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I . Introduction ,

Few problems have attracted the interest of chemists mor e
than the question of setting up a correct benzene formula .

A brief survey of the formulas proposed is found e .g. in WITTIG 1 .
The final answer of chemistry is that the benzene molecule is

plane and has a sixfold axis of symmetry (symmetry class Dsh) •
But as chemical constitution proofs are produced by means of
substitution processes in which the molecule to be investigate d
is greatly disturbed, it is very desirable to obtain confirmatio n
of the above-mentioned result by means of physical methods .
The molecule to be investigated may by such methods be ex -
posed to minimum disturbances (e .g. by irradiation of light) so
that the aspects of the structure of the molecule obtained a r̀e
exceedingly reliable .

Such a physical investigation, viz . a recording of the Raman

spectra of benzene and completely or partly deuterated benzenes,
was made in 1936-38 in the Chemical Laboratory of th e
University of Copenhagen 2 ' 3 . Indeed, similar investigations hav e
been made by others," but a material as great and , reliable
as that provided by LANGSETH, LORD, and KLIT, has not been
published from other quarters . In the present work I shal l
therefore in the main follow LANGSETH and LORD in their inter-
pretation of the spectra observed . The result of their investiga-
tions was that the molecule of benzene has a sixfold axis o f

symmetry, the same result as that appearing from the chemica l

Stereochemie, 158-60 . Leipzig 1930 .
2 LANGSETH and KLIT . D . Kgl . Danske Vidensk . Selskab, Math.-fys . Medd . XV ,

No.13 (1938) .
3 LANGSETH and LORD, D . Kgl . Danske Vidensk. Selskab, Math .-fys . Medd . XVI ,

No . 6 (1938) .
4 REDLICH und STRICKS . Monatshefte f. Chem . 67, 213 . 68, 47, 374 (1936).

' INGOLD and collaborators . Nature 135, 1033 (1935) ; 139, 880 (1937) .
Journ . Chem. Soc . London 912 (1936) .

1"
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properties of the molecule . Amongst other things this mean s

that we now know for certain that the chemical bonds fro m

carbon atom to carbon atom is the same throughout the whole

benzene ring.

LANGSETH and LORD only in one part of their work trie d

to utilize the values of frequency found for a quantitative deter-

mination of the valence forces of the benzene molecule . In the

present work it is intended to try to utilize the available ma-

terial of figures to the utmost . Even though a complete de-

scription of the potential function for the vibrations thus canno t

be obtained, we are approaching appreciably to such a descrip-

tion, so that a single characteristic .feature of the condition s

of force in the molecule may be adduced . But the calculation s

made are also otherwise of importance, for it has proved to b e

possible on the basis of some of the vibration frequencie s

found by LANGSETH and LORD to precalculate the magnitud e

of others. A comparison between calculated and observed value s

of frequency on the whole turns out as favourable as may be

expected. As LANGSETH and LORD ' S interpretation of the spec-

tra of deuterated benzenes could be carried through with th e

greatest certainty, the agreement mentioned means confirmatio n

of the correctness of the method of calculation used in th e

present work .

Il . Expression of Kinetic Energy an d
Potential Function . Definition of Symmetry

Coordinates .
MANNEBACK and his collaborators t " were the first to tak e

up the question of the calculation of the intramolecular force s

in benzene on a broad basis . WILSON .JUNR .4, indeed, about th e

same time had been occupied with the potential function for

the vibrational degrees of freedom, but in his calculations ha d

only deduced formulas applying to a so-called "valence force

1 Ann . Soc . Scient . Brux . LIV, 230 (1934) .
2 Ann . Soc . Scient . 13rux . LV, 129 (1935) .

a Ann . Soc . Scient . Brux . LV, 237 (1935) .
4 Phys . Rev . 45, 706 (1034) .

model" . WILSON'S work includes no numerical calculations . At

these it is soon proved, as will appear from what follows, tha t

the valence force system is very little suitable for a rendering .
of conditions of force in the benzene molecule . In MANNEBACK 'S
paper' some of the constants of the general quadratic potentia l

function were calculated, but it was published three years be -
fore LANGSETH and LORD'S work, so that the problem coul d
only be subjected to a very incomplete treatment. Furthermore ,

the calculations seem to have been made in an unnecessarily
complicated way. Finally we shall have a use for expression s

of the connexion between the force constants in the potentia l
function and the frequencies of the partly deuterated benzenes .

These are completely absent in MANNEBACK'S paper. So I have

had to make up my mind to start all the calculations afresh .

The general quadratic potential function for the vibrations
of benzene must be formulated with regard to the grouping o f
the vibrations in symmetry classes . The potential is expressed
as a function of certain so-called symmetry coordinates S i , found
in the same number and having the same symmetry qualitie s

as the vibrations in the symmetry class to which they belong .
Here, of course, LANGSETH and LORD'S classification is followe d
(loc. cit ., Table I) . Table I is a survey of the symmetry coor-
dinates .

Table I .

Element s
of symmetry

cg C~ d,'i

A l ,, + + + + 2 s1 s2
A 2 , + + - + 1 K - S4
A 2 u + -I- - - 1 s5
B1 „ + - + -- 2 S 7 S8

B2y I - - + 2 S9 S1 0

B2„ + - - - 2 I S11 S 1 2

E+ L ±1 + ± + 4 .

	

. ~ S16 S 14 S15 S 1G S17 S18 S10 S24

Et e}1 + 2 S21 S22 S23 S2 4

S ±1 - ~ -1-
1E,,

E„ e~l - + - 3

Rz, Ry

Z~.r,

	

~~y

S25 S2 0

S 27 S28 S29 S30 S31
SS 2

1 Ann . Soc . Scient . Brux . LV, 237 (1935) .

Number
of

vibrations

Zer o
frequencies

Symmetry coordinate s



The four last symmetry classes include degenerate vibrations,

hence two symmetry coordinates must be defined for each
vibration. And consequently the potential function is rendere d

by the equation :

2 V = a1S1-I-a2 S2+ asSI S 2 -I-a 4 S4-{-asS - ;- as S7 S8 + a, S,27' + as

+ a 9 S9 + a l0 S lo + all S9 S 1o + a 12 Sit + a 13 S li S 12 + a 14 "S 1 1
+ a ls (S 13 + Sil) + a16 ( S 14 + Sis) + a 17 (S 15 + S ig )
+ als (S i5 + S20) + a l9 (S13 Si, + S 17 S18) + a20 (S 13 S 15 + S17 S19 )
+ a21 ( S 13 S 16 + S 17 S20) + a22 (Si, S 15 + S18 S 19)
+ 023

(
(S 14 S16 + S13 S20)

(S2 1
024 (S 15 S16 + S19S20) +

/
a 25 (S 21 +S 23 )

+ a26 (S22 + S24) + a 27 (S21 5 22 + S23 S24)
/+

a28 1627 + S28)

+ a29 (S29 H S3 0 ) + 0 30

	

+- .(`S 31 S32 ) + 031 (S27 S 29 + S28 S 30 )
+ 032 (S27 S31 + S28 S32) -H an (S 29 S 31 + S30 S32) + a 34 (S 25 + S26) .

