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A
mong the experimental tests of a theory of nuclear force s

one of the most important is the comparison of its result s
concerning the process of /3-decay with experimental evidence .
From the assumptions on which a theory of nuclear forces i s
based, it should be possible not only to derive the magnitud e
and the general character of these forces, but also to calculat e
the lifetime of ß-radioactive elements and to predict the shap e
of the energy distribution curve of the ß-rays emitted . A theory

based on the assumption of a nuclear meson field must further -

more yield a value of the lifetime of a free meson, which agrees

with the value of the lifetime of mesons in cosmic radiation .

Various types of a meson theory of nuclear forces have been

developed, but, so far, none of them has proved to be satisfactor y

in all respects . Particularly, the scattering of fast neutrons b y

protons is a phenomenon for which the experimental results
seem to be very difficult to bring into harmony with the theoretical
expectation . One type of a meson theory has been put forwar d
by MØLLER and ROSENFELD . [1 ] who regard the meson field as

a superposition of two components, one of which is described

by a vector and the other by a pseudoscalar wave-function .

Against this theory (in the following denoted as the MR-theory) th e

objection has been raised that the results concerning the characte r

of the scattering of fast neutrons by protons are in disagreemen t

with known experiments . In fact, it follows from the theory that

a beam of fast neutrons will be scattered in such a way that th e

intensity in the direction anti-parallel to the incident beam is large r

(about 1 .5 times) than the intensity in the direction perpendicula r

to it, the angles being measured in a ,system of reference wher e
the centre of gravity of the two colliding particles is at rest . The

experiments, on the contrary, seem to indicate that the ratio of
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the intensities anti-parallel and perpendicular to the neutron beam

is smaller than unity . Two remarks should be made in this con-

nection . First, the accuracy of the measurements is so far not

sufficient to allow a decisive statement . Even the experiments o f

CHAMPION and POWELL [2], who use the powerful photographic

method, are not accurate enough . It is possible, however, that

an improvement in the geometrical arrangement will lead to

conclusive results . Second, as pointed out by HULTHÉN [3], the

discrepancy in question, if real, will appear in every consistent

meson theory of nuclear forces and not in the MR-theory, only .
Owing to the progress in the experimental . technique durin g

the last years, a very extensive and well-founded knowledge o f

the shape of different ß-ray spectra could be gathered . In contras t

to earlier investigations, the recent measurements seem to indicat e
4] that, in the case of the so-called allowed transitions, the spectra

coincide-at any rate for not too small energies of the electron

emitted-with the curve given by the original formula o f

FERMI [5] . In the region of lower energies, a certain deviation

from the Fermi law has been found. Whether the /9-spectrum

really differs from the pure Fermi distribution law and is given
by another formula as, for example, the generalized Fermi law

[13], which, also follows from the present investigation, is diffi-

cult to decide with certainty . In the case of positron emitters ,
this latter law leads to a curve which differs from the pure
Fermi law only little and in the same direction as the expe-

rimentally found spectra, and the elements examined were ob-

viously all positron emitters . On the other hand, the deviatio n
may be due to the scattering of the ß-rays from the support, a n

effect which, if sufficiently large, also would explain the devia-

tion from an original distribution given by the pure Fermi law .
If it is true that the ß-spectrum is given by a generalized Fermi
formula, the deviation from the pure Fermi law would be more
pronounced in the case of electron emitters which are no t
found among the light nuclei so far investigated . All these
considerations show that it may be of some value to examine
what kind of law for the ß-decay follows from the MR-theory . ,

In an earlier papel ([6], in the following quoted as I), the
theory of ß-decay was developed for light nuclei from the poin t
of view of the MR-theory of the nuclear meson field . The calcula-
tions resulted in a formula for the disintegration probability
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which besides terms of the Fermi type includes terms differing

from them. Whether such terms really are of significance for th e

shape of the spectrum' or not depends on the relative magnitud e

of the coefficients . Since the number of constants involved i n

these coefficients is very large, the discussion of all possibilitie s

is rather troublesome, and the formula would become still mor e

complicated in the case of heavier radioactive elements . It is

possible, however, to reduce the number of independent con-

stants and to determine their values, and the final formula fo r

the energy distribution becomes easy to survey .

The notations used in the present paper are the same as in I .

Determination of the Constants .

