ON A GENERALIZATION OF KRONECKER’S THEOREM

BY

HANS TORNEHAVE

KOBENHAVN
I KOMMISSION HOS EJNAR MUNKSGAARD
1948
INTRODUCTION

The following well-known theorem by Kronecker

Theorem 1. If m real numbers $\lambda_1, \ldots, \lambda_m$ do not satisfy any relation

$$r_1\lambda_1 + \cdots + r_m\lambda_m = 0,$$

where r_1, \ldots, r_m are rational numbers and at least one r_ν is ± 0, then there exists to any given real numbers v_1, \ldots, v_m and any positive ϵ a number t satisfying

$$|\lambda_\nu t - v_\nu| \leq \epsilon \pmod{2\pi}, \nu = 1, \ldots, m,$$

is equivalent to the following

Theorem 2. If $h_\nu(t) = e^{i\lambda_\nu t}; \nu = 1, \ldots, m$ are pure oscillations, whose frequencies $\frac{\lambda_\nu}{2\pi}, \nu = 1, \ldots, m$ do not satisfy any relation

$$r_1\frac{\lambda_1}{2\pi} + \cdots + r_m\frac{\lambda_m}{2\pi} = 0,$$

where r_1, \ldots, r_m are rational numbers and at least one r_ν is ± 0, then there exists to any given real numbers v_1, \ldots, v_m and any positive ϵ a number t satisfying

$$|h_\nu(t) - e^{iv_\nu}| \leq \epsilon; \nu = 1, \ldots, m.$$

If the numbers $\lambda_1, \ldots, \lambda_m$ satisfy the condition of Theorem 1, they are called *rationally independent*. Theorem 1 states that the straight line $x_\nu = \lambda_\nu t; \nu = 1, \ldots, m$, where $\lambda_1, \ldots, \lambda_m$ are rationally independent, is mod. 2π everywhere dense in the m-dimensional space.

In this paper we shall consider *phase-modulated oscillations*, the functions

$$H(t) = e^{[i\omega t + \varphi(t)]},$$
where \(c \) is a real constant and \(g(t) \) a real-valued function, almost periodic in the sense of Bohn. Its frequency (in mean) is determined by the constant \(c \), which is called the mean motion of \(H(t) \). We shall prove in this paper that Theorem 2 is valid also for phase-modulated oscillations, i.e. we shall prove the following

Theorem 3. Let \(H_1(t), \ldots, H_m(t) \) be phase-modulated oscillations with rationally independent mean motions. To any given real numbers \(v_1, \ldots, v_m \) and any positive \(\varepsilon \) there exists a number \(t \), satisfying

\[
|H_v(t) - e^{i2\pi v}| \leq \varepsilon; \quad v = 1, \ldots, m.
\]

Apparently we lose nothing by this generalization although Theorem 3 is evidently much more far-reaching than Theorem 2. However, it is well-known that Bohn has proved that the set of numbers \(t \) satisfying (1) is relatively dense and Weyl has proved that the set of numbers \(t \) satisfying (1) has the relative measure \(\frac{2\arcsin \frac{\varepsilon}{m}}{2\pi} \) on the \(t \)-axis. It will be proved that Bohn's result is valid also in the general case, but we lose Weyl's result. This is, in fact, not valid for the single oscillation

\[
H(t) = e^{i(t + u_0 t)},
\]

where \(u_0 \) is rationally independent, is mod \(2\pi \) even where dense in the \(m \)-dimensional space.

The result is brought in closer connection with the theory of almost periodic functions by the following theorem by H. Bohn.

Theorem 4. A complex-valued almost periodic function \(f(t) \), \(-\infty < t < \infty \), satisfying \(|f(t)| \geq k > 0 \), can be written

\[
f(t) = r(t) \cdot H(t),
\]

where \(r(t) \) is a positive almost periodic function and \(H(t) \) is a phase-modulated oscillation.

The mean motion of \(H(t) \) is also called the mean motion of \(f(t) \). If \(f(t) \) is almost periodic and \(a \) and \(b \) are complex constants such that \(f(t) - a \) and \(f(t) - b \) satisfy the condition of Theorem 4, the mean motions of these functions have a rational ratio. This was first proved by Jesen and later Jesen and Fenchel found a more general theorem concerning almost periodic movements on closed or plane surfaces. In this paper we shall deduce some generalizations of Jesen's original theorem in another direction. For the present we observe that Jesen's theorem is a corollary of Theorem 3. In fact, Jesen's theorem may be expressed as the following

Theorem 5. If two almost periodic functions \(f_1(t) \) and \(f_2(t) \), which do not come arbitrarily near to zero, satisfy a linear relation

\[
\alpha_1 f_1(t) + \alpha_2 f_2(t) = \alpha_3,
\]

where \(\alpha_1, \alpha_2 \) and \(\alpha_3 \) are complex constants \(\neq 0 \), the mean motions \(c_1 \) and \(c_2 \) of \(f_1(t) \) and \(f_2(t) \) are rationally dependent.

