﬁmte} number of generators is used). With arbitrary coefficients
he vectors spann a subspace R(H) of R_. Let R; denote the
ommon part of R(H) and the wx,-axis. If the space R, is not
he whole .a;-axis, but only the O-vector we place a non-zero
vector on the x,-axis. Then this vector together with R(H) will
spann a space R which contains the x-axis. If R(H) itself
contains the x;-axis we put R® = R(H). Next, let R, denote the
ommon part of R® and the axyxa-plane. If the space R, is not
e whole x;x,-plane, but only the x;-axis we place a vector in
the x,xy-plane outside the a;-axis. Then this vector together with
Rl) will spann a space R® which contains the xyxy-plane, If
Ditself contains the xixy-plane we put R® — RM® 1n this way
continue. If the vectors thus found in some way or other
¢ put into a sequence with the vectors Gy, Gy, -+ we get a
quence of linearly independent vectors U,, U,, - - - which pro-
ded ‘with suitable types of coefﬁments (zero, integral or arbi-
ary) will generate H and with mere arbitrary coefficients the
hole space R_. The linear independence of Uy, U,, - - - secures

at each pomt in R hab only one representation by this gener-
101, Hence

integer. We consider the points (a, as =", @, 0, 0, °°°) = (a
@y, * * *» @) from the common part L of H" and the ayay - - -
space. Then for every point in L we have

(13) (yla Yoy * " 7 ym) - (Ul, oy, " * % Clm) =0 (l‘nod 1).

chf let M denote the projection of H on the xyx,y - * * xp-Spac
(i. e. the set of points (x;, s, * * *, %) avising from the point |
(21, Ty * * *) of H by cancelling all comdmates with indices > m)

M is again a module, but not necessarily a closed module. Plainly;
L = M’ and thus on account of (13) the point (¥, Yo, " " Un
belongs to M”. Now, according to Riesz’s theorem ’

M”=M

and hence (yy, s * * ' Ym) can be approximated by points (z
Ty, * s xm) from M. Since m is”arbitrary it follows that Y:
(y3» Yo * - *) can be approximated by points (zy, {Lz, -+ o) fror
H, i.e. Y must lie in H=H, q.e. d. -
We shall now prove the following structure theorem fo
closed modules in R_

Structure Theorem R_. A closed module H in the infinit
dimensional space R is a point set E which by a substitution ca
be transfered into a pomt set of a special form, in the followtx
denoted by S_, namely a pomt set {(al, g, °° 0)} of the followin
structure: The indices 1, 2, -, n, * -+ can be divided znt(? th
fixed classes {nr}, {n,, {n,} depending only on the pom.t__f
such that the coordinates an, independently run through all num
bers, and the coordinates an, independently run through all it

. gers, while all the remaining coordinates an, are constantly zer
Only, of course, the simultaneous variation of the ax, and the
in the set is limited by the obvious demand that (ay, ds e
always shall lie in R, i. e. have 0 from a certain coordinate pla
(depending on the pomt) Conwversely, each such point set E'ls
closed module. :

The latter part of the theorem follows immediately from:
remark on p. 26, ‘ '

In order to prove the first (and real) part of the theore
let H,, denote the common part of H and the a; - ** Zpspa
Then, obviously, H,, is in the usual sense a closed modul :

B = al.U1+ a2U2+ ooo

‘a substitution in R_ of A = (ay, @y, °°°) into B. It takes the
mdamental vectors (1 0,0,°009), (0,1,0,°c00), --- into the
ctors Uy, U,, * Therefore the inverse substitution, which
kes U;, Uy, - -+ into the fundamental vectors, will take the
osed module H into a set { (ay, as, 000)} determined by

0 for certain i, q; arbitrary . integral for certain 7, and
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a; arbitrary for the remaining i. This proves

theorem R_. _
By help of structure theorem R_ and the duality betwee
R and R” we shall now obtain the main result of this para

graph, viz.

follows that the n/® coordinate of X must be integral. This
oves theorem 4.