The method applied to the derivation of the decay probabilit y

of heavy nuclei is similar to that used in I . The starting poin t

is a Hamiltonian describing a system of heavy particles (nucleons) ,

light particles (electrons, neutrinos), and the meson field (vector

and pseudoscalar). With this expression for the Hamiltonian the

probability is derived for a process in which a neutron is trans -

formed into a proton at the same time as a neutrino in a negativ e

energy state disappears and an electron in a positive energy

state is created. This probability (per unit time) is given by th e

formula

P(E s) _ ?~ ~ (W +E, -Es)j(n,slHß~n o ,c) 2 ,

where Hß is the part of the Hamiltonian responsible for th e

ß-emission, no and n. denote the initial and the final states of th e

nucleus, and v and s the states of the neutrino and the electron ,

respectively. The energies of the electron and the neutrino ar e

denoted by E2 and while W = Eno -En is the total energ y

released in the ß-process . The expression Hß is. built up of wave -

functions and contains a number of universal constants . Thus ,

the constants 9'1 and g2 govern the strength of the coupling

between the nucleons and the vector meson field, while the inter -

action between the nucleons and the pseudoscalar part of th e

meson field depends on the value of the constants fl and f2 .

Similarly, the constants gi , g2 and fl , f2 appear in the term s

( 1)
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which describe the interaction between the light particles an d

the vector and the pseudoscalar meson field, respectively . All
these constants have the dimensions of electric charge .

Furthermore, the expression Hp contains four constants of a
character deviating from that of the f's and g's . The Hamiltonian
of the nuclear system is not defined in a unique way by the
demand of relativistic invariance . In fact, we can write down
four expressions (I, formula 10) which are relativistically in -
variant and which, therefore, can be added to the Hamiltonia n
provided with the constant factors n, 77 " , T " , respectively .
According as such a coefficient is put equal to I or 0, the cor -
responding term will or will not appear in the Hamiltonian .

One of he main points of the MR-theory is in the expressio n
for the nu fear force to make disappear terms with a singularit y
of dipole 'type . The singular terms originating from the vecto r
and the pseudoscalar meson field, respectively, become equa l
with opposite sign, and cancel each other, i f

2

	

2
f2 g 2 •

A more effective reduction in the number of constants involve d
can be achieved by following MØLLER [7], who has developed a
formalism in which the vector and the pseudoscalar parts of th e
meson field are united into one five-dimensional scheme. 'The
constants connected with the two kinds of fields are, then, n o
longer independent and have to satisfy the following relations :

(2)

Moreover, if this formalism is adopted, it will be quite natura l
to demand that the four terms provided with the factors n, n', n"
and n"' and added to the Hamiltonian should be invariant with '
respect to the group of rotations in the whole five-dimensiona l
space in question . From this assumption we get as a necessary
condition
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his way, the number of constants is reduced from twelve
to six. The values of. the universal constants g1 g2, gn g2 can
now be fixed by busing some experimentally known properties
of atomic nuclei and mesons .

As regards the two constants 0 1 , they and g2 aie found from
thevalue of the binding energy of the deuteron and the range o f
the nuclear force . We have approximately

1	 g 2 _ 1

	

(4)

4 n he
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As regards the values of the constants gl and 4 2 we have, as
already mentioned, to consider the connection between th e
ß-decay of light elements and the radioactive properties of cosmi c
ray mesons . In the meson theory the (3-disintegration is imagine d
to take place in two steps . In the first step, a meson is virtually
created under the transition of a nucleon from the neutron t o
the proton state . In the second step, the meson is annihilate d
into an electron and an antineutrino . The probability of the
second step, for which the decay constant of the meson is a
direct measure, is an essential part of the probability of th e
whole complex process of fl-decay .

Thus, the constants gi and g2 appear both in the expression
found in I for the decay constant ) .rad of a light ß-radioactive
nucleus (the transition being an allowed one) and in the deca y
constant of a free meson . According as the meson is of vecto r
or of pseudoscalar type, we get for the decay probability th e
following formulae [8, 9] :
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where Mm and ,u are the masses of the meson and of the electron ,
respectively . No agreement between the lifetimes of light /3-radio-
active nuclei and the lifetime of a meson can be obtained, i f
we consider vector mesons, only . For every possible choice of
g1 and 6'

2
compatible with the empirical values of ;.rad, the cal-
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culated lifetime of the vector meson turns out to be about 100 0

times smaller than the measured one which is of the order of

magnitude of 2 x 10-s sec . [10] . As soon as we assume, how -

ever, that the cosmic ray mesons are of the pseudoscalar typ e

with the decay. constant (5b) . the discrepancy disappears [11 ] ,

if only

The ratio between g l and g2 has to be chosen of the order of

magnitude of 0 .02 -- .0 .05. From this assumption it follows that

the vector mesons created simultaneously with the pseudoscala r

mesons in the upper layers of the atmosphere will, due to their

very short lifetime, disintegrate before they can reach the surfac e

of the earth and, consequently, only pseudoscalar mesons wil l

be found in our laboratories where the measurements ar e

performed.
Tf the condition (6) is fulfilled, we get, from the disintegratio n

formula in I, an energy distribution which, for ap = 1 follows

the curve given by the Fermi function

F(E) = EVE 2 -1 (W-E)2

	

( 7)

and for 71 = - 0 the curve

(E) =F(E) (1 ± ~}
,

	

(8)

where the upper sign refers to the emission of positrons and the

lower to the emission of electrons . Actually, we have

P(E) dE _ ~s ;M
,,,~4

()FE)(1 + ( 1	
)2 / (h)2 2

I MI2 dE (9)
.