In fact, if \(c_1 \) and \(c_2 \) were rationally independent, there would according to Theorem 3 exist a number \(t \) such that the complex numbers \(\alpha_1 f_1(t) \) and \(\alpha_2 f_2(t) \) would have nearly equal arguments and that would render the relation (2) impossible.

We shall prove that Theorem 5 is valid for an arbitrary number of almost periodic functions satisfying a similar condition. If, on the other hand, we restrict the number of functions to three, we may replace the linear relation (2) by a homogeneous quadratic equation, and the theorem is still true.

§ 1. Some Preliminary Remarks

For the convenience of the reader we shall first mention some results concerning periodic and limit periodic functions of a denumerable set of variables, which we shall use in the sequel. We shall permanently use the vector notations \(\mathbf{x} = (x_1, x_2, \cdots) \) and \(\mathbf{y} = (y_1, y_2, \cdots) \) and two numbers \(k \) and \(l \) we define the linear combination

\[
k\mathbf{x} + l\mathbf{y} = (kx_1 + ly_1, kx_2 + ly_2, \cdots).
\]

and if one of the vectors \(\mathbf{x} \) and \(\mathbf{y} \) has only a finite number of coordinates \(\pm 0 \), we have the inner product

\[
\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots
\]

A sequence \(\mathbf{x}_n = (x_{n1}, x_{n2}, \cdots) ; n = 1, 2, \cdots \) of vectors is said to converge towards a vector \(\mathbf{x}_0 = (x_{01}, x_{02}, \cdots) \) if \(x_{n\mu} \to x_{0\mu} \) for \(\mu = 1, 2, \cdots \) and \(n \to \infty \). A function \(F(\mathbf{x}) \) is called continuous for \(\mathbf{x} = \mathbf{x}_0 \) if \(F(\mathbf{x}_n) \to F(\mathbf{x}_0) \), when \(\mathbf{x}_n \) runs through a sequence of vectors belonging to the domain where \(F(\mathbf{x}) \) is defined, and converging towards \(\mathbf{x}_0 \). A function is continuous in a domain (i.e., continuous in every point of this domain) if it can be approximated uniformly with any given accuracy by a continuous function depending only on a finite number of variables. In what follows the domain in question is the real infinite-dimensional space. A function \(F(\mathbf{x}) = F(x_1, x_2, \cdots) \) is called limit periodic with the limit period \(2\pi \), if it can be approximated uniformly in the whole space by a continuous function depending only on a finite number of variables and periodic in each of these with a period that is an integral multiple of \(2\pi \). Hence a limit periodic function is continuous. The function \(F(\mathbf{x}) \) can be approximated uniformly in the whole space with any given accuracy by an exponential polynomial

\[
P(\mathbf{x}) = \sum_{\mathbf{r}} a_{\mathbf{r}} e^{i\mathbf{r} \cdot \mathbf{x}}
\]

where \(\mathbf{r} \) runs through a finite set of vectors with rational coordinates, among which only a finite number are \(\pm 0 \).

The numbers \(\lambda_1, \ldots, \lambda_m \) are called rationally independent if a relation

\[
r_1 \lambda_1 + \cdots + r_m \lambda_m = 0
\]

with rational \(r_1, \ldots, r_m \) is possible only when \(r_1 = \cdots = r_m = 0 \). The numbers \(\lambda_1, \lambda_2, \ldots \) are rationally independent if \(\lambda_1, \ldots \) are rationally independent for all values of \(m \).

In the sequel we shall give a very brief account of some principal theorems concerning almost periodic functions. We shall start with two preliminary definitions:

A number \(\varepsilon \) is called a translation number of a function \(f(t), -\infty < t < \infty \) corresponding to \(\varepsilon > 0 \) if

\[
|f(t+\varepsilon) - f(t)| \leq \varepsilon
\]

for \(-\infty < t < \infty \).

A function \(f(t) \) is called almost periodic if it has the following property

(i) The set of translation numbers of \(f(t) \) corresponding to any \(\varepsilon > 0 \) is relatively dense.

It is a main result of the theory of almost periodic functions that any of the following two properties is equivalent to the preceding one:

(ii) To any \(\varepsilon > 0 \) exists an exponential polynomial

\[
\sum_{\lambda} a_{\lambda} e^{i\lambda \cdot t},
\]

where \(\lambda \) runs through a finite set of real numbers, approximating \(f(t) \) everywhere with the accuracy \(\varepsilon \).

(iii) There exist a series of linearly independent real numbers \(\beta_1, \beta_2, \ldots \) and a function \(F(\mathbf{x}) \) with the limit period \(2\pi \) such that

\[
f(t) = F(\beta t) = F(\beta_1 t, \beta_2 t, \cdots).
\]

The function \(F(\mathbf{x}) \) is called a spatial extension (or the spatial extension, although \(F(\mathbf{x}) \) is not uniquely determined) of \(f(t) \).