‘We have now got all ‘means necessary to prove structure
corem R”. Let first H be an arbitrary closed module in R_
hen on account of structure theorem R_ there exists a sub-
stitution T in R such that T'(H) has the spec1al form §_. The
nal module H’ of H is a closed module in R”. We shall show
at H' by a substitution. can be faken into a closed module of
¢ special form S°°‘. In fact, the dual substitution 77 of T has
property, for it follows from theorem 2 that T'(H') = (T(H))’
nd from theorem 4 that (T(H))', as the dual module of a
osed module of fhe special form S_, is itself a closed module
f the special forra S”. Hence we see that every closed module
_:Rw which is the dual module of a closed module in R_ by
substitution can be taken into a set of the form S™. In order
omplete the proof of structure theorem R” we therefore only
ave to show that every closed module H in R” can be written
n the form K’ where K is a closed module in R_. This, how-

ver is a consequence of theorem 3 which tells that H=H"
o that for K we may use H. ‘

Structure Theorem R”. A closed module in the infinite-dimen
sional space R” is a point set E which by a substitution can'b
transfered into a point set of a special form, denoted by 8"
namely a point set {(ml, Tgy * * -)} of the following structure: Th
indices 1,2, -+, n, -+ can be divided into three fixed classt
{n.},{ns}, {n,} which depend only on the point sel, such tha
the coordinates xn, independently run through all numbers, an
the coordinates an, independently run through all integers, whil
all the remaining coordinales xn, are constantly zero. Cozwersely ]
each such point set E is a closed module.

Again, the latter part of the theorem follows immediately froﬁ
the remark on p. 26.

In order to obtain a proof of the first (and real) part of th
theorem by help of the corresponding theorem in R let us fir
‘'show that the dual module of a closed module of the spe01
form S_ is a closed module of the special form S¥. More precise
we shall prove

Theorem 4. For a closed module H in R of the special forl
S, explicitly {(al, A, ©° 0)} with the coordznates an, arbitrar
the coordinates an, integral, and the coordinales an, zero, the du
module H in R” is of the special form S®, and more precis’é
the dual module is {(xl, Ty, * * )} where the xn, are zero, i
Zn, Integral, and the wxn, arbitrary.

We first observe that obviously all points X of the for
mentioned are lying in H’. Conversely, we have to show
all points in H’ have the form mentioned. Since the point
in H' have to fulfill '

§ 5. Proof of the main theorem.

‘Already in § 1 we have formulated the main theorem and
ved the simple ““half” of it, namely that a sufficient condition
t a system of linear forms (2) have @, = =, is that the system
‘a substitution can be taken info a system of the type S. We
ll now show that this condition is also necessary, i.e. that
ry system of linear forms which has z; = z, by a substitution
n be taken into a system of the type S.

or a system of congruences (1) the set I of solutions of the
isponding zero congruences is obviously always (i. e. whether
=m, or not) a_closed module in R”. Hence the structure
orem R from § 4 states that there exists a substitution T
hich takes I into a point set of the form S”, corresponding
) to the classes {n,} {ns} {nt} By this substitution T the
stem of linear forms will be taken into a system where the
efﬁment columns corresponding to the variables x, are zero

(o2 én, 0o o)+ X = 0 (mod 1) for all values &,
it follows that the n,™ coordinate of X must be zero, and

(ooc]_ooo) X—O(Hlodl)
12- .
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columns while the coefficient columns corresponding to th
variables xn, are integral columns. This is seen by puttin
(oo £n, °°) with arbitrary &g,, respectively (0 oo ] ooo) intoth

LLoong ..
zero-congruences. Conversely, a coefficient column of zero’

corresponds to a variable xp, and an integral coefficient colum
which is not a zero column to a variable wxn,.

Now, we shall show that if 7, = =, for the original system
and hence also for the transformed system, the latter of thes
systems will be of the type S.

Obviously it makes no real difference if all the coefﬁmel
columns corresponding to the variables xn, are removed todeth
with their respective variables. For since all these columns consi
of zero’s this removal will neither change the property of havin
or not having m; = 7,, nor the plopelty of being or not bein
a system of the type S.

We shall use theorem A and B from § 3 on the system aft
the removal. Since 7, = @, the modules HY of this system w
for each m be constant from a certain step N = Ny = Ny(m) an
equal to the modul H,,. Since [, is a module of the for
{(xy, 25, -+, x,) } where the indices 1,2, - - -, m can be divide
into two classes {ns»} and {nt} such that the coordinates x
are integral and the coordinates xn, are zero, Iy, is in particul
a closed modul so that H, {(xl, Ty, *¢ xm)} {(int
gral, zero)} Hence from thc step N, also H(M— {(mtegra
zero)} Finally, using that A(N)f' H(N) we find the followir
property of our new system: Each of the variables axn, beco
zero if one solve the N first zero-congruences for sufficie
large N (depending on the variable). Hence the system is of th
type S. This proves the main theorem. Furthermore we see th
each of the variables wn, becomes integral if one solve th
first zero-congruences for sufficiently large N (depending on
variable). The same of course is also true for the system be
the removal of the variables xn, with mere zero coefﬁment
This proves the following

hat each of the variables belonging to the integral columns
essarily becomes integral if one solve the N first zero-congruences,
orresponding to the linear forms, for sufficiently large N (de-
ending on the variable).

