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INTRODUCTIO N

ccording to HEISENBERG 1> , the well-known convergence difficu l

ties, inherent in all quantum field theories so far developed ,

are due to the existence of a new universal constant of th e
dimension of a length . This constant plays the role of a minima l

length representing a limit to the application of the ordinary

concepts of quantum field theory in a similar way as the exi-

stence of Planck's constant limits the unambiguous applicatio n
of classical mechanical concepts to atomic systems . The correct

incorporation of this universal length .into the theory is still

unknown .

Recently, however, HEISENBERG 2) has taken an important step
towards the future theory . In ordinary quantum mechanics a n

atomic system is completely defined by the Hamiltonian function
of the system . Now, the assumption of a Hamiltonian which b y
means of the Schrödinger differential equation defines a con-

tinuous time-displacement of the wave• function seems to be in
contradiction with the existence of a universal minimal length .
HEISENBERG therefore concludes that the Hamiltonian function

will lose its predominant importance in the future theory, an d
that the atomic systems in this theory must be defined by other

fundamental functions .

A primary problem will he to determine these functions . This
problem is intimately connected with the question which quantitie s

of the current theory will keep their meaning or, in other words ,

which quantities will still be regarded as `observable' in the futur e
theory. Although it is difficult to give an exhaustive answer to

this question at present, it is natural to assume that any quan-
tity, whose determination is unaffected by the existence of th e

minimal length, may be considered as `observable .'

1*
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Such quantities are the energy and momentum of a fre e

particle, the cross section of any collision process with

or without creation and annihilation of particles, and the dis-

crete energy values of atomic systems in closed stationar y

states . In quantum mechanics these quantities may be calculate d

by means of the Schrödinger equation when the Hamiltonia n

of the system is known . The collision cross sections, however ,

are given more directly by the matrix elements of a certai n

unitary matrix S, which in a rather complicated way depends

on the Hamiltonian . Therefore HEISENBERG assumes that in th e

future theory this characteristic matrix S or an Hermitian ma-

trix

	

connected with S by the relation

S = ei o

will take over the role played by the Hamiltonian in quantu m
theory, i . e . in future the atomic systems should be defined b y

giving the matrices S or 1i .

In quantum mechanics the Hamiltonian of a special syste m
could be obtained by a simple procedure from the classica l

Hamiltonian of the system. The most urgent, and until no w

entirely unsolved, problem will now be that of finding the pro-
cedure by which the characteristic matrix may be derived i n

each special case. As a first step towards a solution of this pro -

blem we may try to find the general conditions satisfied b y
the matrix S in any case, and it seems natural to assume tha t

all conditions satisfied by S in quantum mechanics indepen-

dently of the special form of the Hamiltonian, will hold also in
the future theory .

A condition of this kind, stated by HEISENBERG 2) in his first
paper, is the equation

St S = SSt = 1 ,

expressing that S is a unitary matrix . In section 1 of the pre-
sent paper, we shall give an alternative, and perhaps a some -
what more rigorous, proof of this equation .

Another important condition stated by HEISENBERG is the
invariance of the matrix S under Lorentz transformations . In

section 2 we shall prove this property by using the transforma-

tion properties of cross sections and the connection between
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these quantities and the elements of the matrix S. The invari-
ance of the fundamental matrix S brings about a considerabl e
simplification in the description of atomic systems, as compare d

with the quantum mechanical description in which the funda-

mental matrix-the Hamiltonian-has rather complicated trans -
formation properties . In section 3 it is shown how the invarianc e
property of S may be used to find a number of general 'con-
stants of collision ', i . e . variables which commute with S an d

with the total kinetic energy . Such quantities as have the sam e

values "or mean values before and after the collision will pro-

bably in the future theory play a similar important role as th e

constants of motion in ordinary quantum mechanics .

When the matrix elements of S are given as functions of th e
(real) momentum variables of the system, we are thus able t o

calculate the cross sections for all collision processes, but, a s

shown in section 1, the discrete energy values in closed stationar y
states of the system are so far completely undetermined . How-
ever, if S is assumed to be an analytic function of the momen-

tum variables now regarded as complex variables, these energy

values may, as remarked by KRAMERS and HEISENBERG S) ,* be
obtained as the energies corresponding to those purely imaginar y

values of the momentum variables which make S equal to zero .

In a sequel to the present paper these problems will be con -

sidered in more detail and new general conditions for the matri x

elements of S will be derived .

Thus, all the quantities which according to HEISENBERG are

to be considered `observable,' are in this way derivable fro m

the matrix S, which therefore in fact plays a similar role as th e

Hamiltonian in the old theory. It remains to be seen if the

atomic systems are completely defined by a given S, or if th e

future theory will contain observable quantities which cannot b e
calculated from the matrix S .

* I am greatly indebted to Professor HEISENBERG for an opportunity o f
seeing his manuscript before publication .
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1 . The characteristic matrix S.
The unitarity condition . Independence of S of the energy

values in closed stationary states .

In this section we shall consider a collision between a certai n
number of like particles from the point of view of ordinar y
quantum mechanics . Let k i be the momentum operator of the i't h
particle . If K is the rest mass of the particle, the correspondin g
kinetic energy is W = VK2 + kl, and the total kinetic energ y
and the total momentum of the particles are given b y

7i = Z I/ K2 +]f2

wave func-
vectors ki .

Since we want to treat the general case of a collision in whic h
annihilation and creation processes may take place, the tota l
number n of particles is not a constant of the motion, and we
shall have to consider a succession of wave functions' )

const ., 1P(ki) , W (ki, 14) , . . . 41 (14, . . . k' . . . k n , )

corresponding to the different eigenvalues n ' of n . For simplicity
we shall in what follows treat the different particles as distinguish -
able, which means neglecting all exchange effects . However, i f
the particles for instance have Bose statistics, all the wave func-
tions are of course symmetrical in the variables 1 .

In a representation where the k i are diagonal matrice s
(a `k-representation'), any quantity like the potential energy
V will be represented by a matrix (14 lcn, I V I ki • • kn„) ,
where n ' may be different from n " corresponding to- a transi-
tion in which the number of particles is changed . We shal l
often simply write (k ' ~ VI k") for these general matrix elements . ,

The representation is not uniquely determined by the con-
dition that the k i are diagonal, since the phase factors in th e

* Throughout this paper are used the sanie units as in HEISENBERRG ' S paper;
where k, Il', and k all have the dimensions of a reciprocal length .

(1 )

respectively . *
If the eigenvalues of k i are denoted by 14, the

tion in momentum space will be a function of the
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representation may be chosen arbitrarily . If (k' V I k") x denotes

the representative of the operator V in an other k-representatio n

we have
(k'I VI k")x - e i ( k ') (k' VI k") e- I " (k''),

	

(2 )

where a (k ') = a (k4, • • • kn,) may he any real function of th e
variables (k ') = (ki, • . kn,) . Similarly, if (k ' 1 ) x and (k' )
are the representatives of the same state in the two representa -

tions, we have
(k ' I ) x = eia.(k') (k'I )•

	

(2' )

Let us consider a stationary state of the system with th e

energy E . The corresponding time independent Schrödinger

equations in the different momentum spaces may then be writte n

(E-W') w(ki . . . kn )

J
(k . . kn, i V I ki . . k".) dk'; dk . . dkn, zF (ki . . kn„ )

n J

n ' = 1, 2, 3 • • •

Here W ' is the eigenvalue of W corresponding to the value s
(ki, kn,) of the momentum vectors, and dk is a volume-

element in the momentum space of the i'th particle . The inte -

gration and summation on the right hand side of (3) is to b e

extended over all the different momentum spaces . In what follow s

we shall simply write dk" instead off 5
dk • . dk,, and

(3) will be writte n

(E - W') z ~ (k') = C (k' I V I k") dk" w (k")
,

	

(4)

where (k ' ) is short for (k, • . . kn,) .
We shall now in particular consider a stationary collision pro-

cess in which the primary particles have the momentum value s

(k°, • • • kn0 ) (k°) . Thus, the corresponding wave functio n

being a function of both (k°) and (k'), it will be denoted by

(ki . . . kn, I z~r I ko . . . kn0 ) = (k' I gr I k°) .

	

(5 )

If we consider all possiblè collisions with varying initial mo-
mentum vectors (k°), the functions (5) define a matrix w, which

may be called the wave matrix .

(3)
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According to (4) the components of the wave matrix satisfy
the equation s

(W°- W')(k' I WI k°) = Sk'
I

VI k„)dk" (k"IWIk°), (6)

where E = W° _

	

1/x 2 + k02 is the total energy of the syste m

for the given initial conditions. Using the ordinary rule for matri x
multiplication, (6) may be written

WW-WW = VW .

The wave matrix W is a sum of two parts :

211 = 211 0 + T ,

where W° and T represent the incident and the scattered waves ,
respectively. In configuration space the function W° represent s
a set of plane waves . In the k-representation W° is simply

(k1 . . . kn 211° I ki . . . KsRol = (k' - leI =

f 0 for n' * .n°

	

J

l d
( 14 k?) • • d (kn,-kno ) for n' = n° .