The equivalence of the two latter properties is rather easily proved and it is also rather simple to prove that they imply the property (i), but it is much more difficult to prove that (i) implies (ii) or (iii). This is the main theorem in the theory of almost periodic functions. In the sequel we shall almost exclusively use the property (iii). From the theory of almost periodic functions we also have

\[\textbf{Theorem 6. The set of values assumed by the spatial extension of an almost periodic function } f(t) \text{ is a subset of the closure of the set of values assumed by } f(t).\]
Theorem 7. The set of common translation numbers of a finite number of almost periodic functions, corresponding to an arbitrary \(\varepsilon > 0 \) is relatively dense.

Sum and product of a finite number of almost periodic functions are almost periodic, and if \(g(t) \) is almost periodic the function \(e^{ig(t)} \) is also almost periodic.

It is important that the numbers \(\beta_1, \beta_2, \ldots \) in (iii) can be chosen in a great variety of manners. E.g., any set \(\gamma_1, \gamma_2, \ldots \) of linearly independent numbers such that any \(\beta_j \) can be written as a linear combination with rational coefficient of a finite number of the \(\gamma_i \)'s. From this follows further

Theorem 8. To a sequence \(f_1(t), f_2(t), \ldots \) of almost periodic functions exist a sequence \(\beta_1, \beta_2, \ldots \) of rationally independent numbers and a sequence \(F_1(\omega), F_2(\omega), \ldots \) of limit periodic functions such that

\[
f_\nu(t) = F_\nu(\beta t); \quad \nu = 1, 2, \ldots,
\]

and the sequence \(\beta_1, \beta_2, \ldots \) can be chosen such that it contains any given sequence of rationally independent numbers as a subsequence.

From the theory of almost periodic functions follows further

Theorem 9. If a denumerable set \(f_1(t), f_2(t), \ldots \) of almost periodic functions satisfy an equation

\[
\Phi(f_1(t), f_2(t), \ldots) = 0,
\]

where \(\Phi(u_1, u_2, \ldots) \) is continuous when \(u_\nu \) for \(\nu = 1, 2, \ldots \) belongs to the closure of the set of values assumed by \(f_\nu(t) \), then spatial extensions \(F_1(\omega), F_2(\omega), \ldots \) satisfy the equation

\[
\Phi(F_1(\omega), F_2(\omega), \ldots) = 0.
\]

Theorem 10. If \(G(\omega) \) has the limit period \(2\pi \), and \((r_1, r_2, \ldots) \) is a vector with rational coordinates, of which only a finite number are \(\neq 0 \), the function

\[
e^{i(r_1 x_1 + r_2 x_2 + \cdots + G(\omega))}
\]

has the limit period \(2\pi \).

\[\text{§ 2. The Mean Motions of Limit Periodic and Almost Periodic Functions.}\]

A continuous argument of a continuous function \(P(\omega) = P(x_1, x_2, \ldots, x_n) \) with the period \(2\pi \) in each variable and not assuming the value 0 can evidently be written

\[
\arg P(\omega) = p_1 x_1 + p_2 x_2 + \cdots + p_m x_m + Q(\omega),
\]

where \(p_1, \ldots, p_m \) are integers and \(Q(\omega) \) is continuous and has the period \(2\pi \). For a limit periodic function we have

Theorem 11. If \(F(\omega) = F(x_1, x_2, \ldots) \) has the limit period \(2\pi \) and satisfies \(|F(\omega)| \geq k > 0 \), a continuous argument of \(F(\omega) \) can be written

\[
\arg F(\omega) = r_1 x_1 + r_2 x_2 + \cdots + G(\omega) = r\omega + G(\omega),
\]

where \(r_1, r_2, \ldots \) are rational numbers, of which only a finite number are \(\neq 0 \), and \(G(\omega) \) has the limit period \(2\pi \).

The vector \(r \) is called the mean motion vector of \(F(\omega) \).

For the proof we consider a sequence \(P_1(\omega), P_2(\omega), \ldots \) of continuous functions with the following properties: (i) Each function depends only on a finite number of variables and has period that is an integral multiple of \(2\pi \). (ii) The functions \(P_\nu(\omega) \) converge uniformly towards \(F(\omega) \) and satisfy

\[
|F(\omega) - P_\nu(\omega)| \leq \frac{k}{2}, \quad \nu = 1, 2, \ldots.
\]

We can choose continuous arguments such that

\[
|\arg F(\omega) - \arg P_\nu(\omega)| < \frac{\pi}{2}, \quad \nu = 1, 2, \ldots
\]

and we have for any integer \(\nu \)

The following proof is very similar to a proof of Theorem 4 given by...
\[\arg P_r(\omega) = r_1x_1 + r_2x_2 + \cdots + Q_r(\omega), \]

where \(r_1, r_2, \cdots \) are rational numbers, of which only a finite number are \(\pm 0 \), and \(Q_r(\omega) \) is a continuous function depending on a finite number of variables and having a period that is an integral multiple of \(2\pi \). From this and \((3) \) follows

\[\arg F(\omega) = r_1x_1 + r_2x_2 + \cdots + G(\omega), \]

where \(G(\omega) \) is continuous and bounded. But it also follows that the numbers \(r_1, r_2, \cdots \) do not depend on \(\nu \). Hence it follows that \(Q_r(\omega) \) converges towards \(G(\omega) \), which implies that \(G(\omega) \) has the limit period \(2\pi \).