The a's are the so-called force constants, 34 of which thu s
being found in the complete potential function . It is the nume-
rical values of these 34 constants I shall try to calculate .

The z-axis is perpendicular to the paper and has a positiv e
direction towards the redder . The distance from (0,0,0) to C i s
denoted by r (= 1 .40 Al), the distance from (0,0,0) to H is
denoted by. R (= 2.48 A l ) . The H and C atoms are numbere d
as shown in the drawing .

The components of the displacement of C atom no . j away

from the position of equilibrium is denoted b y

Xj ,Y1 ,Z1 (j= 1,2,3,4,5,6) .

The components of the displacement of H atom no. j away

Fig . 1 .

At the definition of the symmetry coordinates and the sub-

sequent calculations the molecule is supposed to be placed in

an orthogonal xyz coordinate system as shown in fig .1 .

Because of the presence of the symmetry element C3 it i s

further convenient to define the coordinates h 1 and v1 , given by
the equations

h i

h 3

h5

Ui = Z i + Z3 + Z 5

U 3 = Zi + E 23 + E2Z5

D 3 = Zi+E 2Z5+EZ5

i
E = -2 + 2 V3

1 The distance C-C = 1 .40 A, the distance C-H = 1 .08 Å .

X

ul+ ZZ 3 + u 5
al + EQ3 + EZ aS

u l + E 2 u3 -{- 611 6

h 2 = 1I2+ 114+ 1I 6

h 4 = u2 + E ZI 4 + E2u 6

h6 = u2 + E 2 u 4 + E u 6

Uø = Zo + Z4 + Z 6

U4 = Z2 + E Z4 + E2 Z 6

v 4 = Z 2 + E 2 Z4 + EZ6
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6

2T = mFr + ►J1 + zT ~ + 2', m° ~~I! + Yj + Îl ~ _
1

	

1

3 rn (hi+h 2 h 2 + 12 ;.; 123+h 4 h4+h 5 h2+176 h;+v2 +2 D 3 U3-I-U2+ 2 1i4U4)

+31n °(H 1 Hi+H,H~+H3 H3 +H4H4-f H3+H6 H~+Vi+2V3V3 +V2 +2 V4 V 4

8

and analogous definitions with
letters .

Inversely we have

3 u l = hi + h 3 + h 5

3 u 3 = h t + Oh, + Eh 5

3u 5 = 17 1 -1- E11 3 + E 2 h 5

3 z .° = v2 + -I- v4*

3 î 4 = v 2 + E2 U4 + Ev4*

3 z6 = u2 + Eu4 + 6 2 v4 * .

For the use of the coordinates h1 , u1 , H1 , and V for the

definition of the symmetry coordinates it is further of import-
ance to know how h1 , u1 , H1 , and V1 vary during those symmetr y

operations whose corresponding symmetry elements are foun d
at the top of col . 2 in Table I .

By a rotation of 120° round the z-axis in the direction o f
the arrow we ge t

h 1 '* E 171 11 2 -* 611, n l --> v l v 2 ' v,

11 3

	

h 3 h 4 11 4 V. " E 2 v 3 v4

	

6.2 1)4

h 5

	

>- sh 5 11 6 ->- s 2 11, V3-> El) v4-°' 6v4

and corresponding relations in capital letters .
By a rotation of 180° round the z-axis we get

Nr . 9

	

9

By a rotation of 180° round the y-axis we get

h ,-( -} - hi

	

h 2 -172

	

v-u l

	

v2 --v,

17 3 -> - 62173 ' 174

	

- 6174

	

V 3 -± - E 2 U3

	

v4

	

- E 1) *4

h 5 - - Eh h 6 - -E 2 ha v3->--eV,

By inversion round (0,0,0) we finally ge t

]7 1 +>-17 2

	

Ulf - V,
h3 +> -E2h,

	

v3 +>-62 V4

17 5 +>- Eh 6

	

v3+>-Ev4 .

Corresponding relations are valid for capital letters .
Next, we may pass on to constructing the symmetry co -

ordinates Si .

In my doctor's thesis' I have had an . opportunity to show
how this is done, in practice. With the symmetry class Ail, in
benzene as an example I shall therefore only briefly state ac -
cording to which criteria the symmetry coordinates S 1 and S 2
have been constructed . S i and S 2 are linear coordinate combina-
tions which fulfil the following requirements :

(1) . S i and S2 must both be 0 at translational and rotational
movements .

	

.

(2) As the vibrations in the
A,, class have the symmetry

character C;(+), C2 (+), C2'' (+), and i (+) S i and S 2 must b e
invariant at the symmetry operations C3, C2, C2, and 1(0,0,0) .

(3) For vibrations in the
A1,

class , we have (S i , S2)* (0,0) ,
far vibrations in other symmetry classes (S,,S2) = (0,0) .

As appears, the symmetry .coordinates may be selecte d
an infinite .number of ways . The S i chosen are rendered
Table II .

Table II .

S, = i ( E2h3- e h 3 *+ e=h4- eh4 * )
S2 = 7(e2 I=I3 - e H3 a' + e 3 H4 - H 4 m )

S4 = E 2 173 +èh3*- eh 4-e2 h 4* - =: ( e2H3 + eH3 * - e -H4 - e2 H4* )

N r . 9

capital letters instead of small

311 2 = 112+ 114+ 176

3 u 4 = h, + E2 h 4 + E h 6

311 6 = ho+6h 4 + Oh 6

371 = v l +v.s+vs*

3z„ = 1)1 +E2 v3 +6v,;*

3 :c5 = Vl+EV3+6' v.;

An expression of the kinetic
now be drawn up, as

energy T of the molecule may

*
v 4 > - E? U4 .

in

in

h l +>- h 2 v 1 +> v2
S5 = vl+ v3 -(V1 + V, )
S7 = î(e113 * -52h3+e2 h4* -Eh 4 )

11 3 +> -62 17 4 v3 +>E.2 v4
!SS = i (E H3*- e2 H4+ e'H 4*- 8 H4 ) (To he continued )

17 5 F>-617 6 U3+> EV ,.~ B . BAK, Det intramolek . Potential . København 1943 .
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Table I I (continued) .