Thus we get for W

- 1 -I- T ,

	

(10)

where 1 denotes the- unit matrix .
We shall from now on treat the quantity W as an operato r

whose representatives in different representations are connecte d
by the ordinary rules of quantum mechanical transformatio n
theory. In particular a change in phase leads to a change i n
the representatives of W given by (2). Thus W will in any re -
presentation have the form (10) with the first term equal to th e
unit matrix .

If we put

U = -2miVW = -27riV-2 ;riVT, (11)

we get, from (6), (10), and (11),

1
i(k I U k°) .( W ° - W') (k' I T l k°) = - 2a

(12)

(7)

(8 )

(9)
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Solving with respect to T, we obtain the general solutio n

(k' T I
k°)

	

2 Ici
(k'

U I k°) [ W° 1 1V' +
(W° - W')], (13)

where 2 is an arbitrary constant . If T is to represent outgoin g

waves only, 2 must, according to Dixac°> and HEISENBERG 2 >, be

chosen equal to - in- . Here it is understood that an integral ove r

W' containing the singular factor W° 1
W'

must be taken as the

Cauchy principle value, defined as the limit for E -- 0 of the inte-

gral . when the small domain W°- E to W° + E is excluded fro m

the range of integration .
If we introduce the improper functions

d
(IV'-W°) = 2ni(W'1 W°)±

2 d

	

W°)

	

( 14 )

(13) may be written

(k' T I le°) = d + (W' - W°) (k' I U k°) .

	

(15)

If T is eliminated from (11) by means of (15), we get an inte-

gral equation, which completely determines U when the potentia l

V is given .

Since the total momentum is conserved, the elements of th e

wave matrices P, T, and U must have the for m

(k' I U I
k°) = d (K'-K°) (k' I UK,

I
k°) ,

	

(16 )

where (k' Ux, I k°) is a submatrix of U corresponding to a fixe d

value K' = K° of the total momentum .

If At is the Hermitian conjugate of a matrix A defined b y

(k'IA t lk")= (k"Ak'r,

	

(1 7 )

we get from (11)
L't = 27ci z~tV,

	

(18)

since Vt = V, on account of V being Hermitian . Multiplying (11 )

by tilt on the left, and (18) by If on the right, and adding, we ge t

Wt U +Ut W = 0,

	

(19)
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or, using (10),
U-{- Ut + Tt U+ Uf T = 0 .

	

(20)

This equation, in which the potential V has disappeared, repre-
sents a general condition for the wave matrices . From (15), (14) ,
and (17) we get

(k'Tt l7°) = d+ (W'-W°) (k'Ut lk°),

	

(21)

and the matrix equation (20) become s

(k'I U+Ut jk°) +

(Ic ~ R I le°) - a ( W- W°) (k' I U I k°) = (23)
d (K'- K°) d(W' -W°) (k '1 (I ~ ,~I7c°), J~r T t

where (h' I Uli owo j h°) is a submatrix corresponding to fixed
values K° and W° for the total momentum and energy. When
(22) is multiplied by d (W' - W°), the integral in (22) will con -
tain a factor

d (LV' - W°) [d+(il7° -W") T.d+(tiV" -W°)] _
d(W'-W°)d(W" -thT°) = d( W' W")d(W" -W° )

on account of' (14), and by (23) we thus get the simple matri x
equation

R + Rt + RtR = 0 .

	

(25)

Now, if we define HEISENBERG ' S characteristic matrix S by th e
equation

S= 1+R, (26)

(25) becomes identical with the equatio n

S t S = 1 . (27)

This condition alone is not, however, sufficient to make S a
unitary matrix . We must also have

l
(le' I Ut k") •lle" (k" U le°) [d+ (W' - W") + d+ (IV"-

	

= O . (

We now define a new matrix R by

	

1

SSt = 1 .

	

(28)
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In order to prove this last equation we consider that solutio n
ZF of the Schrödinger equation (6) in which the outgoing wave s
T in (10) are replaced by ingoing waves . We then have

ZF_
= 1+ T

	

(29)
with

(k' I T I k°) = d_ (W' - W°) (k' I U I
Ic°),

	

(30)

where the function d+ in (15) has been replaced by d_ . Sinc e

ZF is a solution of (6) and, by (14) ,

we have
U_ = 2 n i V W_

	

(31 )

on the analogy of (11) . From (31) and the Hermitian conjugat e

equation

we get as before

ZPtU_ -{- Ut Z~r = 0 ,

or, by (29),

U_+ Ut~ Tt U_ + Ut T = 0

	

(34)

analogously with (20) . If this matrix equation is written out ,
we obviously get an equation obtained from (22) by replacin g
U and d+ by U_ and a_, respectively. Therefore, if we define

a matrix R_ by

	

(k' I R_ I k°) = a (W' - W°) (k'

	

I U_ I k°),

	

(35)

we get from (34) analogously with (25 )

	

R + Rt + Rt R _ = O .

	

(36 )

Further, multiplying (18) by ZIF on the right, and (31) b y
tilt on the left, and subtracting, we get

	

Ut zIr - ZFt U_ = 0,

	

(37)
or

U t - U_+ U t T - Tt U_ = 0

	

(38)

by (10) and (29) .

(yj,o- W' )

	

W°) = 12

U t =- 2 rr i ZFt V

	

(32)

(33)
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Written in terms of representatives this equation reads

(k' I Ut - U_ I k°) +

S(k'I Ut
I
k")dk"(k"IU j k°)

	

(W" -W°)-(W'-W")] = 0

on account of (21) and (30) .

Sinc e

we get by multiplication of (39) with d (W'- W°) and using

(23) and (35) R t = R_ .

	

(40 )

(36) may thus be written

R+R t +RRt = O .

	

(41 )

This equation together with (25) shows that R and Rt are com-
muting :

R Rt = Rt R .

	

(42)

Therefore also the matrices S and St commute, and the equa-

tion (28) holds as a consequence of (27) . On account of th e
unitarity conditions (27) and (28) S may now be written in th e
form

S = eln ,

	

(43 )

where is an Hermitian matrix-HEisENBERG's 1i-matrix .
In a perturbation theory, where V is considered as small,

U, T, R, and j are also small, as is seen from (11), (15) ,
and (43) . In the first approximation . we get from (11)

(23) ,

U = -27ciV ,

and from (26), (43), and (23)

(44)

= i R ,
and

(45)

(k' I zi I k°) _-2 7cd (W' - W°) (k' I V I k°), (46)

showing that the gj-matrix is essentially equal to the potentia l

energy in this approximation .

(
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Instead of the 3 n ' variables (k'1 . . . kn,) we now introduce
the total momentum K ' , the total energy W' , and 3 n '- 4 other
variables (x ') = (xi . . x3 n'-4) as independent variables . 'Whe n

/1, = ô' (K'W'x')
denotes the functional determinant correspond -

ing to this transformation, the connection between the matri x
elements of any matrix A in the two representations is given b y

(k ' I AIk°) = j/z1 ' (K' W 'x ' IAIK°W°x°) a°,

	

(47)

provided the phase factors are unaffected by the transformation .
For the representatives of any state in the two representation s
we have similarly

	

_
(k' I) = yam' (K'w'x' I) .

	

(47' )

In the new representation any of the three matrices R, S,
and have the form

(K'W'x'IRIK °W°x-°) = d(K' -K°)a(W'-W°) (x'~Ri x°) . (48)

(x/ I R I x°)

	

(x,
I UH o w o I

x°)

	

(49)

is a submatrix corresponding to fixed values K ' = K° and
W ' = W° of the total momentum and energy . For the sub -
matrices an equation like (27) takes the for m

I St x") dx" (x" ISIx°) _ (x" ISI x' )* dx" (x " ISx°) = (x ' -x°) . (50)

It should be remembered, however, that dx" is an abbreviatio n

for Z

	

dx3n"-4' just lik e
n'

s dk"= .JÇ dk H .dk, .
n'

Returning now to the general equation (22) we get in th e
new representation with y = (K, x)

(W'g ' I u+ ut Tr y') +

Ç (W q'!
UtIW"g")dW„dg„(W„y„I UIW °g°) Ld+(W' -W„) +

a+(W„ -Wo)} = 0 .

Here

(51)

52)
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If we multiply this equation by w, 1 W° , or by d+ (W' - W°) ,

a special investigation of the singularity at W ' = W° wil l
be necessary . By (15) and (21) the result of a multiplicatio n
with d+ (W' - W°) can be written

(W'y'~T+TtIW°y°) +
(W'y'lUtW"y")dW"dy"(W„y"I

U I W° y ° )
d+( W' -W°) [d+(W'-w")+(W„-W°)1

A (W°, y°) d (W' - W°) ,

where A so far is an arbitrary function of W°, y ' , and y°. The
right hand side is zero except for W' = W° and vanishes entirely
if multiplied by W '-W°, thus in fact (53) reduces to (52) by
multiplication with W ' - W° . The function A must be determine d
in such a way that an integration of the equation (53) wit h
respect to W' over a range containing the value W° leads to a
correct result . We need only integrate (53) from W°-e to W°+ e
and afterwards we can let e go to zero .