Here, 1M I 2 is a matrix element depending on the wave-func-

tions of the nucleons . It is independent of the value of ri', but is

different according as the constant has the value 0 or 1 . The

empirical selection rules seem to indicate that the first of thes e

matrix elements should be preferred, since it is of the prope r

spin-dependent type [12] . It will, therefore, be appropriate to
put the constant 'ri equal to O .
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It should be mentioned here that the spectrum given by the
function (8) is the sanie as that which, as pointed out by Finxz
[13], follows from the most general Fermi theory . For positrons,
the shape of the spectrum differs from the pure Fermi distri-
bution (7) only in the region of lower energies (cf . I, F.ig .1), bu t
it is difficult to say whether the deviation from the distribution (7)
fo, nd experimentally (all light elements for which the transition
is allowed are positron emitters) is of the type given by th e
generalized Fermi function (8) .

Derivation of -the Disintegration Formula.

The formula for the decay probability derived in I applie s
to elements with a small nuclear charge Z fulfilling the condition

Za <(1,

	

, (10)

where a is the fine structure constan t

$e

	

1

The simplifications carried out in the preceding Section no w

allow to extend the calculation to heavier elements for which
the condition (10) is not satisfied .

The method used in this case is similar to that adopted in I ,

where all details of the calculations can be found .

We start with the expression for the Hamiltonian and go on

with the evaluation of the quantity (1) . It must be noticed that ,

despite the relation (6), it is not allowed in the Hamiltonian to
cancel all terms with g i . Although, in the final formula, the
terms with the coefficient gi or gi generally are small compare d
with terms with g2, they may in some cases play a decisive part,

when the other terms happen to vanish due to selection rules .

In order to find the matrix element in (1) belonging to the

transition of the nucleus from the initial stage no to the final
state n, we insert the wave-functions of the light particles . The

neutrino is not affected by the charge of the nucleus and ca n
therefore be described by means of a plane wave while, for the

electrons, exact solutions of the wave equation have to be applied .
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The expressions involving such wave-functions are integrals ex -

tended over the volume of the nucleus . Since we may assume

that the radial part of the electron wave-function Ts (x) (x stands

for all spatial coordinates, and s denotes the electron state) does
not vary appreciably inside the nucleus, we can replace th e
radial part of the wave-function by its value at the boundary
of the nucleus, a value which in its turn is nearly equal to th e
value-taken in the same point-of an exact solution of the

wave equation for a Coulomb field .

After the summation over all states of the neutrino belongin g
to the energy E6 , we get the formula

P (E) dE =
2zc 1

(W-E) 2 dE U,

	

(11 )
h (he)'

	

s

where the terms U are composed of the electron wave-function s

and the Dirac spin operators. The summation is extended ove r

all electron states with the energy Es . The four-component wave -
functions in the Coulomb field can be used in the shape give n

by RosE [14], who denotes the radial parts of the two first an d

the two last components by fx and gz, respectively, where x is

a quantity connected with the total angular momentum number .

The functions f and gz are given by the formula

aLEF(y+1-}-i
P

,2y+1 ;2ipr)Æc.c . .

Here. p is the momentum of the electron, F is the confluent hyper -

geometric function, F is the gamma function, and

y = vx 2 - a 2 Z 2 .

All quantities are expressed in atomic units . With these notation s
the sum in (11) transforms into a sum ' V of terms, each of whic h

is a function of the fx, gx, and the unit vector



Generally, it is unnecessary to extend the summation over
all x . The functions f, and g, are taken at the boundary o f

the nucleus : r ru ,,el «« 1 . From (12) it is seen that the values .

of f and g, for rnucl decrease very rapidly with increasing

x I . In most cases, we can confine ourselves to the terms wit h

x = +1, but in some terms V, particularly in those which

involve derivatives of the wave function, it is necessary to tak e

also terms with x = 2 into consideration .

Discussion of the Decay Formula .