Concerning almost periodic functions we have

Theorem 12. Let \(f(t) \) denote an almost periodic function and \(F(\omega) \) its spatial extension such that

\[f(t) = F(\beta_1 t, \beta_2 t, \cdots), \]

where \(\beta_1, \beta_2, \cdots \) are rationally independent real numbers. If \(f(t) \) satisfies the condition \(|f(t)| \geq k > 0 \), continuous arguments of \(F(\omega) \) and \(f(t) \) can be written

\[\arg F(\omega) = r_1x_1 + r_2x_2 + \cdots + G(\omega), \]

and

\[\arg f(t) = ct + g(t), \]

where

\[c = r_1\beta_1 + r_2\beta_2 + \cdots \]

and

\[g(t) = G(\beta_1 t, \beta_2 t, \cdots), \]

i.e. \(g(t) \) is almost periodic.

The constant \(c \) is called the mean motion of \(f(t) \).

The theorem is an immediate consequence of Theorems 10 and 11. It contains Theorem 4 as a special case.

§ 3. An Auxiliary Theorem on Convergence in an Infinite-Dimensional Space.

A denumerable set \(\mathbf{a}_\mu = (a_{\mu 1}, a_{\mu 2}, \cdots) ; \mu = 1, 2, \cdots \) of finite-dimensional vectors, each with only a finite number of its coordinates \(\pm 0 \), is called a complete set of linearly independent vectors if every vector with only a finite number of its coordinates \(\pm 0 \) in one and only one way can be written as a linear combination of a finite number of the vectors \(\mathbf{a}_\mu \).

This will be the case if and only if any finite number of the vectors \(\mathbf{a}_\mu \) are linearly independent and each of the unit vectors \(\mathbf{e}_1 = (1, 0, 0, \cdots), \mathbf{e}_2 = (0, 1, 0, \cdots), \cdots \) can be written as a linear combination of a finite number of the vectors \(\mathbf{a}_\mu \).

For the proof of a generalization of Theorem 3 to a denumerable set of phase-modulated oscillations we shall need the following theorem.

Theorem 13. Let \(\mathbf{a}_1, \mathbf{a}_2, \cdots \) be a complete set of linearly independent vectors, each with only a finite number of its coordinates \(\pm 0 \), and let \(K_1, K_2, \cdots \) be a sequence of positive numbers. Any sequence \(\mathbf{x}_v = (x_{v1}, x_{v2}, \cdots) ; v = 1, 2, \cdots \) of vectors satisfying

\[|\mathbf{a}_v \cdot \mathbf{x}_v| = |a_{v1}x_{v1} + a_{v2}x_{v2} + \cdots| \leq K_v; \quad \mu = 1, 2, \cdots, \nu \]

\[\nu = 1, 2, \cdots \]

possesses a convergent subsequence.

In fact, for each \(n \) we have a representation

\[\mathbf{x}_v = a_{n1}\mathbf{a}_1 + \cdots + a_{nN}\mathbf{a}_N, \]

which implies that

\[x_{v1} = a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{nN}x_{N} \]

and from \((4) \) and \((5) \) follows that

\[x_{v1} \leq |a_{n1}|(|\mathbf{a}_1 \cdot \mathbf{x}_v| + \cdots + |\mathbf{a}_N \cdot \mathbf{x}_v|) \leq |a_{n1}|K_1 + \cdots + |a_{nN}|K_N; \quad v = n, n + 1, \cdots \]

\[\nu = 1, 2, \cdots \]

\[|x_{v1}| \leq K_n^*; \quad n = 1, 2, \cdots; \quad \nu = 1, 2, \cdots, \]

and it follows by the usual diagonal method that the sequence is a convergent subsequence.

It is easily proved that any sequence of vectors \(\mathbf{a}_1, \mathbf{a}_2, \cdots \), each with only a finite number of its coordinates \(\pm 0 \), and of
which any finite number are linearly independent, can be enlarged to a complete set of linearly independent vectors, e.g., by adding to the sequence a conveniently chosen subsequence of the sequence of unit vectors.

§ 4. An Auxiliary Theorem from the Topology.

The greater part of our theory will be founded on the following topological theorem, which is an immediate consequence of the theory of the Kronecker index of a surface.

Theorem 14. Let \(\mathbf{y} = f(\mathbf{x}) \) or \(y_i = f_i(x) \), ..., \(y_m = f_m(x) \) be a continuous vector function in \(n \)-dimensional space. If there exists a constant \(K \) such that \(|f_i(x)| \leq K \) for \(i = 1, \ldots, m \) and all vectors \(\mathbf{x} \), the vector function \(\mathbf{y} = \mathbf{x} + f(\mathbf{x}) \) maps the total \(n \)-dimensional space on itself.