Now we get from (14) by a simple calculation

d+( W' - W°) [d+(W'- W") +d+(W"-W°)] _

1

	

1 d(W"-W')

	

1 d(W"-W°)
(27ci)2(W'- W„)(W

"-W°) +47ci

	

" -W° + 47ci W'-W" +

2 d (W, _
W°) d (W" W°) = d + (W' - W") d+ (W"- W°) +

4
(W'- W°) d (W"-W°)

Further we have, for any function f (W') which is continuou s
at W ' =W° ,

lim

	

W' - W dW'

	

(W )°f (W') (

	

= f ( W°) lim d+ (W' - W°) dW ' = f	 ,
e±0 Wo-e

	

e~0 two-e

	

2

and

W°+ e

lim
f (W') dW'

	

f (w °) d(w" - w°)
-e30 (27ci) 2 (W'- W„) (W„_ W°)

	

4

W°+ W° + a

(56)

(5
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In fact, we have, with = W" - W°

W° + e

lim

	

dW'
e -> o (21ri) 2 (W'-W") (W" -Wo

)
w°-e

4
7
r
l

In e_
for F<- e

lim
4TC2~

In É+

	

fore
o

47c2~
In

~+
-e

for

and this function is easily shown to be equal to -4-1 d ( .) =

4 a (W" - W°) in the limit e --~ O .

W°+ e

When the operation lim dW' is applied to the equatio n
e~0 wo-e

(53), we thus, using (15), (21), the first equation (54), (55), an d
(56), get

A(W°, y',y°) = (W°y ' U -I- Ut I W° y°) - ►-

(W° y, UfiIW„ y„)dW„dtl„(W„y„I
UW ° y° )

( =

1 (W°y , I utIW°y „)dy„(Woy„I U I W°y °)

Here we have also used the equatio n

(W°y ' I U-}- Ufi I W°y°) -I-

J
(W o

y'
I Ut I W°y„) dy„ (W° y „ I U I W o y o) =0 ,

which follows from (23) and (25) by integration of (25) with
respect to W' .

Introducing the expression (58) for A into (53) we get, usin g
the last equation . (54),

(57)

( 58)
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(W'y' ~ T -{-T ~ W°y°) +

(W'y'I Ut I W"y")dW"dy"(W„ y" I U I W o y °)

d+(W'-W") ( W"-W°) = 0 ,

or
T+Tt +Tt T= O .

For the wave matrix WF in (10) we have therefore

WFt W1J = 1 ,

which shows that the matrix elements (k' q! k°), considered as

functions of (k' ) with fixed (k°), are normalized eigenfunction s

of the Hamiltonian H = W+ V belonging to the continuous

eigenvalues E = W° _

	

V K2-ß 0'.
The matrix W11 , however, will not in general be a unitary

matrix, since the equation

(61 )

(62)

z7npt = 1 (63)

will hold in special cases only . When (63) holds, the reciproca l

of W exists, and W-1 = Wt . From the Schrödinger equation (7) ,

which may be written

WW = HW ,

we then, by multiplication with W-1 on the right, get

H = WW WIj 1 ,

showing that the matrices H and W have the same eigenvalues .

(63) can thus only be true for systems which do not have an y

closed states .
In the general case we may define an Hermitian operato r

= 1 -WV

	

(66)

which, on account of (62), satisfies the equatio n

6. 2 = 1-2 WWWFt +WW1 WWt = 1-w t = Cam .

	

(67)

Hence 6 has the eigenvalues 0 and 1 .

Further we have

HWIJWift- WWIH = O .

	

(68 )

(64)

(65)
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To prove this equation, multiply (64) by Ilet on the right an d

the conjugate equation

W ziet = Wt H

	

(69)

6=O

	

(70)

according to (66) and (62), the functions (k' I WI k°) belongin g

to the continuous eigenvalues of H, are also eigenfunctions o f

belonging to the eigenvalue O . Moreover these functions ar e
the only eigenfunctions of that kind . To prove this, let us assum e
that Ø (k ') is another independent eigenfunction of v with the
eigenvalue 0, then Ø may be taken orthogonal to all the func-
tions (k ' W I k°), i . e .

ziet~j = 0

	

1
and

	

} (71 )
6 Ø=O

	

)))

which, by (66), leads to the equatio n

The eigenfunctions r (k ') of H belonging to the discrete *

eigenvalues are therefore also eigenfunctions of 6 with the eigen -
value 1 . If lFr (k) is considered as a matrix with one colum n
only, while Wrt, (k) = 1Fr (k')* is considered as a matrix wit h
one row only, the orthogonality relations for the discrete eigen -
states may be written

'Ilfi zIJ - dr

	

rs

Ile; zit = o .r

Since the functions UFr (k ') are the only eigenfunctions of 6 be -
longing to the eigenvalue 1, all other eigenfunctions belonging t o
the eigenvalue 0, we obviously have

(k' I 6 1 k") =

	

(k') zF,t. (k") )

	

(73)
r

* The index r numerating the ` discrete' energy values will in general also
include continuous variables such as the total momentum K' of the system .

I). KgI . Danske Vidensk . Selskab, Mat .-fys . Medd. XXIII, 1.

	

2

by III on the left, and subtract .

(68) shows that zietIIt and therefore also

	

commute'with H.
'Thus 6 and H have a common system of eigenfunctions .

Since

{
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and the equation (66) may be written

(k' I WWt I ]£") +

	

r (le ') tlfr
(k")

	

(k' I 1 I k"),

	

(74)

which in the general case replaces (63) .

We shall now discuss the question whether the discret e

energy values in the closed stationary states are at least partl y
determined by the S-matrix, as originally indicated by HEISEN- -

sERG 7> . A priori, this seems possible, since the asymptotic for m

of the wave function in great distances which determine s
the collision cross sections, depends chiefly on the form of th e
potential function in small distances, which again is essential
for the position of the discrete energy levels . From the preced-
ing developments it follows, however, that the discrete energ y
values are completely independent of the form of the S-matrix .
To see this, let us assume that we do not know only the sub -
matrices S and R, but the whole matrices U and W . With given
t the operator 6- is given by (66) . Determining the eigenfunc-

tions of 6 belonging to the eigenvalue 1, we get simultaneousl y
the eigenfunctions Pr (k') of H belonging to the discrete energy
values or at least linear combinations of these functions .

The values of the energy in these states, however, are com-
pletely undetermined . The energy levels in the closed states ma y
be changed in an arbitrary way without any change in ill , i . e .

without any effect on the results of collision processes . New

fundamental assumptions about the S-matrix will thus be neces-
sary in order to determine the energy values in the closed states .

To this question we shall return in the sequel to this paper .

2. General definition of cross sections .
Connection between the cross sections and the characteristi c

matrix S. Proof of the invariance of S.

In order to investigate the transformation properties of th e
matrix S under Lorentz transformations it seems natural to us e
the connection between the matrix elements of S and the cros s
sections. For this purpose we need a general definition of cros s
sections in an arbitrary Lorentz frame of reference . The current
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textbooks give definitions of cross sections only for the special
frames of reference, where either the center of gravity or on e
of the particles are initially at rest . In the general case it wil l
now be most convenient to use a definition which makes the
cross sections entirely independent of the frame of reference .
This condition, together with the well-known expression for th e
cross section in the system where the center of gravity is a t
rest, uniquely determines the definition to be adopted in th e
general case .

We shall first consider a collision between particles 1 and 2
without creation of new particles . Let e° and 02 be the den-
sities of particles 1 and 2 in the incident beams and let zt° and
u° be the corresponding particle velocities . If dQ = ad S2 denote s
the differential cross section for a scattering of particles 2 sa y
into a solid angle dS2, we have in the center of gravity syste m

dN
Q_ e o

iCs
0 u -u2I •

where dN is the number of particles 2, which, pr . unit volume
and unit time, i . e . pr . unit four-dimensional volume, is scattere d
into the solid angle dS2 .

Since the four dimensional volume is invariant, the numbe r
dN must be independent of the frame of reference . Thus the
cross section must in general be given by

dQ F° , (75)
dN

where the factor F° is an invariant, which in the center of gravit y
system reduces to 041 u ° - u 2 I . As is easily seen, F° must
then be given by

F°_ e~1e2 Y uu2
12

.l u l x u2I 2 •

	

(76)

Here u ° x u is the vector product of the vectors u ° and 2t ° ,
which is zero if u °, and u 2° are parallel, as is the case in the
center of gravity system .

To prove the invariance of F° we use the fact that the quan-
tities kt _ Wi) and k iiL, = (k 1 , -Wi ) by any Lorentz trans -
formation transform like the components of a four-vector . The

2•
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quantities kY k''- el 11' are thus the components of an antisym-

metrical tensor and the quantity

B= I/1 k 1 W2 -k 2 W, 12 - ~ k1 X k 2 1 2 =

12	 (kiltkz -k i kå~ ~ k1 ,u,k2v-k1k2

is an invariant . * Further we have for any Lorentz transformatio n

connecting the variables of two frames of reference K and K .

1 -vui
Pi - Pi

V 1 -v2

1-vu .

	

ki
Wi = Wi v1-v-~ , ui = Wi

,

where v represents the velocity of K relative to K . Hence

~1 PO

	

O
2	 P1,2 and the quantity F° in (76) may be written as

W1 W2 W1 W2
a product of two invariant quantities :

0

F0 =	 ô
P2 ° B°W1 W2

with B° given by (77) .