1 q(+) coordinates

C2(-) coordinates

q (+) coordinate s

1 q(-) coordinates

S25 =

	

(-e2V3 -V3*-}- eV4+e2 V4 *) + e 2 va+ evs x-eU4-52 v4 * q(-)

R
S 26 = i

	

(e2 V3-eVg• ` -eV4+ e2 V4*)- i ( e2v s-ev3 *-ev4+ e 2v 4 * ) C2 (+ )

S 27 = hl+ h1P:
-F-h2+ h2 * -(H1+ Hl*+ 112 + H2 *) C2 (-)

S28 = i (- hl+ h 1 :,: -h 2 + h 2*) + i (H4-IIl*+ H2- H2 *) C!;(+)
S29 = eh 5 + s21t 5 *+ e 2 h 6 + e h6 * C,̀ (-)
S36 = i(e h5- e 2 h 5 * + E2 h6- e h6 * ) C2 (+)

S31 = e H5+ e2 H5 *+ e 2 H6 + H6 * q(-)

S32 = i (e H5- e2 H5 * + e2H6- e H6 * ) C2 (+)

Finally the possibilities of a translational and rotationa l

movement away from the position of equilibrium are exclude d
by the equations

mH (h i -hi+h 2 -h2)+mC (Hi- Hl+H2 -H2) = 0

mH (h i +hi-I-h 2 +h2)+m e (H 1 ±Hi+H2 +H2) = 0

In H @'1 + v 2)

	

+ me (Vi + V2)

	

= 0

m H R (--e2 v E v3+ev4+e2v4)+mCr (-s 2 V3-eV3+eV4+e 2 V2) = 0

InH R(E2 v. - av3-Ev4 +E2 v *4)+inC r(e2 V3-6V3-- . eV4 +E 2 V4) = 0

InH R(e 2 h 3 +eh 3 -eh 4 -E 2 h 4)+mC r(e 2H3 +eH 3 -EH4-e 2 H4) =

Ill . Drawing up and Solution of the Equation s
for the Vibrational Movements .

In what follows it is to be shown how this is done in the
case of the vibrations in symmetry class A 1g . As regards th e
rest of the symmetry classes I shall content myself by statin g
in Table III the connexion between vibration frequencies an d
force constants .

The vibrations in the A1 g class contribute to the potentia l
with the amount

a2V = a 1 Si+ a 2 S2+ a 3 S 1 S 2 ,

The equations for the vibrational movements are drawn u p
by substitution in the formula

d Ja2T\ +a2V
dt aqK, aq K

For qk = S1 we derive

	

= 2a 1 S1 + a 3 S2 and from the ex -
i

å2T mH
pression for 2 T :	 =	 Si

aS1

	

1 2

For harmonic vibrations we have Si = - x S I and S 2 = - z S2 ,

so tha t

S 9 = vl- v 2
S lo = V1 -T72

Sll = e2h 3+ c Ii 3*+ e h 4+ e 2 h 4 *
S12 = e2 II3 + eH3 *+ e H4 + e2H4 *

S13 = (h l-hl*- h 2 + h2 * )
S14 = i (Hi -

Hi * -H2 + H2 * )
Sib = i (-eh 5 + e2 hs* + Oho- e ho* )
Sls = i (-e H5 + e2H5 *+ e 2 Hs-eHs * )
S17 = h l+ h l*-(h 2 + h2 * )
S13 = Hl+ Hl * -(H2+ H 2 * )
Sls = e h5+ e 2 hs * - e2h 6: e h 6*

S20

	

H5 + e 2H5*- e2 ÏI 6 e H6 *
S21 = (-e2 v3+ ev3 * -ev4+ e2 v4* )

S 22 = i( -e2 V3+eV3*- eV4 +e2 V4 * )

S 23 = e2 v3+ ev3 * + eva+ e 2 v4
*

S24 = e 2 V3 + e Va* + ,I' 4 + e2 V4 '''



Table III .

x - = 24 (+1) (1) . 21 2J =	 144	
(4ala,-as) (2)mc mH

	

m il m c

1 3

Relations between frequencies and force constant s

2a 1 - a 3

n] G
2a2

	

x
1 2

7n H

1.2
. x

as

= 0 .

The roots of this quadratic equation in x are called x i and

r. 2 . We then hav e

1

	

a l 1

	

144

	

2
x, ~- x 2 = 24

n]
+

n]
	 J) (1)

	

m In
(4a l a,-a 3) (2) .

c

	

11

	

C H

The connexion between x i and the frequency for the corre-

sponding vibration vi is

x i = 47-04 .

Table III shows the results of corresponding calculation s

in the other symmetry classes . In the first column the symme-

try class is staled, in the second the designation of the fre-

quency in close accordance with LANGSETH and LORD. The

third column gives the derived relations between force constant s

and frequencies of vibration .

IV . Calculation of Some of the Force Con -

stants of the Potential Function .

In what follows this calculation is to be carried through

on the basis of frequency values from LANGSETH and Loran' s

work. As exclusively frequencies from the molecules C 6H6 and

C,D 6 are used, the formulas of Table III are immediately ap-

plicable . The results are rendered in Table IV .
It appears from the Table that in the symmetry classe s

A lg , B 11, , B gg , and Eu a calculation has been carried out fro m
three constants on the basis of four frequencies .

Only in case theory and experiment completely cover on e

another it will be unimportant which three frequencies are use d

in the calculation . But here this is not so because of anhar-

monicity, and therefore I have, with the B eg class as example ,

adopted the procedure of substituting the frequencies from

A .,- .7 v3 .

.

	

... .
ni H R 2+ mcPg

= 2 4x3

	

a4.

	

'

	

n]HIn~I'`-'

	

(3 ).

	

. .

-

	

a~2 v ll
m H + 7]] ~

I]]

	

(4 )x ll = 6a5
n]H

	

~

_

	

. .