Generally, of course, the mapping is not a one-to-one-correspondence. For the infinite-dimensional space we shall prove the somewhat more general theorem:

Theorem 15. Let \(\mathbf{a}_1, \mathbf{a}_2, \ldots \) denote a complete set of linearly independent real vectors, \(K_1, K_2, \ldots \) positive numbers and \(Q_1(x), Q_2(x), \ldots \) continuous real functions satisfying \(|Q_v(x)| \leq K_v \) for \(v = 1, 2, \ldots \), \(Q_v(x) \) are linearly independent and \(v_1, v_2, \ldots \) arbitrary real numbers, there exists a vector \(\mathbf{a} \) such that

\[
\mathbf{a}_v \mathbf{x} + Q_v(\mathbf{x}) = y_v; \quad v = 1, 2, \ldots
\]

At first we shall restrict our considerations to the equation

\[
\mathbf{a}_v \mathbf{x} + Q_v(\mathbf{x}) = y_v; \quad v = 1, \ldots, m.
\]

It is easily proved that these equations possess a solution. In fact, we can enlarge the system so that we obtain a new system

\[
\mathbf{b}_v \mathbf{x} + R_v(\mathbf{x}) = y_v; \quad v = 1, \ldots, N,
\]

where \(\mathbf{b}_1, \ldots, \mathbf{b}_N \) are linearly independent \(N \)-dimensional vectors such that for \(v = 1, \ldots, m \) the coordinates of \(\mathbf{b}_v \) are identical.

\footnote{Cf. e.g. J. Tannery: Introduction à la théorie des fonctions d'une variable, 2. éd., vol. 2, Paris 1910. Note of M. J. Hadamard.}

§ 5. The Main Theorems.

From Theorems 11 and 15 follows immediately

Theorem 16. Let \(\mathbf{F}_v(\mathbf{x}) = F_v(x_1, x_2, \ldots) ; v = 1, 2, \ldots \) be a sequence of functions with the limit period \(2\pi \) and satisfying \(|F_v(\mathbf{x})| \geq k_v > 0 \) for all vectors \(\mathbf{x} \). If the mean motion vectors corresponding to any finite number of the functions \(\mathbf{F}_v(\mathbf{x}) \) are linearly independent and \(v_1, v_2, \ldots \) are arbitrary real numbers, there exists a vector \(\mathbf{x} \) such that

\[
\arg F_v(\mathbf{x}) = v_v; \quad v = 1, 2, \ldots
\]

In fact, if the set of mean motion vectors is not a complete set of linearly independent real vectors, we can make it complete by enlarging the system of functions \(\mathbf{F}_v(\mathbf{x}) \).

For a finite set of almost periodic functions we have

Theorem 17. If \(c_1, \ldots, c_n \) are rationally independent real numbers and \(g_1(t), \ldots, g_n(t) \) are arbitrary almost periodic functions, there exists to any given real numbers \(v_1, \ldots, v_n \) and any positive number \(t \) satisfying

\[
|c_v t + g_v(t) - v_v| \leq \varepsilon \quad \text{(mod. } 2\pi) ; \quad v = 1, \ldots, n,
\]

the curve \(x_v = c_v t + g_v(t) ; v = 1, \ldots, n \) is mod. \(2\pi \) everywhere dense in the \(n \)-dimensional space.
According to Theorem 8 we choose a sequence \(\beta_1, \beta_2, \ldots \) of rationally independent real numbers, where \(\beta_1 = c_1, \ldots, \beta_n = c_n \), such that
\[
c_v t + g_v(t) = \beta_v t + G_v(\beta t); \quad v = 1, \ldots, n,
\]
where the functions \(G_v(\alpha x); \quad v = 1, \ldots, n \) have the limit period \(2\pi \). It follows from Theorem 14 that there exists a vector \(\alpha^* = (x^*_1, \ldots, x^*_n, 0, \ldots) \), satisfying
\[
x^*_v + G_v(\alpha^*) = v.
\]
We can further choose continuous periodic functions \(Q_v(\alpha x) \) each depending only on a finite number of variables, such that
\[
|G_v(\alpha x) - Q_v(\alpha x)| \leq \frac{\varepsilon}{3}; \quad v = 1, \ldots, n.
\]
for all vectors \(\alpha x \). From Kronecker’s theorem follows the existence of a number \(t \) satisfying
\[
|Q_v(\alpha^*) - Q_\alpha(\beta^*)| \leq \frac{\varepsilon}{6}; \quad v = 1, \ldots, n
\]
and
\[
x^*_v - \beta_v t \leq \frac{\varepsilon}{6} \text{ (mod. } 2\pi) ; \quad v = 1, \ldots, n.
\]
Hence
\[
|c_v t + g_v(t) - v| = |\beta_v t + G_v(\beta t) - v| \leq |G_v(\beta t) - Q_v(\beta^*)| + |Q_v(\beta^*) - Q_v(\beta^*)| + |Q_v(\alpha^*) - Q_v(\alpha^*)| + |Q_v(\alpha^*) - Q_v(\alpha^*)| + \varepsilon + \varepsilon + \varepsilon + \varepsilon + \varepsilon = \varepsilon \text{ (mod. } 2\pi),
\]
which proves the theorem.