Thus the cross section defined by (75) and (76) is invariant .
Further it is symmetrical in the two particles and reduces t o

the usual definition of cross sections in the center of gravit y
system . The same holds for that system in which one of th e
particles, say particle 1, is initially at rest, since in this case F°

reduces to F° = ~~ PZ 02 .
We shall now trace the connection between the scattering

cross section dQ and the matrix elements of S . For this purpose

we need the Schrödinger function lP(xi x2 ) in configuration space .
This function is obtained from the wave matrix (ki k2 q I . k° k2)
by means of the equatio n

W (xi x2) = 1 (xi x2 I ki k2) dlci dk2 (ki 14 zF k° k2) (7 9 )

with the transformation functio n

* Here the usual convention is made regarding the summation from 1 to 4
over dummy indices like ,u and v in (77) .

(78)
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(x i x 2 Ik'i k'2 ) _ (2 0-3 e i (k,+ k 'x.)e i y(k ; k.) ,

2 1

(80)

where y ' = y(kik'2) is a real function of ki and ki dependin g
on the phases in the chosen k-representation . 8) y ' may also be
a function of the time. For the incident waves we get, by (8 )
and (9),

° .x. -x(xl x2 ) _(2 7c)-3 ei .

	

°° e
i Y = (2 Tr,)- 3e

i

	

ka

	

e.0'' , (81 )

while the scattered waves on account of (8), (15), and (16), ar e
given by

ei x2) = (27u)-3 ei(ksx,+ks x ,)

	

d (K'- K°)

sl + (W1+ W2 - W°) (k ',k'2
I
UK ° Ic° k2) dki dk2 =-

2 70
3eiK°x, eika(x s - x i ) elY(K°-k'>>4z )~

VK2 +Ik2I 2 +yK2 +k2 W°)

	

I62, k2I URO1 k 1 k°2 ) d14 .

Now we are only interested in the asymptotic values of T

for r = I x 2 -x1 I ->- x . Introducing polar coordinates in the k'2 -

space with the direction e'2 = x2 -
xi

as polar axis, the inte -Ix2-xi I
gration with respect to the angles in the integral in (82) lead s
to the expression°)

Cl x 2 )r ->- ao
-\2 70-3 eiK°x°

2 Tc S'ce ik ; r
~

	

(K°- k2 e2 > k 2 e 2 I uh-, . I ko , k)ZZ•

r,/

	

0

e i (K°_k z ea, ka es) Ô+ \V K? + I K°- k'2 es I2+
' /
Y x2 +k22 -W ° ) k2dk2 -

(83)
kår/KO +k 2 e2 , -k2e2 I UKa l ko , k2) e t Y(K° -P k i ea ,-k° ez)

ll

	

a+ (vx2 + I K° + 1C2 e2 I 2 + IÎx 2 + k'22 - W °) k'2 dk2 , }

where only terms of the order 1 have been retained . When th e
r

argument of the d i_ -function is denoted by A (k',), and whe n
f(k2) is any function of k'2 , we have ) , neglecting terms of th e

1
order r2 ,
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.

ik~ r
5e n f(k') a+ (A) k '2 dk2 --

	

)

E
k 2°

	

aA 2
k2

where k2 is the value of k '2 determined by

A (k2) = 0 ,

and the differentiation of A (k '2 ) with respect to k '2 is to be per -
formed by constant e2 .

In the same approximation we hav e

ik;r

	

(k',) ô

	

(A) k' dk' = (86){

	

2

	

2
0

so that the second integral in (83) may be neglected .
In the first integral we pu t

k2 = k2e2

	

and

	

k1 = K°-lc2e2 . (87)

Thus ki and k'2 are now the values of the momentum variable s
following from the theorems of conservation of momentum and
energy. When Wi, W2, u1 and u2 are the corresponding energie s

and velocities, we get, since the differentiation in ak is to be
performed by constant e2,

	

2

const . es

(84)M2) ,

(85)

aA
akt \

k2
kl' 1-const. e ;

	

W2

	

W i
=

	

ui) e2 . (88)

(

Using (84) and (88) in the calculation of the first integral in (83)
we finally get for the total wave function in configuration spac e
the asymptotic expression *

W (xl x2)r3 ao =

	

(x i x2) + T (x i~2)r±ø =

	

i

	

0

	

0

(2 m)-3
eiA°x i ~ eilCå(x,-x,)Ei~P 2 n- eik'rey,

k'2
(WIk'2	

UK°W° ! I£ l k2 )

	

r

	

(u 2 -u 1)e2

The probability of finding the particle 2 in a distanc e
r = x2 -xi 1 from the particle 1 after the collision is thus pro-
portional t o

* This asymptotic expression for is seen to be correct only if the potentia l
function goes to zero faster than 1 as r tends to infinity . Thus, a slight modi -r
fication of the theory is necessary in the limiting case of a Coulomb field .
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(2
702

~`2I(k1~2IUK°w ° I k°k2) I 2
,r2

	

I(u2-ul)e
,
2I 2

To get the number of particles 2 which pr . unit time are

solid angle dS2 in the direction e2, we have to

by the factor (u2-ui)e2 II . r2 dS?, which

current through a surface element r 2 dS? placed

to the direction e2 in a constant distance r fro m

Taking account of the particle densities in th e

we finally for the scattering cross section ge t

n2	
k' 2 I(k 'l k2Iu., k 1 k 2 /

d

	

. (91 )Qscat . = 4

	

d S?
VI uu2 1 2 -I u' x u 20 I 2 . I (u2- u '1) e 2 I

The matrix UKowo occurring in this expression is, apart from th e

d-functions, identical with the matrix R in (23) .

If we put

I V W ç W' (k', k2I UKowo I Icllc°) 1/W°W°

	

(92)

(91) may be written

9III2	 k22 dS2
dQ scat . = 47r B° I (u2 -u i) e 2 I 117 '1 w;

,

where B° is the invariant quantity defined by (77) .

Since the vectors k;'1 and, k2. are determined b y
servation theorems, we have

a(w'+w2 ) a W(u 2 -u~>e2 =

	

ak ,

	

= ak2

where ki in Wi is to be put equal to Ii° - k2 e2 before the
differentiation, which then is performed by constant e2 . (93) may
therefore also be written

2

	

' 2

dQscat . = 4 n2
I
BI SS d (K' -K°) d (W' -W°) W kW2 d~, (95)

1

	

2

where the integration in dki is to be extended over the whole

ki-space, while the integration in
Ç

dk2 ranges from 0 to 0c . For

small U and V, where (44) holds, the expression (95) is easil y

(90)

scat-

tered into the
multiply (90)
determines the

at right angle s

the particle 1 .

incident waves
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seen to be identical with the usual quantum mechanical ex -
pression for the cross section, derived by a perturbation metho d
in which the potential V is treated as small . The integral i n

dk:
(95) is obviously invariant, d (K' - K°) d (W ' - W°) and	 `

W i
being invariant quantities (cf . equation (129) section 3) . Since
the same holds for dQ and B°, (95) shows that the modulus o f
the quantity I, defined by (92), must be relativistically invariant .

Let us now consider the case where a new particle 3 i s
created during the collision . The cross section for a process i n
which the new particle obtains a momentum between k3 an d
k3 + dk3 , while particle 2 is scattered into a solid angle di?
in the direction e2, may be derived as before . We simply ge t

	 k22 I (k' k2 k3 UKow. I k° k2) I 2
scat .,emis . = 17c

.,

	

,tt _n 0
2 I2

	

x0

	

0 2

	

d ..Qdk3
Vl

	

-Iutzc21 •I(11 2 -u~)e '2, I
on a close analogy of (91). By the same arguments as befor e
we find that the modulus of the quantity

/W i W2 IV', (k i ka k 3 l Ux , w^ I k? k V M. w å
is a relativistic invariant . The same holds for a general matri x
element of UKowo and therefore also for the elements of th e
matrix R defined by (23) .

Let us now consider an arbitrary Lorentz transformation .
In the momentum space of the i'th particle, say, this will i n
general be a non-linear transformation

k i = vi(ki ) .

	

(97)

If all transformed quantities are distinguished by a bar, the re -
presentative of the transformed matrix R in ak-representatio n
will be denoted by_ (k ' I R I k°) . Further let k : and k° denote
those eigenvalues of ki which are connected with the eigenvalue s
ki and kP by (97), i . e .

k l = -(Y(k; ) ;

	

- (k°) .

	

(93)

The result of the preceding investigation may then be written

~~WiJ I(k' I R I k°) V ~ w°] = ~~~ W~~ (k' I RI IE° ) I V
j EW°] , (99)
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where the symbol 017;1 is used for the product of the energie s
corresponding to the values (k'0, kn) of the momentum

variables .

In his papers quoted above HEISENBERG2) has stated a more
general equation viz .

V[ W7 (k'I Rk°)V[ W ]

	

V[w:] (k'~RIi°)V[w?] (100)

where the modulus (k' R ~ k°) ~ in (99) is replaced by (k' RI k°) .