	

B 1u vlg Y13 =

	

144
x 14+ -r 13 = 24 ~

QB
+ -11(5) ~

	

x 13

	

(4a7ås-aå) (6)mc

	

77iH

	

mH]]] C

B2g 1'4 v5 x4 + :[s = 6 ( -
m
011j + u ~(~)~

	

x4xå =
I710

	

(4a u a10 -a11)(K )c

	

m
x//

	

H mc

v l4 v 15
(Oi e

Z14 + x15 = 24

	

+
a 14

(~) :

	

i 14 % ]5 =

	

1 .44_ (4 a1~ ai4- aia ) (10 ). 1
in r.

	

!]7 7%

	

mn m c

v6
m l]

2a 1 ,

	

12 i

	

a10

	

020

	

a21

v7

m c
au,

	

2a 16 -- x

	

am

	

a '.331 2
E+ = 0 (11 )

q vs
mH

030

	

ao2

	

2a17-
1~

x

	

chi
-4

vg
m c

an d

	

a23

	

a-24

	

2a18-
1~

x

Roots

	

x6, x7, x8, x 6

ß u

	

.
v 16

	

1'17
g6

	

a2

;~

	

36
% 18 + SC17 = 12 (-

In
-
c

,
lni

.l(12)i

	

x 16 x 17 =
In~117 H

(4ag5ag6-a27 )(13)

,i vto

mc]'2 +mH R2
~to = 12a34

	

,

	

(14 )m H I]S C r

Pis
m H m ( ,

2ag8-

= 0

	

(15 ;

12 (n)H+ Inc) .C

	

a al

	

a3 2

a31

	

2agg- ~Z xv16 a33
7 7] c

v2n . a32

	

a33

	

2 a3o-- 12 x
Roots : x ls, x 1 :), x2u•
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Table IV .

Sym -

metr y
class

Experimenta l
material

For-
mul a
used

Calculated force
constants ; dyn

per cm .

Frequencies calcula-
ted on the basis o f

force constant s
state d

CeHs
(oni-1 )

C,Dß
(cm-li

CsIIs
.

Gsl)e

A I ,J

vl =

	

992 . 5

v2 = 3061 .5

945 . 2

2293 .2
( 1 ) ( 2 )

a l = 2 .068 . 10 4

as = 5 .678• 104

as = + 4 .519-10 4

vi =

	

992 . 5

v 2 = 3061 .2

934. 9

2296 .5

A 25 v3 = [1202] (3) a 4 = 0.2778 - 10 4

A 2 ,, v ii = 671 (4) as = 0 .4083 . 10 4

B,,,

v12 = [1011 .6 ]

v13 = [3055 .1]

[955 .2)

[2283 .8]
(5) (6)

as = ± 4 .330 - 104

a7 = 2 .078 . 104

a8 =5.560 . 10 4

v12 = 1013 .0

v13 = 3051 .8

955 . 7

2283 .3

B23

'v4 = [664 ]

v5 = [1048]

[575 ]

[856]
(7) (8)

as = 1 .014 - 10 4

al o = 6 .200 - 10 4

al~ = f 1 .698 . 10 4

v 4 =

	

652 .8

v 5 = 1065 .1

587

837

vi s = 406 350 a23 = 0.2757 ' 104 vio =

	

404 .8 351 .1
(12) (13 )

E+
v4 7 = ]845] [690] a 26 = 1 .859 . 10 4 vl7 =

	

849 .7 689 . 5

a27 = ± 0 .8375 . 10 4

IE -,„- vlo = 849 .7 (14)

	

a34 = 0 .2809 ' 10 4

	

I

C 6H6 and G 6D 6 in (7) . In this way as and ai s were determined .

By substitution in (8) two different values of (4 a 9 • a 10 - a1 1 )

were calculated . In the continued calculation a mean value wa s

used. Thus the value for a ll of Table IV was found. Inversely

we now by means of the values for as, ais, and all and the

formulas (7) and (8) compute v4 and v5 in C6H6 and C6 D6 . The

results are rendered in col . 6 of Table IV together with results

Nr.9

	

1 5

obtained by using a similar procedure in other symmetr y
classes .

The experimental material in the classes A2g , Blu , Beg , and
Eu is given in square brackets . The frequencies stated are not .
observed in the spectra of the C 6 H 6 and the C 0 D 6 molecules ,
but by considerations which will be discussed below, it is pos-

lible to determine their values approximately on the basis of
the partly deuterated benzenes .

The frequencies in symmetry class B1u given in square
brackets deviate inconsiderably from those stated by LANGSETH
and LORD, toc . Cit . p. 75 . The values given there have been ob-

tained as the result of some calculations carried out on the
basis of the valence force system (pp . 29-30) . In these cal-
culations it is assumed that the potential belonging to vibra-

tions in the symmetry classes A 1g and Blu may be describe d

by using three constants, K, k, q . We have here used six con-
stants, al , a 2 , a3 , a 6 , a 7 , and as, and therefore, in order not .
Lo confuse two points of view, we must find another start-

ing-point .

We shall first try to estimate the size of VY2 . The frequency
is not Raman active in C 6H6 and C6 D 6 , but in a number of
deuterated benzenes it makes its appearance in the spectrum .
The line is often displaced from its "normal" position, viz . in
[hose deuterated benzenes in . which it belongs to the same -
symmetry class as v1 . It is unperturbed in o-C6H4D 2 and
o-C 6 H9 D4 only, and thus we 'may fairly well from the positio n
of r12 in these spectra-by extrapolation-infer the position of-

v12 in C 6H6 and C 6 D 6 .

CsH,

	

o -C 6H4D 2

	

o -C6H2D4

	

CsDs

Observed

	

992 .8

	

974 .0

Extrapolated (1011 .6)

	

955 . 2

These values only immaterially deviate from those foun d
by LANGSETH and LORD. (1010 and 962 . )

Next v13 was calculated in the following way : Those vibra-
tions which in C6H6 and C6 D 6 are grouped in two symmetry
classes A 1 9, and B10 , in sym-trideuterobenzene belong to one sym-
metry class, A 1 . All the frequencies in this symmetry class-
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Nr . 9

have been measured in the Raman spectrum of syrn-trideutero-

benzene. Hence we may calculate v 13 by means of TELLER ' S

product rule'

v l v 2	 v12v13(S-C6H3 D 3) 1 .414 .
V2 Y12 7' 13 (CaD6)

	

-

	

.