Theorem 3, announced in the introduction, is evidently equivalent with Theorem 17. We observe that the theorem is not valid for a denumerable set of almost periodic functions. E.g. the pure oscillations \(e^{i\beta_1 t}, e^{i\beta_2 t}, \ldots \), where the numbers \(\beta_1, \beta_2, \ldots \) are rationally independent and converge towards \(\pi \), will never simultaneously obtain values near \(-1 \).

We shall further prove the following generalization of the Kronecker-Bohl theorem.

\section*{§ 6. On Limit Periodic and Almost Periodic Functions Satisfying Linear Relations.}

From Theorem 15 follows

\textbf{Theorem 19.} If a sequence of functions \(F_v(\alpha x) = F_v(x_1, x_2, \ldots) \) with the limit period \(2\pi \) and with the property \(|F_v(\alpha x)| \geq k_0 > 0 \); \(v = 1, 2, \ldots \) for all \(\alpha x \) satisfies a linear relation
\[
\alpha_1 F_1(\alpha x) + \alpha_2 F_2(\alpha x) + \cdots = 0,
\]
where \(\alpha_1, \alpha_2, \ldots \) are complex constants that are \(\pm 0 \), and the series on the left converges for all real vectors \(\alpha x \), the mean motion vectors \(\nu_1, \nu_2, \ldots \) are linearly independent, i.e. the set of mean motion vectors has a finite subset of vectors that are linearly dependent. This is still true even if the condition \(|F_v(\alpha x)| \geq k_0 > 0 \) is satisfied for only one value of \(v \), if for every \(v \) we have a representation
\[
F_v(\alpha x) = |F_v(\alpha x)| e^{i(v + G_\nu(\alpha))}
\]
with \(G_\nu(\alpha) \) continuous and bounded and \(\nu \) is a vector with rational coordinates, of which only a finite number are \(\pm 0 \).

In fact, if the vectors \(\nu \) were linearly independent, according to Theorem 15 there would exist a finite number of functions
\[
\alpha_v x + G_\nu(\alpha^v) + \arg \alpha_v = 0; \quad v = 1, 2, \ldots,
\]
which proves the theorem.
and for $\alpha = \infty$ the left side of (8) would be positive and the relation would not be satisfied.

Theorem 20. Let $f_1(t), f_2(t), \ldots$ be a sequence of almost periodic functions satisfying $|f_\nu(t)| \geq K_\nu > 0; \nu = 1, 2, \ldots$ and let K_ν denote the upper bound of $|f_\nu(t)|; \nu = 1, 2, \ldots$. If $\alpha_1, \alpha_2, \ldots$ are complex numbers different from zero such that $\sum_{\nu=0}^{\infty} |\alpha_\nu| K_\nu$ is convergent and if we have

$$\alpha_1 f_1(t) + \alpha_2 f_2(t) + \cdots = 0,$$

the mean motions c_1, c_2, \ldots of $f_1(t), f_2(t), \ldots$ are rationally dependent.

From Theorem 9 follows that the relation (9) implies an analogous relation between the spatial extensions and the theorem therefore follows immediately from Theorems 19 and 12.

We shall prove some stronger theorems concerning finite sets of almost periodic functions satisfying linear relations. For the sake of brevity a function $r(t) e^{i(c_\alpha t + g_\nu(t))}$, where $g(t)$ is a real almost periodic function and $r(t)$ is a real, non-negative function, will be called a modulated oscillation. It will further be called normal if the set of zeros of $r(t)$ contains no intervals.

Theorem 21. If a finite set of modulated oscillations $f_\nu(t) = r_\nu(t) e^{i(c_\alpha t + g_\nu(t))}; \nu = 1, \ldots, n$ satisfy a linear relation

$$\alpha_1 f_1(t) + \cdots + \alpha_n f_n(t) + \beta = 0,$$

where $\alpha_1, \ldots, \alpha_n$ and β are arbitrary complex numbers ± 0, the mean motions c_1, \ldots, c_n are rationally independent.

If the numbers c_1, \ldots, c_n were rationally independent, we would follow from Theorem 17 that the inequalities

$$|c_\alpha t + g_\nu(t)| + \arg \alpha_\nu - \arg \beta| \leq \frac{\pi}{2} \text{ (mod. } 2\pi); \nu = 1, \ldots, n$$

were satisfied for some value of t in contradiction to the relation (10).