In contrast to the equation (99) which holds for any choice o f

the phases in the k-representation, the equation (100) canno t
be true for all k-representations, since a change in phase i n
the k-representation will change the right hand side of (100 )
in accordance with (2) while the left hand side remains un -
changed . By means of the equation (25) and the corresponding
equation

+Rt + t = 0

	

(101)

for the transformed matrix R, it may be shown, however, tha t

it is possible, for given phases of the k-representation, to choose

the phases in the k-representation in such a way that (100) is true .
According to the special theory of relativity the momentu m

and energy variables of a particle transform like the component s

of a four vector . Hence we find by a simple calculation that th e
functional determinant e ' , corresponding to the transformatio n
(kl, • • • k,,)--> (7ei,

	

• K.n,) given by (98), i s

a(' . . . ]£- n,)

	

[W;]

	

(102)d' = a(lci . . . kn,) - [Wt ]
We may now put

(k ' ~R~k°) = I(k' IRIk°)Ieir(k" ;k')

	

(103)
and

(k 'I R I k°) = I(k' IRIk°)lei
r (k ' ; k°),

	

(104)

where the arguments r (k ' ; k°) andr (k' ; k°) are real functions
of the variables (k' , k°) and (k' , k°), respectively.

If we change the phases in the k-representation in accord-

ance with (2), the argument r (k ' ; k°) X of the new represen-
tative of R, defined by
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(k'IRIk°) X = I(k'IRIk° ) I eir(k' ;k%x (105)

is obviously given by

r (k' ; k°) X = r (k' ; k°) + a (k')- a (k°) . (106)

When we use (104) and (17), the equation (101), written i n
terms of representatives, become s

I(k' I .Ï?" I k°)I

	

+ I(k° I R I k')I e-6'070 ;

	

+

+ S I (k" I 171 k')I dk" I(k" I R I k°)I e'[r(kr' .ko) r(k"'k')] = 0

where (k" , k ' , k°) are connected with (k", k', k°) by equation s
of the form (98) . On account of (99) and (102), (107) may
be written

I(k' I R I k °)I

	

+ (k ° I R I k')I

	

-i-

+~ I(k" I R I k' )I dk" I(k"
I R I k0)I ei[r(k">k°> r(k' ;k')l = 0

or, by means of (103 )

(h' R I k°) eiLr(k' ;k° ) -r(k' ;k °)1 .+ ..(k.' I Rt I k.o) e-i[r(k° ;k')-r(k° ;k')l +

: (l iS (k' I RtIk") dk" (k" IRIk°) ei[r(k ;k° ) -r(k"Sk')-r(k" ;k° ) -Fr(k" ;k')l - 0 .

The equation (108) must, for arbitrary

	

in (98), be iden-
tical with the equation (25), which, in terms of representatives ,
reads

	

r
(k ' I R I k°) + (k' I Rt I k°) + 1(k' I R I I k") dk" (k" IRIk°) = O . (1

This is possible only if the three exponential functions in (108 )
are equal for all values of the momentum variables . Thus w e
get the following two equations :

r (k ; k°) -}- r (k° ; k ') = r (k' ; k°) +r (k° ; k' )

	

(110)

r (k-„ ; k') _ r (k„ ; le°) + (k'; k°) = r
(k" ; k' ) - r (k"; k°) + r (k ' ; k°) . ( 1

These equations are not independent, however, since (110) may
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be derived from (111) by adding the equation obtained fro m
(111) by interchanging (k') and (k°) .

We can now put

r (k'; k°) .= r(k' ; k°) + f (k ' ; k°) ,

	

(112)

where the function f, by means of (98), may be regarded as a
function of the transformed variables . If we introduce (112 )
into (110) we get

f(k° ;

	

Ale; k°)

Similarly we get from (111), (112), and (113 )

Ale; k") + f-(k"; le) = Rk'; k°) .

	

(114)

This equation must hold for all values of the independen t
variables (k', k", k°) and represents a functional equation for f .

The general solution of (114) is

(k') - a (le) ,

where å (k ' ) is an arbitrary function of the variables (k') only .
Thus, (112) takes the form

r (k' ; k°) = r (k' ; k°) + (k')

	

(k°) .

	

(116)

By a suitable change of the phases in the k-representation, i n
accordance with (106), the right hand side of (116) may b e
_made equal to the argument function r (k'; k°) x in the new
k-representation . If we afterwards omit the cross by which al l_

functions in the new k-representation are distinguished, w e
thus have

r (k' ; k°)

	

(k' ; k°),

	

(117)

showing that the quantity r (k ' ; k°) is invariant provided th e
phases of the k-representation are suitably chosen . With this
choice (100) is seen to be a consequence of (99), (103), (104) ,
and (117). The equation (100) will then hold also for th e
matrices S and 17 defined by (26) and (43) .

(113)

(115)
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Even on condition that (117) and (100) are to hold, the
phases of the k-representation are not at all uniquely deter-
mined by the phases adopted in the k-representation, since th e
representatives of R, on account of the d-functions in (23) will

be invariant under all such transformations of the type (2) ,
where a is an arbitrary function of the total momentum an d
energy only. In particular we may choose the same phases i n
the k-representation as in the k-representation, in which cas e
the representatives of a matrix A in the two representations ,
according to (47) and (102), are connected by the equatio n

(k'IA lie)

	

0.0,17;1 (k,I A l
k

o

~~

(118)

Now the representative of :S- in the k-representation is, b y
(118) and (100) applied to S instead of R, given by

[W1]
(k I S I k°) V [W=J

	

(k' I S I k°), (119)

=S . (120)

(k'ISIk°) =

or

Thus Heisenberg's characteristic matrix is an invarian t
matrix, i. e . S and S have the same eigenvalues and the sam e
eigenstates .

The matrix S, however, is not only invariant in the sense o f
equation (100). Since all frames of reference moving with con-
stant velocity, are entirely equivalent as regards the development
of the collision process, all functions like (k ' Ii k°), (k' I Ul k°) ,
and (k ' I S I k°) must be what may be called invariant in form ,
i .e . (k' I S 17c°) is the same function of the transformed variables
(k') and (k°) as the function (k' I S I k°) of the variables (k' )
and (k°) . This means that the invariant quantities in (100) mus t
be functions of the four-dimensional scalar products kk -W;W; ,

kz- WS W;, or lei' kl -W°W°, only .

In what follows we shall exclusively have to do with form -
invariant matrices . Any such matrix A will obviously have th e
same eigenvalues as the corresponding transformed matrix A ,
but A and A will not in general have the same eigenstates . As
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an example we may take the magnitude M 2 of the total angular

momentum, the total kinetic energy, or the matrix U in (11) .

Only if A is invariant in the sense of (100) or (120), th e

eigenvalues and e i g e n s t a t e s of A and A will be identical .

3. The eigenvalue problem in the new theory.

Constants of collision. Consequences of the invariance of S .

The main problem in the usual quantum mechanics is tha t

of finding the canonical transformation which brings the Hamil-

tonian on diagonal form, or in other words of determining th e

eigenvalues and eigenfunctions of the Hamiltonian . This pro-

blem is equivalent to the problem of finding a complete set o f

commuting constants of the motion, i . e. variables which com-
mute with the Hamiltonian and with each other . In the repre-

sentation where these constants of the motion are represented b y

diagonal matrices, the Hamiltonian will also be on diagonal form .

In some cases it is possible at once to write down a number o f
constants of the motion . For instance, if the Hamiltonian is a

form-invariant under all rotations in ordinary space, the com-

ponents of the total angular momentum commute with the Ha-

miltonian, and the magnitude of the angular momentum togethe r

with the component in a fixed direction then will form an (in-

complete) set of commuting constants of the motion .

In the new theory we are faced with the analogous proble m

of transforming the characteristic matrix on diagonal form . Since,
however, the matrix S is invariant under a larger group of trans -

formations than the Hamiltonian, we are able at once to writ e

down a larger number of quantities, which commute with S .
The most important among these quantities are those whic h

also commute with the total kinetic energy W. Such quantities

commuting with S and W we may call constants of collision o r

collision constants, since they have the same values (or mea n

values) in the initial and final states . "

On account of the factor d (K ' -K°) d ( W' -W°) in (23) ,

R and therefore also S = 1 + R commute with the component s
of the total momentum If and with the total kinetic energy W .

The four quantities
(Ku) = (Kx, Ky, Kz, W) (121)
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thus represent a set of commuting collision constants . This result
is connected with the invariance of S under space-time t r a n s -
l a t i o n s . Similarly the invariance of S under all rotation s
in four-dimensional space gives us at once six other quantities
commuting with S .

Let us for a moment consider a space of m dimensions with
coordinates (xr) = (x1 , x2 , •, xm ) . A general infinitesimal trans -
formation of coordinates in this space is then given b y

x r = xr efr (xi, ., xm),

	

(122)

where e is an infinitesimal parameter, while fr is an arbitrary func-
tion of the coordinates . Now, consider a quantity a = a ( x1 , . • •, xm)

depending on the coordinates (xr). If -d is the correspondin g
transformed quantity, the `substantial' variation of a is defined b y

d a = å (x) - a (x) ,

while the ` local' variation is given by

d*a = (x)-a(x) .

	

(124)

Neglecting terms of the second order in e, we obviously hav e

da = d*a+e .Zfr8a .