In these equations v13 (C 6H6 ) and v13 (C 6 D 6 ) are the only
unknown quantitities . They are calculated to be 3055 .1 and
2283.8 cm .', respectively, in good agreement with LANGSETI-1

and LORD, who record 3060 and 2290 .
a 6 , a7 , and as then could be calculated in the way stated

above. It is interesting to compare the numerical values o f

these constants with the numerical values of a l , a2 , and a 3 .

It is seen that these constants are really with good approxima-
tion equal in twos, so that the potential in the classes A 12 and

B1tt may be described by means of three different constants a s
assumed and shown by LANGSETH and LORD .

The frequencies in the square brackets in the
B25

class are .

estimated values as in LANGSETH and LoRn's paper. Only, in

order not to confuse various points of view, the correction fo r

anharmonicity has been omitted .

As for the frequencies in the E !, class, reference may b e

made to the chapter on The Non-Planar Vibrations p.66 if.

in LANGSETH and LORD . For the frequencies in the A25 class se e
ibid . pp. 65-66.

Thus it has proved possible to calculate 15 out of the 3 4

constants of the 'potential function . The reason why not al l
the 34 constants can be computed is a double one, viz . partl y
difficulties about the calculation which have not yet been over -
come, partly lack of experimental material . Difficulties of th e

first category are found in the symmetry classes Eg and E .

In these classes respectively 10 and 6 constants enter . In C 6H6 ,
C6 D6 , and s-C5H;D3 the available spectroscopically determine d

numerical material includes 31 frequencies, and in the spectr a

of the other deuterated benzenes there is also numerical ma-
terial from which the values of the 16 constants mentioned

depend . But so far I have not been able to overcome the dif -

' LANGSETH and Loan, Ioc . cit . pp. 14-17 .

1 7

ficulties of a solution of the complicated equations (11) an d
(15)-that is to say, if these equations are to be utilized fo r
the determination of the unknown force constants .

The lack of experimental material is felt particularly
in the symmetry class B2u ; for here the vibrations are neither
active in the Raman spectrum nor in infrared absorption .

In what follows the reliability of the values of the forc e
constants computed here is to be tried through a precalculatio n
of vibration frequencies for the partly deuterated benzenes an d
a comparison with those determined experimentally . For three
of the constants, a 4 , a5 , and a U4 , it is already now possible t o
carry out a test calculation . These constants were calculated
by means of frequencies from the C 6H6 spectrum. We may now
by means of the values of the constants and the equations (3) ,
(4), and (14) precalculate three of the vibration frequencies i n
the spectrum of C6 D6 .

Calculated frequencies Observed frequencies

v 3 = 933 924

vlt = 492 .5 503
vto = 661 .0 663.5

The agreement must be designated as good .

V . Calculation of Vibration Frequencies i n
the Partly Deuterated Benzenes .

In the following considerations it is very useful to look a t
figs . 2 a and 2 b in LANGSETH and LORD (p. 14) . Fig. 2 a is a .
survey of symmetry classes of the planar vibrations in C 5 £-1 6
and deuterated benzenes. Fig. 2 b is a corresponding survey o f
the non-planar vibrations. The symmetry classes in the C 6H6
and C 6D 6 molecules are stated against the symbol D 6h , the de-
signation of the symmetry qualities of these molecules. The
symmetry classes in p-C 6 1 4 D 2 (symmetry class Vh) are state d
against l 1t , etc. For the molecules with D6h symmetry (C 6 1-16
and C6 D6 ) we have in the preceding section calculated numerica l
values for the force constants in the symmetry classes A, 5 ,

D. Kgl . Danske Vidensk. Selskab, Mat .-fys . Medd . XXII, 9 .

	

2

Y 1 v2 YI9 v13(C6H6)	 = 1 .41 4
Y 1 vn v12 v13 (s-C6H3 D3 )
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Btu , and Atg (planar vibrations), and Beg, A2u, Eû, and ET Next,

(non-planar vibrations) . From fig . 2 a it appears that it will b e

possible to precalculate the frequencies in the Ai class in mole -

cules with Doh symmetry (s-C 3H3D 3), because the A ', class in

D3h molecules arises by a combination of the symmetry classe s

Alg and Blu in Dsh molecules . But the force constants in th e

A 2g class cannot be utilized for precalculations, as these must

be combined with the force constants in either the Btu or the

E_g class, which we do not know.

Matters are considerably more favourable in the case of th e

non-planar vibrations . Here the force constants in all the four

symmetry classes of the Dsh molecules are known . It is evident

from fig. 2 b that a calculation of the frequencies for all non -

planar vibrations in all partly deuterated benzenes is possible .

Therefore we shall in what follows calculate the vibration fre-

quencies for e the Ai class in s-C 2H3 D3 and a selection of non -

planar vibrations in deuterated benzenes specified below, every -

where comparing calculated and experimentally determine d

values .

19

it is easily inferred that

a 2T mH +

	

m D

	

m- mH D

S l -

	

2 4
	 S,+

	

24 S 7

a2 T m c _

a S22

	 -

12- s
2

a2T
S i +-	 7a S 7

	

24

	

24

MC .
-S 8 .

111H -177D. .

	

H + 111D

ô2T

-a S8

	

1 2

The equations for the vibrational movements being drawn u p
as shown above, it it seen that the frequencies must be root s
in the equation :

2a1 -
mH + MD

24

mD -mH

24
z 0

a 3
12 x 0

n1 H -} mD

24

	

x

	

0

	

2 a7-

	

24

	

F

	

a s
mD - 1nH

x a 3

1 . Calculation of frequencies in s-C6H3D3 . The A~ class .

The deuterium atoms being supposed to be placed in th e

positions 1, 3, and 5 (fig . 1), we hav e

2 T = 3mH (h 2h2+h 4h4+/1 6 116+1' +2î14U4)

1

+ - mD (hlh l. + h 3h3 + h 8 h5 + 1.4 + 2 U 3 U 3 )

+ 3 m (H iH* + H 2H2 + H3 H3 + H4H4 H 5H5

+ H6 H6 + V; + 2 V3 11 + 1 . 2 + 2 V4 1 - 4) .

The potential function is the sum of those contribution s

which in Dsh molecules are distributed to the classes Alg and

Blu , thus

d2 V = a1S1+a 2S2+a3 S 1 S2, +a7 S7+a 8 S8+a6 S,S8

the a's and the S's of course having the same signification a s

above .

M C
2a8 - 1 x

From this the vibration frequencies may be computed . As
for a 3 and a6 , the sign of which is uncertain, it appears that
only the squares of these enter . Below, calculated and observe d
(LANGSETH and LORD) frequencies are compared .

s-C6H3 D3 . (A; class) .