We notice that Theorem 21 is a generalization of theorems mentioned in the introduction. In the case where $\beta = 0$, we have

Theorem 22. If a finite set of modulated oscillations $f_\nu(t) = r_\nu(t) e^{i(c_\alpha t + g_\nu(t))}; \nu = 1, \ldots, n$, of which at least one is normal, satisfy a relation

$$\alpha_1 f_1(t) + \cdots + \alpha_n f_n(t) = 0,$$

where $\alpha_1, \ldots, \alpha_n$ are arbitrary complex numbers that are ± 0, the mean motions c_1, \ldots, c_n satisfy a linear relation

$$r_1 c_1 + \cdots + r_n c_n = 0,$$

where r_1, \ldots, r_n are rational numbers satisfying

$$r_1 + \cdots + r_n = 0,$$
As a very special case of Theorem 21 we have the following theorem, which is a slight generalization of Jessen’s original theorem mentioned in the introduction.

Theorem 23. Let \(f(t) \) be an almost periodic function. We consider all complex numbers \(a \), for which we have a representation

\[f(t) = a + e^{i(a + g(t))}, \]

where \(g(t) \) is an almost periodic function. The values \(c \) corresponding to all possible values of \(a \) are rational multiples of one rational number.

§ 7. On Almost Periodic Functions Satisfying Quadratic Relations.

Theorem 24. Let \(f_1(t), f_2(t), \) and \(f_3(t) \) be three almost periodic functions satisfying \(|f_i(t)| \geq k > 0 \); \(i = 1, 2, 3 \), and let \(c_1, c_2, \) and \(c_3 \) denote their mean motions. If we have a relation

\[a_1 f_1(t)^2 + a_2 f_2(t)^2 + a_3 f_3(t)^2 + b_1 f_1(t) f_2(t) + b_2 f_1(t) f_3(t) + b_3 f_2(t) f_3(t) + k = 0, \]

where at least one of the complex numbers \(a_1, a_2, a_3, b_1, b_2, b_3 \) and \(k \) is \(\pm 0 \), we have a relation

\[r_1 c_1 + r_2 c_2 + r_3 c_3 = 0, \]

where \(r_1, r_2, \) and \(r_3 \) are rational numbers of which at least one is \(\pm 0 \).

From Theorem 9 follows that the spatial extensions \(F_1(x), F_2(x), \) and \(F_3(x) \) satisfy the equation

\[a_1 z_1^2 + a_2 z_2^2 + a_3 z_3^2 + b_1 z_1 z_2 + b_2 z_1 z_3 + b_3 z_2 z_3 + k = 0, \]

and if \(c_1, c_2, c_3 \) were rationally independent it would follow from Theorems 12 and 16 that the equation (13) would possess solutions \(z_1, z_2, z_3 \) with any given set of arguments \(\varphi_1, \varphi_2, \varphi_3 \). Hence it is sufficient to prove the existence of a set of numbers \(\varphi_1, \varphi_2, \varphi_3 \) such that the equation

\[2 \varphi_1 + \text{Arg} a_1 \leq \frac{\pi}{2} \quad (\text{mod. } 2\pi); \quad \nu = 1, 2, 3, \]

\[|\psi_2 + \psi_3 + \text{Arg} a_2| \leq \frac{\pi}{2} \quad (\text{mod. } 2\pi) \]

\[|\psi_3 + \psi_1 + \text{Arg} a_3| \leq \frac{\pi}{2} \quad (\text{mod. } 2\pi) \]

\[|\psi_1 + \psi_2 + \text{Arg} a_3| \leq \frac{\pi}{2} \quad (\text{mod. } 2\pi), \]

where the sign \(< \) holds in at least two of the three last inequalities (If a coefficient is zero, its argument is in this connexion defined as zero). If we put

\[\psi_\nu = \varphi_\nu + \frac{1}{2} \text{Arg} a_\nu; \quad \nu = 1, 2, 3, \]

we obtain a new set of equations

\[|\psi_\nu| \leq \frac{\pi}{4} \quad (\text{mod. } \pi); \quad \nu = 1, 2, 3 \]

\[|\psi_2 + \psi_3 - \alpha_1| \leq \frac{\pi}{2} \quad (\text{mod. } 2\pi) \]

\[|\psi_3 + \psi_1 - \alpha_2| \leq \frac{\pi}{2} \quad (\text{mod. } 2\pi) \]

\[|\psi_1 + \psi_2 - \alpha_3| \leq \frac{\pi}{2} \quad (\text{mod. } 2\pi), \]

to prove our theorem we shall find solutions to this system of equations \(z_1, z_2, z_3 \) with any given set of arguments \(\varphi_1, \varphi_2, \varphi_3 \). Hence it is sufficient to prove the existence of a set of numbers \(\varphi_1, \varphi_2, \varphi_3 \) such that the equation

\[a_1^2 e^{2i\varphi_1} + a_2^2 e^{2i\varphi_2} + a_3^2 e^{2i\varphi_3} + b_1 z_1 z_2 e^{(\varphi_1 + \varphi_2)} + b_2 z_1 z_3 e^{(\varphi_1 + \varphi_3)} + b_3 z_2 z_3 e^{(\varphi_2 + \varphi_3)} + k = 0, \]

is not satisfied for any positive values of \(r_1, r_2, r_3 \). Without restricting the generality we may suppose that \(k \geq 0 \) (if not, we multiply the equation by a convenient factor \(e^{\theta} \)).