	

(125 )
r

If a is a form-invariant quantity, i . e . if å (x) is the same func-
tion of the transformed variables (x) as a of the variables (x) ,
we have å (x) = a (x), or

(123)

(126)d*a =0 .

da =

Hence
af?	

ax? (127)

Now, let the variables (x r) be identified with the component s
of the momentum vectors {(k'), (k°)} = {ki • • kn,, k° • • • k°, }

and let a be the function a (k' , k°) = d (K' - K°) d (W' - W°) .
For an infinitesimal Lorentz transformation in the direction o f
the x-axis we have for all particles, if e is the infinitesima l
relative velocity,

ki x = k;-w;, k~y = k~
g , k tz = kiz

	

(128)
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and similar transformation equations for the variables k° . By
means of (127) we get in this case, since x d (x) = 0 ,

da = (K'-°)d'-W°)-(K'-K°)a(W'-W°)

	

e (
nk'.
	 +W

°ak°) d(K'-K°)(W'-W°)

	

ix

	

i x

= -e [d' (Kx-Kx) (w'-w°) å(w'- °)

+(Kx-Kx)d(Kx-Kx)d' (W'-W°)] d ( K'g -Ku') d(Kz
= 0 .

In the same way it is shown that the functio n

d(K'-K°)d(W'-W°) = d(K'-K°)d(W'-W°) (129)

is invariant for a general Lorentz transformation, in contrast t o
the function d (K ' - K°) d+ (W ' -W°), which has more corn -
plicated transformation properties .

Now, let a be given b y

a (k', k°) - V [ W L] (k' I A
I

°) V [W°] ,

where A is any form-invariant matrix . A need not, however, b e
really invariant in the sense of (100) and (120) . For the Lorent z
transformation (128) we then by means of (127) get

= V[W;] (k' A k°) V[W°] - V[W ;] (k' I A k°) V[W° ]

(w; ak 'i +w°ak~ )V w;i k'IA I 1 v w° ]
x

	

i x

=- EV[wi] 2( Wi ak' + ak'i T)
zx

	

x

	

+ (W

° a
k ° +ak °
	 W°)}(k'IAik °) .

is

	

i x

Here we have used equations of the typ e

Wi ak,x F [W;] = /](w+ ak;xw .

	

(131 )

which follow immediately from the definition of [W ;] in (99) .

da

(130)
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Now, let çi =

	

, 0 be the vector operator, which, in th e
k-representation, is identical with the operator of differentiatio n

t	
a = (	 a	 a	

8,
1	 Ja k~

	

~ a kix a kiy ' a k Z

when opérating to the right, and with

a

	

- (	 a	 a	 a1
- i & h i? =

	

z a k°x ' kiy ' ale'?

when operating to the left . When we define a new vector operato r
N = (Ax, Nu , Zz) by

1

	

(
N =

	

=
J

	

2 i

the equation (130) may, after division with V[Wi']l/[W°], b e
written

(k'~A~k °) -(k'~A = -Î (k'~Nx A-ANx), (133)

where we have made use of (118) .
Introducing the quantum Poisson Bracket (P. B.) of two vari-

ables A and B by

[A, B] = (AB-BA) ,

we may write (133) as

dA =

	

A = e[A,Nx ~ ..

	

(135)

For a finite Lorentz transformation with the relative velocity v
we then have

A ' eixN=Ae-ixN=

	

(136)

with x = tgh'v . If instead we had considered Lorentz trans -
formations in the directions of the other coordinate axes, we had
got similar formulae with Nx replaced by Ng or by N .

We shall now consider a rotation through an infinitesima l
angle a in ordinary space around the z-axis . The transformatio n
equations are for each particle

(132)

(134)
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Pix = kix -F- e k ;y

P = kiy -ekix

r't.

	

kiz

and similar equations for k .

By means of (127) we get in this case in the same way a s

before
aA=A-A=[A,Mz],

	

(138)

where Mz .is the z-component of the vector operator M defi-
ned by

M = X ( i x hi) .

Hence for a finite rotation through an angle 6

A
= eieMzAe-ieM.

For rotations around the x- and y-axes we have simply to
replace Mz in these formulae by Mx and My , respectively. The
transformations (136) and (140) are contact transformations .
Thus any functional relation between_ (form-invariant) matrices ,

as for instance commutation relations, will be covariant under
Lorentz transformations .

According to its definition the operator i depends on the phases
in the k-representation and, by å suitable choice of the phases, Ii may
be made equal to the coordinate vector xi of the i'th particle . In this
latter case the phase constant y' in (80) is zero and the vector M is
identical with the total angular momentum . In another Lorentz frame
of reference we have a similar operator C i which in the k-representa-
tion is represented by differentiation operators . Provided the phases
in the k-representation are chosen in accordance with the transforma-
tion formula (118), the connection between C and fi is given by (136 )
and (140) .

The variables Ei defined in this way, however, in general will no t
be equal to the coordinate vectors x i of the i'th particle in the new
Lorentz frame, even if the phases in the k-representation are chose n
in such a way that Ei is equal to xi . This may be simply illustrated
by considering the non-relativistic approximation, where the Lorentz
transformation takes the simple form of a Galilei transformatio n

xi = xi - vt, ÿi = gi, zi = zi

kix = kix - Ulf, kiy = kiy , kig = kit
D . Kgl . Danske Vidensk . Selskab, Mat.-tys . Medd . XXIII, 1 .

	

3

(139)

(140)
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In this approximation we hav e

N =

Thus N commutes with fti , r,,, and rr and we get from (136 )

_

	

(143)

so that will be different from defined by (141), even if ¢i is equa l
to x ti . In this latter case we have y' = 0 in (80), but the correspondin g
phase constant ÿ in the new Lorentz frame will be given b y

= vtK'x .

	

(144)

When A in (135) and (138) is the matrix S, we have
aS = S-S

	

0 on account of the invariance of S under al l
rotations in space-time . Thus S must commute with the com-
ponents

Mx , Mu , Mz , Nx , NN , N_

	

(145)

of the vectors III and X. The components of the former vecto r
are even constants of collision, since 111- commutes with W.
This follows from (138), remembering that VV is invariant unde r
all rotations in ordinary space .

The concept of a constant of collision is obviously more
comprehensive than the concept of a constant of motion . The
latter quantity can only be defined in cases where a Hamiltonian
exists, while a constant of collision for its definition only require s
the existence of the characteristic matrix . If a Hamiltonian o f
the system exists, six of the seven collision constants in (121 )
and (145), viz . the components of If and IN, are constants o f
the motion, while W is a collision constant only . The tota l
kinetic energy of the particles has the same value in th e
initial and final states and is thus a constant of collision ,
but it is not, of course, a constant of the motion, since the
kinetic energy is partly transformed into potential energy durin g
the collision. In the new theory, which renounces a detailed
description of the collision process and considers the results o f
the collision as observable only, the constants of collision wil l
probably take over the role played by the constants of motio n
in quantum mechanics .

The quantities (145) are not commuting. Our next pro -
blem will be to construct a maximal number of functions o f

Nr . 1

(142)
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the variables (121) and (145), which commute with each othe r

and with the variables (121) . These functions will then also com-

mute with S and they will together with the variables (121) form
a set of commuting constants of collision .'Now let (a) denote
a complete set of commuting collision constants . In the
a-representation the matrix S (or ri ) will then be diagonal and

the eigenvalues of S will be functions of the eigenvalues of (a) .

Thus S may in any representation be regarded as a function o f
the a's . Since S is an invariant matrix, it will, however, be a
function of invariant combinations of the a's only .,, Such invarian t

combinations are also constants of collision and it-is convenien t

from , the beginning to choose these invariant collision constant s
as members of the complete set. We shall therefore begin wit h
an investigation of the transformation properties of the variable s
(121) and (145) . For this purpose we must establish the com-

mutability relations for these variables .
For the variables

	

and k i we have the canonical relation s

[ kix,

	

= 0, [fit, Ni] = 0, [ 5i , k ix] = `u, %, kiy[ = 0, (146)

etc. Hence for the components of the vector M in (139) we ge t

the well-known commutation relations for the components of
the angular momentum in quantum mechanic s

[147 , 1Y1y~ = MZ ,•• .

Here we have explicitly written down one only of the thre e

equations, following from each other by cyclic permutation of th e
letters x., y, z . In the same way we get, by (132), (139), and (146) ,

[ Nx, Mx
]

= 0, [
Nx , M11] = Nx , [NI = -Ng , . . .

}(148)

where again, as everywhere in what follows, the dots indicat e

equations, which may be obtained from those explicitly writte n
down by cyclic permutation of the letters x, y, z .

Finally for the P .B .'s of a variable (121) with a variabl e
(145) we get

[Mx, Kx] = 0, [Mx, Ku] = KZ , [ Mx, Kz] = - Ky , [Mx , W] = 0 .
} (149)

[N, W] = H, [Ax, Kx] = W, [Nx , Ky ] = 0	
JJJ

3 *

(147)
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The commutation relations (1 .49) simply express the four-
vector character of (Ji) (K, W) . For an infinitesimal Lorentz
transformation in the direction of the x-axis, we have, for in-
stance, by (135) and (149 )

àKx =--EW,àKy =ôK, = O

ôW = -EKx ,

which are the transformation equations of a four-vector .
Thus the P .13 .-relations (149) must remain true, if (IC, W)

is replaced by any other matrix four-vector .
Similarly it follows from (147) and (148) that the quantitie s

0

	

II, -M y Nx

-111z 0

	

Mx Ny
My - Mx 0 Nz

\ Nx -Ny - Nz 0

are the components of an antisymmetrical tensor ; in fact we get
as before, by (135) and (148), the equation s

ÔÎVMi =O, aMy = - ENz , c131'z = ENy ,

cfNx = 0, dAÿ = EMz ,

	

aNz = - EMy ,

which are just the transformation equations for the component s
of an antisymmetrical tensor . The square of this tenso r

4 V W NILv _
2(I

M
1 2- I N I 2)

is an invariant scalar, it thus commutes with the components
of DI and N. Further, as a function of the variables (145) i t
also commutes with S .