Remark. A (necessary and) sufficient condition that a system
f linear forms of the type S have the additional property men-
iomed in the theorem above is that the variables mentioned
necessarily become integral if one solve the system of all the
ero-congruences corresyonding to the linear forms.

In fact, to prove this, we may use theorem A and B from
in a similar way as above.

'_§ 6. A remark 6n the algebraic structure of a system
' of the special type S.

The notion of a system of linear forms of the type S was
defined in § 1 as a system of linear forms where certain variables
had mere integral coefficients while each of the other variables
necessarily became 0 by solution of a suitable finite selection
of the zero-congruences corresponding to the linear forms.

Thg question, therefore, naturally arises how a finite system
zero-congruences (in a finite number of variables) can force
e of the variables to be zero. In this final paragraph we treat

s problem by giving a necessary and sufficient condition that
system of linear zero-congruences in x,, * * *, x,

a11x1_+ AypXs + * * - + Upty = 0 (and 1)
A1y + Ay + * ¢ ¢+ Aoy, = 0 (mod 1)

1 Xy + Uy + * * * + Appe, = 0 (mod 1)

il involve x, = 0.
Let in the corresponding matrix

Stronger form of the main theorem. A necessary (and: Qu1tys * ° * A1p
ﬁcient) condition that a system of linear forms have m; == Ay1lag * * * Oay K
that the linear ‘forms by a substitution can be transfered in EREERERER
system which is of the type S and moreover possesses the prop U1 s * * * A

- Kgl. Danske Vidensk. Selskab, Mal.-fys. Medd. XXIV, 12. 3
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the system of row vectors Ry, R, -, R, have the maxi
rank g. Then we can find g linearly independent vectors among
these Tow vectors. Let it be, for instance, Ry, Ry, * =, Ro. T L otherwise at least one equation is not satisfied. In particular, the
numbers o exist such that _ ondition is satisfied if hy = hy =+ -+ = h, = 0.

Roy1 = apRy+ Ry + -+ + ageRy ' . hoose x; arbitrarily by the solution of the p first equations with
Ry = yRy-+ @Ry + -+ 4 agyRe ' = h, = 0. If our congruences have no solutions with
_________________________ . t; + 0°it follows that S,, - - -, S, must have the maximal rank

: —1. Let this necessary condition be satisfied. The integral
R, = am—e,1R1 -+ anz—(thz + o+ am_())QR(’.- litions (hl’ hy, - -, h"') of 8

The column vectors in the abridged matrix By@y+ hy€yt -+ 4 hySp== 0 (mod 1)

au. .. .Cfl,n_ orm a lattice. Then obviously a necessary and sufficient con-
Aoy Ton tion that .every solution. of the equations (14) has x; = 0 is
at the lattice {(hl, hy, - -, h@)} 1s contained in the space span-
are denoted by S;, *--, S,. They have the maximal rank: d by Ss, - - -, S,. Hence we have the result:

The column vectors in the matrix - . "4 necessary and sufficient condition that the congruences involve
=0 is that S,, ** -, S, have the maximal rank o —1 and
at the lattice {(hl, hy, -, h(,)} of integral solutions (hy, h,,

_ hg) of

Gm—p1 """ Cm—_g,p

h& 4+ h@y + -+ - + heSp = 0 (mod 1)
are denoted by &, - - -, &,.
Instead of the congruences we can equally well consider |

equations
319 + ot agr, =
A2y +or s dapxy, = Ny
(14) a()lxl + M + agnxn == h@
Aoy11%1 + © 0" F Qoi1,n%n = Boiq

where the h’s are new inlegral variables. This system ofv_e‘:
tions can be solved for a given choice of hy, -+ -, hg if and on
RS+ Sy - by = 0 (mod 1)Y;

[ndleveret til Selskabet d. 31. Oktober 1947.

1) Here, by A = 0 (mod 1) we mean that A is an integral vector Fardig fra Trykkeriet d. 12. Juli 1948.