Let us first suppose that at most one of the numbers \(b_1, b_2, b_3 \) is zero. In this case it is sufficient to determine \(\varphi_1, \varphi_2, \varphi_3 \) such that

\[|2 \varphi_\nu + \text{Arg} a_\nu| \leq \frac{\pi}{2} \quad (\text{mod. } 2\pi); \quad \nu = 1, 2, 3, \]

\[|\psi_2 + \psi_3 + \text{Arg} b_1| \leq \frac{\pi}{2} \quad (\text{mod. } 2\pi) \]

\[|\psi_3 + \psi_1 + \text{Arg} b_2| \leq \frac{\pi}{2} \quad (\text{mod. } 2\pi) \]

\[|\psi_1 + \psi_2 + \text{Arg} b_3| \leq \frac{\pi}{2} \quad (\text{mod. } 2\pi), \]
when \(\varepsilon_1, \varepsilon_2, \varepsilon_3 \) are chosen conveniently as 1 or \(-1\). If we choose \(\psi_1, \psi_2, \psi_3 \) such that

\[
\begin{align*}
\psi_2 + \psi_3 &= \varepsilon_1 \frac{\pi}{2} \\
\psi_3 + \psi_1 &= \varepsilon_2 \frac{\pi}{2} \\
\psi_1 + \psi_2 &= \varepsilon_3 \frac{\pi}{2},
\end{align*}
\]

the inequalities (16) are satisfied and the sign \(<\) holds in at least two of them. But from the equations (17) results

\[
\psi_1 + \psi_2 + \psi_3 = \pm \frac{\pi}{4} \text{ or } \pm \frac{3\pi}{4},
\]

and it follows that \(\psi_1, \psi_2, \text{ and } \psi_3 \) have also values \(\pm \frac{\pi}{4} \text{ or } \pm \frac{3\pi}{4} \), which proves that the inequalities (15) are satisfied.

If at least two of the numbers \(\alpha_1, \alpha_2, \alpha_3 \), say \(\alpha_1 \) and \(\alpha_2 \), are 0 or \(\pi \) (mod. \(2\pi \)), we choose \(\varepsilon_3 = \pm 1 \) such that \(|\varepsilon_3 \frac{\pi}{2} - \alpha_1| \leq \frac{\pi}{2} \) (mod. \(2\pi \)), and it is sufficient to choose \(\psi_2, \psi_3, \psi_3 \) as solutions of the equations

\[
\begin{align*}
\psi_2 + \psi_3 &= \alpha_1 \\
\psi_3 + \psi_1 &= \alpha_2 \\
\psi_1 + \psi_2 &= \varepsilon_3 \frac{\pi}{2}.
\end{align*}
\]

Finally we consider the case, where at least two of the numbers \(b_1, b_2, \text{ and } b_3 \), say \(b_1 \) and \(b_2 \), are zero. It is then sufficient to determine \(\psi_1, \psi_2, \) and \(\psi_3 \) such that

\[
|2 \psi_1 + \text{Arg } a_1| < \frac{\pi}{2} \text{ (mod. } 2\pi),
\]

\[
|2 \psi_2 + \text{Arg } a_2| < \frac{\pi}{2} \text{ (mod. } 2\pi),
\]

\[
|2 \psi_3 + \text{Arg } a_3| < \frac{\pi}{2} \text{ (mod. } 2\pi),
\]

As \(\psi_3 \) occurs in only one inequality, it is sufficient to consider \(\psi_1 \) and \(\psi_2 \). If we use (14) once more, we obtain the inequalities

\[
|\psi_1| < \frac{\pi}{4} \text{ (mod. } \pi),
\]

\[
|\psi_2| < \frac{\pi}{4} \text{ (mod. } \pi),
\]

\[
|\psi_1 + \psi_2 + \alpha| < \frac{\pi}{2} \text{ (mod. } 2\pi),
\]

which have solutions. In fact, any angle between \(-\frac{\pi}{2} \text{ and } \frac{\pi}{2}\) can be written as \(\psi_1 + \psi_2 \), where \(|\psi_1| < \frac{\pi}{4} \text{ and } |\psi_2| < \frac{\pi}{4} \), and any angle between \(\frac{\pi}{2} \text{ and } \frac{3\pi}{2} \) can be written \(\psi_1 + \psi_2 \) with \(|\psi_1| < \frac{\pi}{4} \text{ and } |\psi_2| < \frac{5\pi}{4} \). This proves the theorem.

Theorem 25. If the constant \(k \) vanishes, the numbers \(r_1, r_2, \text{ and } r_3 \) can be chosen such that

\[r_1 + r_2 + r_3 = 0. \]

We choose a real number \(c \) that cannot be written \(r_1 c_1 + r_2 c_2 + r_3 c_3 \), and Theorem 25 follows, when Theorem 24 is applied to the functions \(f_1(t) e^{ic_1 t}, f_2(t) e^{ic_2 t}, f_3(t) e^{ic_3 t} \).