The antisymmetrical tensor 1W' has a `dual' tensor M` " ,
which is obtained from (151) by replacing M by N and N
by -III. The product of the two tensors

4
M u " Nlµ,, = DIN

(151 )

is a pseudoscalar, i . e . it behaves like a scalar under all rota-
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Lions in space-time, but changes its sign by spatial reflections at

the origin . The quantitie s

[11f'l1 2 -IN1 2 ], 1flllr

thus commute with S and with all the variables (145) . Moreover

they are the only independent functions of the variables (145 )

of that kind .
The quantities (153) do not, however, commute with th e

variables (121) . If we construct the P. B.'s of these quantities

with the components of the four-vector KY _ (K, W), we get

a new four-vecto r

Gi` = (G, G4 ) = 2 M- 1 2 N12, Kl

	

(154)

and a pseudo-four-vecto r

T" = (F, T4) = [31N, Ka i .

	

(155)

By means of (149) we get at once the following expressions for

G.` and Tµ :

~ G = -(MxaK) -NW
Gµ = ~ (156)

G 4 = -NIi
and

( I`=

	

(NxS) }MW
_ ~ (157 )

T
,

=IIIIH .

On account of the symmetrization bars in (156), which have
the same meaning as in (132), all the variables Gµ and T ` are

Hermitian. A comparison of (156) and (157) with (151) and
with the corresponding expression for M`v shows that

GP = MFcv
Kv

TP' = NIµYK„ .

From Gu and TF` we can construct two scalars and one pseudo -

scalar :
G P'G,u , TµIm, ; GuTµ .

	

(159)

Since the quantities GP `KL, and T F` KF, are identically zero, on ac -
count of the antisymmetry of MP' and MP', the variables (153 )
and (159) together with

(153)
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K = V- KF`K,u = j/W2 - K 2

	

(160)

are the only independent invariant functions which can be con-

structed from the quantities (121) and (145) . K is the rest mas s

of the system as a whole .

We are now particularly interested in those of the variable s

(153)-(160) which commute with the four-vector (Kg). By mean s

of (149) it is easily seen that only the variable s

r" = (r , r4), rut _
I P 12 (r 4) 2

	

(161)

given by (157), have this property, i . e .

[r" K1 = 0, [ru r , K v ] = 0 .

	

(162)

To prove these equations it is not, however, necessary explicitl y

to use the relations (149) . On account of the covariance of al l
commutation relations under Lorentz transformations we need

only prove (162) for a single component of FP, say for T4.

Now, T4 = 111K is the component of 111 in the direction of K.
Thus, by (138), [K", DIK] determines the variation of the vari-
ables K ' = (If, W) by a rotation about the direction of If ,
and since both the vector K and W are unchanged by such a

rotation, we must hav e

[K" , IPIK] = [Kv , T4
]

= O .

The variables Tµ do not commute with each other, but the y

commute with the quantity T"T,, . This statement may be verifie d

by direct calculation, but it also follows from the fact that T Å T,,
is invariant, for this means that T vT, commutes with 111 and N
besides with K' and therefore it also commutes with th e

which are functions of 11I, N, and Kv . As a . set of commuting

constants of collision we may then for instance take the variables
(121) together with the two variable s

Tµ Tm, = (-Nx K+11IW) (-NxK +11IW)- (11IIï) (11IK)

T 3 = Tz = - NxKy+NJKx+MzW .

	

}

We shall now determine the eigenvalues and eigenfunction s

of r12 I'1, and Tz . These variables both commute with the Kµ and
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they must therefore in the (K, W, x)-representation, defined b y

(47), have the form

(K'W ' x' I F,'- ` F, I K°W°x°) =

= d (K' -K°) d (W' - W°) (x' (rP r12 )X o Wo I
x°) , } (164)

where (FPFy,),i,w, is a submatrix corresponding to fixed values

K°, W° of the total momentum and energy . Since r ry is in -

variant, we have for any Lorentz transformatio n

T,u F~ = F~` T u ,

where all the variables in the new frame of reference are dis-

tinguished by a bar. For the functional determinant correspond -

ing to the transformation (K', W', x ') ->- (K', W ' , F), we ge t

a (H- , W x')

	

a (k', w- , x' ) a ( 117

	

gin ) a ( . . . . ]£n )

a (K' , W' , x')

	

a (E1 . . . ktt ,) a (h . . . kw ) a (K', W', x ' )

W ' 1
= a

by means of (47) and (102) . Here is the same function of the

new variables as the function J ' of the variables of the original

frame of reference . Thus (165) may be written

(K'W'x'Iru r , I K°W°x°) =

(K ' W 'x' I

	

I .[K° W°x°

Since the square of the total angular momentum does not com-

mute with the components of K, we cannot in general assign

(165)

(166)

(167)
I.;/--

°I	 [w°]
Idol[W

°]

Now let the new system of reference be chosen in such

a way that K° = O . In this `center of gravity' system, which
of course depends on the value of the vector K°, the matrix

elements of have a particularly simple form . From th e

definition of F~`ry in (163) we simply ge t

(K' W ' x ' I T`'FK°W°x°) = (K' W' x' I MI 2 IK°W°x°)• W° 2 . (168)
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numerical values to ill e and K simultaneously . In the specia l

case, however, where the components of K are all given th e

value zero, we may also assign a definite numerical value to on e

of the components of M and to 11'1 2, since this will not con-

tradict the commutability relations (149) . Thus, in the center o f
gravity system the matrix elements of M 2 have the form

(K' W':T' I I Si 1 2 I
K°W°x°) = a (k) å (W'-W°) (x' I I ltir lz _ o, wo I x°) .

From From (164), (167), 168) and (169) we now get a simple relation
between the submatrices (T"T")Kow and 1111 h,,o, wo . Since the
factor a (K '-.Ii°) b (W'-W°) is invariant (see (129)), and since

further Wo e = W°2 - I K°
1 2 = K0 2 = K02 by (160), we get, omit -

ting the indices (K° W°) and (K° = 0, W°) in the notatio n
of the submatrices ,

(x' I r"I'ai x°) = K 1/ID'I (' I I M 1 2 I x°) VIM, ,

	

(170)

where D ' = D (W, W I', x ') is the value of

	

4	 [ Wt1 for
[ W ~l

K ' = K° and W' = W° . D ' is simply the functional determinan t

corresponding to a Lorentz transformation in the subspace de -
fined by the variables (x) for a fixed energy-momentum four -
vector K°", i . e .

å(x')D' a(x') >

and (170) may thus be writte n

1

	

_
K°2

(Fur
)K 0 w0 = I1flII►'°0,j~a .

From the commutation rules (147) it now follows in th e
usual way that the eigenvalues of the square of the angula r

momentum are given by 1° (1° + 1), where I° may be any integra l
positive number or zero. The quantity L defined by

(171 )

(172)

L =	 K2

thus has the eigenvalues

par
dL

(173)
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L° = 1° (1°-r 1), 1° = 0, 1, 2••• .

	

(174)

Further if
(K' W' x' IK° = 0, W ° , 1° )

is the representative of any eigenfunction of 1 M I2, the functio n

(K'W'x'Ili°, W°, 1°) = VID'l(K'W'IK°=O,W°,l°) (175)

will represent an eigenfunction of L with the eigenvalu e
L° = 1° (1° -I-1) .

The eigenvalues of T may be obtained in a similar way.
Since the r" transform like a four-vector by Lorentz trans -
formations we have, instead of (165), for the vector [ `

I' = +v S 1v(	 1	
-1)-I--	 },

	

(176 )
U2 l/ 1 .- U2

	

V 1 - v2 1JJ

where the vector v denotes the velocity of the new system o f
reference relative to the old system . It is assumed that corre-
sponding coordinate axes in the .two systems are parallel. If the
new system is the center of gravity system, v is the velocity
of the center of gravity, i . e .

K °
v = Wo .

In this system we may, according to the definitions (157) ,
simply write

I'=11IW°, T4 =O ,

and by a simple calculation we get instead of (172)

Ko(rz)1:°,w^° (åx lbly F a
y

iVly-I- a = M=)h= o, w°

with
(L = (ax,ay,az) =

	

}17 9U U

	

1

	

1

	

U U

	

1

	

,

U2(vlUa -lI,

	

2(,/1-U2	 -, 1 +
UU2 z ( 1 /1	 1U2-1 ))

.

(177 )

(178)
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For the scalar product til/1- on the right hand side of (178 )

we have
iz11I = ii l MQ ,

	

(180)

where Mii is the component of 1PI in the direction of the vecto r

while

	

is the magnitude of 4 . By means of (179), (177) ,

and (160) we get

ll

	

V + aJ -- z
a = ax

	

= i
uZ

	

VI
I K02 (181)

Now, the component of Jr in a given direction has the eigen -

values m°, where m° is an integer ranging from -1° to +1° .