Calculated

	

Observe d

vl = 945.0

	

956 . 6
vt = 3058.2

	

3055 . 1
v 12 = 1003 .5

	

1003 . 9
v 13 = 2290.5

	

2283 .8

0 0 as

=0 .

2*
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The agreement must be called excellent . The vibrations

here considered are planar, so-called valence vibrations (se e

figs . 1, 2, 12, and 13 in LANGSETH and LORD, p. 10) . It is a

common experience that particularly with vibrations of this typ e

one obtains good agreement between experiment and calculation .

2. Calculation of frequencies in s-C 6H3 D 3 . The A2 class .
The expression for 2T is the same as above . The expressio n

for ,1 2 V is
//2 V = a S S 25' + a 9 S s + a to Sio + a il S 9 Slo •

Further we hav e

Ô 2T

	

rnC (77tH + 117D)

	

mc (171 D- 17I F1 )

	

(Î2 T
S 5 +

	

3
	 N	 Sg

	

=
8 S , o

The determinant for the determination of the vibration fre-

quencies here i s

711 E (mH + mb)
2 a5

- 3 N -y

MC (lnx - rn D )

3 N ~

0

The unknown sign of a ll is of no importance for the valu e

of the solution. We find

s G 6H3D 3 . (A 2 class) .

Calculated Observe d

v 4 = 666 691

v 5 = 964 91 4

vit = 525 533

Nr.9

	

2 1

The observed values originate from the infrared spectrum .'-The
vibrations are vibrations perpendicular to the plane of the benzen e
ring. Here the agreement between calculated and observed frequen -
cies is considerably inferior to those -for valence vibrations. The
amplitude for non-planar vibrations is considerably greater tha n
for valence vibrations. The anharmonicity therefore cornes to
play a great rôle, so that the assumption on which the calcula-

tions are made, viz . that it is sufficient to include square term s
in the potential function, is less well fulfilled .

3 . Calculation of frequencies in s-C6 113 D 3 . The E" class .
The symmetry coordinates to be used are

S23, S24, and S L3 ,
originating from the symmetry classes EL+, and Eg in the D 51,
molecules. Thus we have ,

?S 5

	

3 N

After setting up the determinant, etc ., as above, we get :

s-C 6H3D 3 . The E" class .

Calculated frequencies

	

Observed frequencies 2

vlo = 676 71 2
v17 = 848 81 5
v ls = 376 37 3

' INGOLD, Nature 139, 880 (1937) .
LANGSETH and LOnu, loc . Cit .
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The vibrations are non-planar vibrations . Considering this

the agreement must be regarded as good.

4. Calculation of frequencies in p-C6 H4D 2 and p-C6HD24 .
The B3g class .

The deuterium atoms in p-C 6H4D 2 are supposed to be placed

in the positions 3 and 6 . We get

2 T =
3 mD (H i HI + H2H2 + H3 H~ -I- H4H4 + HS H; -{- II6 H6 -r

+V1+ 2V3 V3 + V2+ 21~V4 )

h i hi + /I 2 h 2 + h 3 h3 + 1i 4h4 + h 5 h , + h 6 h4 +

+ v2 + 2 v3 3 -- Z-
. 2 v 4 v 4 )

+ III D-mH
[(hi H- E2 h 3 + E h5 ) (h I + Eh3 +E2h5) +

9
+ (h 2 + E h 4 + , 2h 6 ) (h 2 + E Lh4 + Ehg) + (vi + E 2 v 3 + E v 3 ) 2 +

+ ( 1 2 + é• v 4 + E2v *4) 2 ] .

a 2 T 3 mcr2 (mD - mH)

	

3 InHR2 (mH +2 mD ) + 3mD r2 (2 nIH + mD )

a S 9

	

9 N

	

S2J +

	

9 N

a 2 T m G r 2 (mD-mH)

	

nI D r2 (m H + 2 mD)

	

a 2 T m c

83 2 5

	

3 N
	 S9

+

	

6 N

	

S25

	

a S i , - 3

N = 3m D r2 + (mH -}-2mD)R2'

Nr.9
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p-C6H 2 D4 . The k g class .

Calculated frequencies Observed frequencies

r5 =939

	

- 927

vlab = 732 765
v 4

	

606 605

The agreement is best for p-CsH2 D 4 , presumably becaus e
the molecule contains more deuterium atoms than C 6H4D 2 . Be -
cause of the greater mass the amplitudes of the deuterium atom s
are smaller than those of the hydrogen atoms . The deviation
of the vibrations from the harmonic mode of vibration there-
fore becomes smaller . (Compare the results with o-C 6H4D2 and
C 6 H2 D4 ) .

5. Calculation of frequencies in 0-C 9 1-14 D, and o-C6H,D4 .

The B2 class .

The deuterium atoms in o-C6 H4 D2 are supposed to be place d
in the positions 4 and 5 . Thus we fin d

a2 T m H +2 1nD
• +

mH -MD323+ 777 H - mD
v3 H

1 8

nI D +5 m.H

	

712 D -mH

36

	

S 23 +

	

36 v3 H

a 2 T mc

aS2 = 6 S 24 •
4

22

1
+

aS -5 9 1 8

a S 2 3

a2T r1nD
= K

aS 26

	

6 R

a 2 T mH mD
=

	

A
18

On the

~//2 V = as S s + aio Sio + a iiRs S io + aa4s25 .
.

	

1

	

R
A =-

)n c r

	

m D r

basis of this the frequencies are calculated in the
mc

	

II
N[

	

6r S5
+ III D ) + II V

	

+ 6 R
(InH - mD) S2s +

below table .
p-C 6 H4D 2 . The k g class .

+ mD - mH Rv3mH +
mD'1S

- 36

	

3r

	

R V 3!
Calculated frequencies Observed frequencies

1 R mD (mD mH) mc rv5 = 1040 966

	

H= S 5 (2 mH + InD + 3 Inc) S 26 +
v loh =

	

700 738

	

N 3 r 3 R

	

3V
v4 =

	

629 634 (nIH-mD) R
+

	

6 r

	

(mH +
InD) S23

IThese vibrations, too, are non-planar vibrations .
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J2 V = a 5 S5+ a 25 S 3+ a~s s24+ a 27 S2B S24+ a34S6 •

By insertion of numerical values we calculate :

o-C 3H 4D 2 . B 2 class .

o-C 6H2D4 . The B ., class .