The final formula giving the probability P(E) dE per unit

time for the emission of an electron with the energy (expressed

in units ,a c2) between E and E + dE consists of a number o f

terms. The most important terms are the "Fermi terms ", i. e .

terms which in the limit of light nuclei would give a pure o r

generalized Fermi distribution . Other terms containing an extra

factor vE 2 - 1 or (E2 - 1) are in addition multiplied by

	 'A
(hc) .2 4 w 2 . (B, B) (f+i)E

	

(13) .

Here, w 2 (B, B) (cf. I, formula 42) is a matrix element of th e

Gamow-Teller type [12] :

(B,B)=SSB(x')B`(x)dx'dx,

	

(14)
where

N

B _ f S Zjfn Q< <) 6<<)

	

dx( t-1) dx(<+ 1) . . . dx( N)
t = 1

Mm 200 o
(‚

m
) 2 40000 and may, therefore, be cancelled .

"'
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The "Fermiterms " can be classified according as the constan t

factor is g2, g 1û2 or O. Mostly, only terms with the large coeffi-

cient g2 have to be retained, the others being small owing to

the relation (6) . One of such terms with 9 z is
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is an integral over the wave-functions F of the nucleus in the
initial and final states, Q is an operator transforming the i'th

nucleon from the neutron state into a proton stale, N is the

number of the nucleons in the nucleus, and a-ß`) is the Pauli spin
operator to the i'th nucleon .

The most important case is that of an allowed transition ,
i . e . a process for which the matrix element (14) attains it s
maximum valu e

w 2 (BB) = Sî (Bx Bx + B' B u + Bz Bz) dx' dx 3 .

In this ease, the result is quite independent of the value of 77 ' .

All terms with 97 and 4,g 2 are small and can be cancelled. The
remaining terms are the same for ri' = 0 and 97 ' - 1 . In the
limit of small Z, i . e . when condition (10) is satisfied, and fo r
that part of the ß-spectrum wher e

a ZE
«1 ,

P

we get, as it was to be expected, the formula (9) with n O .
Actually, it is seen from (12), when expanding in series, tha t
f_1 is, for Z a << 1 small of the order of magnitude of r., 1 << 1
as compared with f.+ l, and the other terms with g2, viz .

t~)~
(fI)s u'io (B , B) ,

where

wio (B , B) = S l(B (x ') B* (x)) (n (x)' 2 (x'))

(B (x') n (x')) (n (x) B*(x))

	

( 16)

H- (11(x') n (x)) (n (x') B* (x)) } dx' dx

are negligible, so that (13) is the only remaining term . We get a
ß-spectrum of a generalized Fermi type described by the func-
tion (S).

With increasing Z we get a deviation from the Fermi distri -
•bution and the energy distribution is now characterized by afunctio n

F (E) C(E, Z)

(15)
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which is found in substituting the proper function f-i-1 into (13) .
The correctional factor C becomes, of course, equal to 1 for smal l

Z . Moreover, with increasing Z the function f remains small as

compared with f+1 only in the region where
a

Z E « 1, i, e . for
P

sufficiently great energies . This means that, if only w10 does

not vanish, the correction introduced by the term (15) is not

negligible and makes itself perceptible in a part of the /3-spectru m

which lies below a certain electron energy, this limit energ y

becoming higher and higher with increasing nuclear charge Z .

In the case of a forbidden transition, i. e . when w2 (B, B) va-

nishes, the situation is cha nged. The term (13) disappears, and if w 1 0
is also equal to 0, other terms with the coefficient g 1 g 2 and with other

matrix elements will now be responsible for the general character

of the ß-spectrum. In contrast to the case of allowed transitions ,

there is now a difference between the formulae for n' = 0 and

1 . In the disintegration formula we have terms of pure

Fermi type and of the type F(E) (E 2-1) (cf. I, Fig. 2). The

decay constant, which is simply the integral over P(E) from

E = 1 to E W, is now smaller and, consequently, the lifetime is
longer than in the case of an allowed transition with the same

maximum energy W, since the constant coefficient grgz in P(E)
is smaller than the coefficient g2 appearing in the decay formula

for allowed transitions. Also the selection rules for the transitio n

are now given by the differing form of the matrix element s

appearing in the disintegration formula.

Summary .

A theory of 13-decay for elements with high nuclear charge s

is developed on the lines of the special meson theory propose d

by MOLLER and ROSENFELD . The values of the universal con -

stank involved have been determined from the requirement o f

a consistent qualitative description of the nuclear forces, th e

ß-process and the disintegration of the meson. The discussion

of the disintegration formula indicates that, for an allowe d

transition, the spectrum is represented by the generalized Fermi

formula. For a forbidden transition also terms of other typ e

can 'tetur .
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