From (178), (180), and (181) it then follows that the submatri x

	

m F(u wo

	

(Tz)	 R o w. (182 )
V
'/Kot+Kot

z

has the eigenvalues m° with --1°<m°<I°, and the full matri x

T

	

m =	 	 (183)
VK2+ Kz

therefore will also have the eigenvalues m° wit h

-1°<m°<1° .

Instead of the quantities (163) it will now be convenient t o

take the six variables

	

K" = Kx ,

	

Ky , , w, L, m,

	

(184)

defined by (121), (173), (183), and (163), as a set of commutin g

constants of collision . The total number of particles n commutes
with the variables (184), but n does not in general commute
with S . n will be a constant of collision in the special case ,

only, where annihilation and creation processes are excluded . In
this case n will have a definite numerical value . For n = 2 the
variables (184) will form a c o m p l e t e set of collision constants .

The matrices S and ,ti then will be functions of K and L, onl y

since these last variables are the only invariant combination s

of the variables (184) . Thus, the eigenvalues 71° of 92 will only
depend on the eigenvalues K° and L° of K and L, i . e .



=

	

(K°, 10) .

N r . 1 4 3

(185)

These eigenvalues of ri are obtained automatically if we introduc e
that representation in which the quantities (184) are diagonal ,
thus the complete solution of the eigen value problem in thi s
case follows from the invariance of S and ri under Lorentz trans -
formations.

For n > 2 or in the more general case where n is not a con-

stant of collision, a complete set of collision constants (a) will
of course contain other variables besides the variables (184) ,
and ii will be a function of other invariant collision constant s
besides K and L . If S and ' are invariant under other group s
of transformations besides the Lorentz transformations, for in -
stance the group of permutation of variables, this property ma y
in a similar wav be utilized in the derivation of new constant s
of collision .

As an application of the general theory developed in thi s
section we shall now express the total cross section for the col-

lision between two particles 1 and 2 as a function of invarian t
quantities . By means of (47), (49) and the generalized equation

(96) we have for the differential cross section in which new
particles with the momenta 14 , k'4 • • • kn are created

	

2	 I/°I . l a'I R I x°)12k '2 	 	 ,

	

at.emis . 47L

	

°

	

0 2

	

°

	

°

	

r

	

,

	

ddlz. 3 . . . dkn (186)-
u -I ux u°12 . l(u]-u 2)e', I

with
(x- I R I x°) =(x,

I Uxe Wo
I
x°) _(x ' I e" _ 1 I x°)

on account of (26) and (43). Since we are now constantl y
working in the subspace corresponding to fixed values K°, W °
of the total momentum and energy, we may from now o n
omit the indices K°, W° in submatrices like (x' I R x°) .

It is now convenient to choose the variables (x) in the
following way :

(x' ) =

	

, y ' , k3 , . . . kn-)
,

=cos 6'-k2Z

	

'

	

k 2
,

k9 P - arctg
k'

,
2x

(187)
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k s
Ic 2

For

the functional determinant a simple calculation give s

Further we have
(u - u2 ) e2

Ice
(188)

d2dk3

	

dkn, =

	

dcp ' dk3 • dkn, = dx' ,

so the total cross section is given b y

Q = C°SI(x ' IRIx°)I 2 dx '

	

(189 )

C° =

	

4 Tr' I l°

with

	

VI u-u~I2-Iuxu I 2

	

(190 )

and

	

d x ' =

	

1 d S' d cp ' dk3

	

dkn,
r=2 t

Now, let (a) = W, fi) be a complete set of collisio n
constants and let (x ' I,8°)h01,ß;o = (x ' I4°) be the transforthation-
functions connecting the (x)-representation with the (8)-repre-
sentation . Since

S

	

' = (x°IRt RIx°)

and by (25) and (26) and (43)

Rt R = -R --Rt = 1 -e` '' 1 -é `

= 2 (1 - cos i) = 4 sin e 59 ,

sin' 2 x°) = 4 slna'	 (år) d/g' I (x° I fi') 1 2 .

	

( 1

we get

I(x'IRI x°)I 2 dx ' = 4(x°

Thus,

Q = 4 C° (x° sin2
2

x°) = 4 C° sin2l(~~) d,6' I (x°I Ai') I2 ,

	

(192)

where of course SO' is to be replaced by a sum in the cas e

of discrete eigenvalues of fi .
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The variables (f) may .be divided into two group s
(f) = (c, y), where (c) contains all the invariant collision con-
stants, while (y) contains only non-invariant quantities . Thus L ,
defined by (173), will be a member of (e), while the quantity
m, defined by (183), is contained in (y) . li then will be a func-
tion of K and (e), only, ('and (192) may be writte n

Q = 4 G° 1 sin ' 	 (K,t') d t' f (x ° , t ')

	

(193)
with

f (x°, c ')

Let us now conside r
and let

/3_

S

	

I t'y')I
2 dy '

.

	

(194)

an arbitrary Lorentz transformation ,

(t, y) = U,B U 1 (195 )

be the collision constants in the new frame of reference, con-
nected with the old collision constants fi = (c, y) by a contact
transformation . The unitary matrix U is given by (136) and
(140). Since the (c) are invariants, we have

(196)

The transformation function connecting the f-representation
with the f-representation thus has the form

(fl ° I /3') = (c° - ') (Y° I Y' )
and since

(x°I$' ) = i (x°Iß°)då°(ß°I /3 ) ,
we get

	

V I(x ° I~'

	

= D° I (x° I ;'_

	

T) = `(x° I t' Y°) d Y° (Y °

	

(197)

where the functional determinant D° is given by

D

	

a (x°) _ 2-1° [WP ]
8 (x°)

	

zi° [w°]

	

(198)

On account of the fundamental relation

\('r ° I Y ' ) d Y ' (y' IY ')* =
5

(7° 17) d7(Y ' I Y) = (Y (Y°-y")

holding for any transformation function, we then from (197) get
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~ d Y ' I (x°fik'

	

Y ') ~ 2 = 5 0 1t ' b0 )! 2 dr0 ,

	

(199)

l (x°, t ' ) = Î D° f (x°, T '_t'),

	

(200)

f(x°,L ') = SI C I 7 '7)I2 dY'

	

(201 )

is the function corresponding to (194) in the transformed system .
By integration over all values of (x°) for n° = 2 we get from
(200) and (198 )

or

where

a (x° )

a (x° )
~f(x°,

	

dx° = f(x°, ~'-t' )
~n ° =2

	

n°=2
dx° = ~ f (x°, T'=t') dx°,

	

(20';
~ n° = 2

which shows that the functio n

g (I ' ) = 5!(x0 , L ' ) dx°

	

(203)
n°= 2

is an invariant function of the eigenvalues of the invariants (c) .
Now, let the new system of reference be a `center of gravity '

system in which K° = 0 . Then the function f defined by (201 )

will be constant for all values of (x°), i . e. f is independent o f
the direction of k2 . This follows from the fact that f (-x°) as a
function of the variables (x°) is invariant and form-invarian t
under all rotations in ordinary space . So we hav e

7(-o , _
'= L ' ) =	 157(° , i-'= c ') dx° = 9	 (G)

	

(204 )
47r n°-2

	

4
7r.

by (202) and (203) . In an arbitrary frame of reference, where
h' 0 � 0, we then by (200) and (204) get

f (x ° , t ' ) = I D° 1 ' ß(I')

	

(205)

and for the total cross section (193 )

Q = G°
5

g (c ' ) sine	 ~")
d c ' ,

	

(206 )

where

G° =
4 C°ID°lI

= 13° P 3° w° w2

	

(207)

on account of (190), (198), and (77) .
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Since ! = - Ic2, we further, by means of (188), (77), an d
(160), get

Wo =	 (
k2WiE 0

W2)	wo	 	 e2_ W+w2
I

	

I

	

1

	

2

	

k, 0 2

	

IC O

	

2

	

2

(W1 +iiT 2) 2 K O +~C2I2

	

Ko 2

v~le1W2-7c2W,° 1
2 - I 1c°xIc

2
1 2

	

B °

Thus we get the general formul a

Q _ 47rK02(.

	

2~J(K °	 ,
Bo2

	

g (c ) sin	 2	 d a ,

by which the total cross section is given as a functio n
of invariant quantities .

In the special case where the total number of particles ri

is a constant of collision, we have (c) = L and (y) = m, and
by (203) and (194) we get

(209)

g ( 1 D =
eJ f

(x°, f) dx° = l'm ' ) I 2 dx° = 21 ' -I- 1 (210)

on account of the normalization condition for the eigenfunction s
(x° ~ 1 ' m ' ) . Thus in this case g (l') is simply equal to the numbe r
of eigenstates corresponding to a definite value L ' = l ' (1 ' ± 1 )
of the variable L and the total cross section is

(21' + 1) sin2 9I
(K

2

, I')
(211)

In a system where the center of gravity is at rest, i . e . Ii° = 0 ,
(211) reduces further to the well-known formul a

(21 ' + 1) sin2
2 ,

	

(212)

and in this special case the numbers l ' and m' may be inter-
preted as the quantum numbers determining the magnitude an d
the component of the angular momentum in a definite direction .
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