Calculated frequencies Observed frequencies '

vloa = 684 739

vll

	

= 527

v16b - 359 369

v17b = 815 778

VI . Estimate of the Error in the Force

Constants .

It may be said at once about all the force constants that

experimentally badly determined differences of frequency no -

where enter into the calculations . Hence there is practically no

uncertainty originating from the measurement of the spectra

as regards the numerical values . On the other hand it must

' LANGSETH and Loan, loc . Cit .

Nr.9
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be admitted that the values involve minor errors . For actually
the equations (1)-(15) were deduced, on the assumption tha t

the vibrations were harmonic, this only being so where the-
amplitudes are small . This assumption is fulfilled best in the
case of the planar valence vibrations, so that the constant s
a t , a2 , a 3 , a 6 , a7, and as,- which describe the potential fo r
these vibrations, are determined best . Hence it also appears tha t
at the precalculation of the vibrations in s-C 3 H3D 3 (the Ai class),_
where the values of these constants are used, we find value s
deviating at most 1 per cent . from those found experimentally .

On" the other hand the constants describing changes o f
potential with non-planar vibrations are less well determined .
The amplitudes here are so great that the vibrations become -
slightly anharmonic. Let us look at e . g. (14) :

2

	

mcr2 + 111Hß2
xlo = 4 7Ë v l o = 12 a34

1n H 7I7 C P2

vlo is the frequency for one of the non-planar vibrations ..
As a rule a lower value for vl.o will be determined than th e
one which would appear if the vibration was harmonic : In rare -
cases, however, also a higher value. Of course it is not possible
to give a common value for t+he error committed for all non -
planar vibrations, because, as done here, we reckon with the -
observed frequency instead of the "harmonic" one, but in wha t
follows, however, we shall, in accordance with ordinary spec-

troscopic experience,' reckon with an error of ± 2 per cent. in
frequencies belonging to non-planar vibrations . As appears..
from (14), this involves that (1 3 4 is determined with an error
of about ± 5 per cent . As for the constants a 4 2 and a 5 we ob--
tain the same result .

For the constants ay, aio, a ll, a25, am, and a27 the con-
nexion between frequencies and constants is more complicated ..
.(7), (8), (12), (13) . In what follows we shall assume that these •
constants, too, are exposed to an error of ± 5 per cent . The
assumption of a possible error of ± 5 per cent . in the constants, .
corresponding to all non-planar vibrations, gives an unstraine d

' Cf. LANGSETH and Loan, loc. cit. p .81 .
a a4 belongs to a planar deformation vibration, but the remark on an -

harmonicity also applies here .

Calculated frequencies

	

Observed frequencies '

v loa =

r11 =

v 16 b =

v l75

676 78 2

571 582

369 384

841 825
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explanation of the deviations found between calculated and ob -

served frequencies for the partly deuterated benzenes .

VIL The Intramolecular Forces.
It is now possible to calculate the forces acting on th e

individual atoms of the molecule when the atoms are remove d

from the position of equilibrium, to the same extent as we hav e
above succeeded in establishing numerical values for the forc e

constants in the potential function of benzene . With a view to

the possibility of later treating the mechanism of reaction i n

processes in which benzene is involved, it should be noted tha t

it is of the greatest importance to study those movements awa y
from the position of equilibrium by which the numerically

smallest forces become active . Among . these movements we
find all the non-planar vibrations, in which the amplitudes ar e
great, i . e. there is a much greater chance to find a hydrogen
atom outside the position of equilibrium perpendicular to th e

plane of the benzene ring than in this plane .

According to the above considerations the changes of po-

tential by displacements of atoms perpendicular to the plane o f

the benzene ring are rendered b y

d 2 V = a5 S; -}- as S s + alo Si o + a it Ss S1o + a 25 (S2 1 + S23) +

+ a26 (S22 + SO4) + a27 (S21 S22 + S2 3 Soo) + a 34 (S 25 + S26) . .

Measured in dyne/cm . the numerical values of the force
constants were determined as

	

a 5 = 0.408 • 10 4

	

a 9 = 1 .01 - 10 4

	

a t 0 =6.20 •10{

	

~a11~ =1 . 70 •104

	

a2 5 = 0.276 • 10 4

	

026 = 1 .86 • 10 4

	

a27 I = 0.837 - 10 4

	

a 34 = 0 .281 . 10 4 .

The values are supposed to involve an error of ± 5 per cent .

In order to learn about the forces active between the atom s
of the benzene molecule on the basis of the above values,

we shall examine a particularly simple movement away fro m

the position of equilibrium . Supposing, by means which, indeed,

cannot be realized in practice, that the 11 atoms are kept in

the positition of equilibrium, while the 12th, H-atom no . 6 in

fig . 1 (H(6)), is supposed to be displaced perpendicular to th e

plane of the benzene ring towards the reader . To this ' con-

stellation applies
z 6 >0

	

.x5 = g6 = 0

(xi
y; zi ) = (0, 0, 0) (L .= 1, 2, 3, 4, 5 )

!h, `~i,Zl =(0,0,0) ( ,j= 1, 2, 3, 4, 5, 6 )

By going through the expressions for S 1 , etc ., we find under

these circumstance s

Sy =- z6

	

S23 = 2 zb

	

S25 =- 2 z 6

S 10 = S2 1 = S22 = S24 = S26 = 0 ,

d2 V = a5 S + a 9 S9+ a25S3+ a34 S 5 .

On the basis of this we find

q V
K11 (6)

	

ô z

_

6

	

-'6 la s + ag + 4,(a25 + a 34 ))

• 17
h'H (1) = Ô1

= -z6(a 5 -a9+ 2 (a 24 - a25)) = KR(5 )

• VT
K71 (2) =

	

= - z6 (a5 + a9 - 2 (a 34 + a25)) = K73 (4)

a V
= -

_
- z 6 (a5 - ag + 4 (C( 2 5 - a34))

z 7 -

	

ôV

	

(
KC (ô)

=-a/
° - zs1 -a 5 -4 1 . a a 4

R

	

6

	

\

	

~

	

l
Kc (1) = - 0	 jl = - z6 ( - a 5 - 2 R a 34 I

	

= Kc (s)

	

Tj

	

R
=- ô

	

- z6

	

a 5 -I- 2 Il a 3 4

	

ô7,

	

~

	

1 •

V
-z (-a

	

R

~

	

ôz

	

6

	

5+4 1. a 3 4
3

K denotes the force acting -on the atom used as index .

- gc (4)
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By substitution of numerical values we fin d

: KjI (5) : K 13 (6) : KC (1) : K G (2) :

,

	

T
: KC (3) : K C (4) . KG (5) ': KG, (6) --

0 .595 : - 0.308 : 0 .626 : - 0.308 : 0 .595 : - 3.65 : 1 .40 : -0 .589 :

. -1 .58 : - 0.589 : 1 .40 : 2 .40 .

The result is illustrated in fig.2, where the length of the
arrows is proportional to the magnitude of the forces .

Fig . 2 .

The force is of course greatest on the directly " attacked "
hydrogen atom and its adjoining atom C(6) . But further it i s
seen that forces are active on all the other atoms as well .
It is seen that the forces do not decrease the longer the atom :
is removed from C(6) and H(6), but that e .g. KH (1) and KH(3)
are of very nearly the same magnitude and both nearly twic e
as great as KH(2) . Or, in other words, the hydrogen atoms in
ortho and para positions to the H atom subject to force are
influenced fairly in the sane way, while the hydrogen atom s
in meta positions are only influenced by nearly half the force .
Nearly the same rule (applying to the numerical values of th e
forces) may be set up as regards the carbon atoms .

A control calculation shows that these results in the mai n
are independent of the error of ± 5 per cent . assumed in the
values of the force constants .

The above considerations may be utilized in a discussio n
of the usefulness of WILSON ' S ' potential function for benzene .

As mentioned, WILSON has not used the potential functio n

i Phys . ßev, 45, 706, (1935) .
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set up by him for numerical calculations . But it has been used
to a limited extent ,by REDLICH and STRICKS ' and LANGSET H
and LORD 2 . The question is whether it may also be applied t o
all the vibrations of benzene .

From personal information s it is known that LANGSETH an d
LORD tried to carry through more extensive calculations on the
basis of WILSON'S potential function, but that the correspondenc e
between calculated and observed frequencies often was so ba d
that they had to drop the matter . Th e
reason why WILsoN's potential system i s
applicable to a limited extent only is easil y
seen. Let us, as above, suppose H(6) to
be shifted from the position of equilibrium
perpendicular to the plane of the benzene
ring towards the reader . Fig. 3 represents
the vertical plane through C(6), H(6)
and the shifted H(6) as placed in the
horizontal plane of the benzene rin g
(1-2-3-4-5-6) .

Moving H(6) requires some work, as ,
according to WILSON.,

(a) an angle µ b arises between the line C (6)-H(6) and
the plane defined by C(6), C(5), and CO) . Thus we have

/1 V = h (Id - r') 2

where h is a constant .
(b) The valences C(5)-C(6) and C(6)-C(l) make a tor-

sional movement . For this is required the work

V

	

+
2

where k 2 is a constant and p5,6 is the angle by which the bon d
C (5)-C (6) is twisted .

As appears, V only becomes a function of the rectangula r
coordinates with indices 1, 5, and 6 . But this means . that the forc e
acting on the C and H atoms no . 2, 3, and 4 becomes zero. We
have above had an opportunity of ascertaining that the effec t

Monatshefte, loc . cit .
2 Loc . cit . p . 29 .
2 From Professor LANGSETH .

KH (1) : hH (2) : KH (3) KH
( 4)

Fig . 3 .
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of force on these atoms is as great as that on the atoms no . 1

and 5 . WILsoN in his potential function thus disregards the

reciprocity of action between atoms which are not in the

generally assumed structure formula connected with valenc e

lines. Hence, WILSON'S potential function is unsuitable for a

rational treatment of the problems pointed out here .

This fundamental defect in WILsoN's potential function mus t

also be expected to appear at a consideration of the expression s

for the connexion between force constants and vibration fre -

quencies deduced by WILSON . According to WILSO N

In C + mFI

	

]n r2
+ 111H R'

yll = h

	

ti lo = h
mc m F1

In the present work it was deduced that

m C r2 + m 13 R 2

mH mc I • 2

WILSON uses one force constant, h, where two are used in

the present work, viz . 6 a, and 12 a34 . This approximation ca n

be

	

applicable

	

only

	

if

	

6 a 5 12 a34 .

	

By substitution

	

of

	

the

numerical values found here, it appears that 6 a, = 2 .45, 1 whil e

12 a34 = 3.37 . 1 Hence, it must be characterized as too rough an

approximation to use one force constant only .
The results obtained in this paper seem to be of interest

in another connexion . In treating problems of the electronic

structure of molecules roughly two methods have crystallize d

out : the method of `localized pairs' and the method of 'mole-

cular orbitals' . It seems as if the above considerations represent

a new means of deciding empirically which of the two methods

should be used . In the case of . the benzene molecule where a

disturbance at one atom of the molecule produces a great effect

on all the other atoms-independent of the distance from the

atom attacked-the result is that benzene should be treated b y

means of the `molecular orbitals' method, consistent with, th e

views of E . HücKEL 2 .

1 Unity : 104 dyne/cm .
2 E . H[]CKEL, Z . Physik 70, 204 (1931) ; 72, 310 (1931) .

3 1

VIII . Summary.
(1) In the equations (1)-(15) the connexion is given between

the vibration frequencies and the 34 force constants in th e
general quadratic potential function for CJ-16 and isotopic
molecules .

(2) On the basis of some of the experimental material from
the RAMAN spectra of C 3 H6 and C 6 D, and data from infrare d
absorption, numerical values are established for 15 of the forc e
constants .

(3) The correctness of the deduced numerical values of the

force constants is checked through a precalculation of frequencie s
from the Raman spectra of C 6D 6 , s-C6 1-13 D 3 , p-C 3H4D 2 , p-C 6H 2 D 4 ,
o-G6H 4D 2 , and o-C 6H2D 4 and a comparison with the observe d
values. It is estimated that the differences between calculate d

and observed values which are bound to arise where the vibra-

tions are anharmonic, may be explained on the assumption tha t
the force constants involve an error of about 5 -per cent .

(4) As only 15 of the necessary 34 constants can be cal-

culated, only an imperfect picture of conditions of force ca n
be drawn. Only by movements perpendicular to the plane o f
the benzene ring a complete description of the potential ma y
be obtained . By a specified displacement of one of the atom s
fairly equal forces appear on all the atoms. The consideration s
advanced make it possible to demonstrate a fundamental defect
in WILSON'S potential function .

The author wishes to offer his cordial thanks to Professo r
LANGSETH for helpful discussions on the subject .
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