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. Introduction.

Few problems have atiracted the inierest of chemists more
* than the question of setting up a correct benzene formaula.
A brief survey of the formulas proposed is found e.g. in WrrTic.
The final answer of chemistry is that the benzene molecule is
plane and has a sixfold axis of symmetry (symmetry class D,;).
But as chemical constitution proofs are produced by means of
substitution processes in ‘which the molecule to be 1nvest1gated
is greatly disturbed, it is very desirable to obtain confirmation
of the above-mentioned result by means of physical methods.
The molecule to be investigated may by such methods be ex-
posed to minimum disturbances (e. g. by irradiation of light) so
* that the aspects of the structure of ‘the mo]ecule obtalned are
exceedingly reliable.

Such a physical investigation, viz. a recording of the Raman
spectra of benzene and completely or partly deuterated benzenes,
- was made in 1936—38 in the Chemical Laboratory of the
- University of Copenhagen®?..Indeed, similar investigations have
been made by othels,4_5 but a material as great and reliable
as that prov1ded by Lancserh, Lorp, and Krrr, has not been
published from other gquarters. In the present work 1 shall
therefore in the main follow LangseTn and Lorp in their inter-
pretatlon of the spectra observed. The result of their investiga-
tions was that the molecule of benzene has a sixfold axis of
symmetry, the same result as that appearing from the chemical

1 Stereochemie, 158—60. Leipzig 1930.

* LanaserH and Kuit. D. Kgl. Danske Vidensk. Selskah Math.-fys. Medd. XV,

No.13 (1938).

® LangseTH and Lorp, D. Kgl. Danske Vidensk. Selskab, Math.-fys. Medd. XVI,

No. 6 (1938).

* RepricH und STRICKS. Monatshefte f. Chem. 67 213. 68, 47, 374 (1936).
‘IncoLp and collaborators. Nature 135, 1033 (1935) 139, 880 (1937).

Jouln Chem. Soc. London 912 (1936).

l*
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properties of the molecule. Amongst other things this means

that we now know for certain that the chemical bonds from
carbon atom to carbon atom is the same throughout the whole
benzene ring.

LaneserH and Lorp only in one part of their work tried
to utilize the values of frequency found for a quantitative deter-
mination of the valence forces of the benzene molecule. In the
present work it is intended to try to utilize the available ma-
terial of figures to the utmost. Even though a complete de-
scription of the potential function for the vibrations thus cannot
be obtained, we are approaching appreciably to such a descrip-
tion, so that a single characteristic .feature of the' conditions

of force in the molecule may be adduced. But the calculations’ .

made are also otherwise of importance, for it has proved to be
possible on the basis of some of the vibration frequencies
found by LaneseETH and Lorp to precalculate the magnitude
of athers. A comparison between calculated and observed values
of frequency on the whole turns out as favourable as may be
expected. As LaNgseTH and Lorp’s interpretation of the spec-
tra of deuterated benzenes could be carried through with the
greatest certainty, the agreement mentioned means cenfirmation
of the correctness of the method of calculation used in the
present work.

ll. Expression of Kinetic Energy and
Potential Function. Definition of Symmetry
Coordinates.

MannNeBAaCK and his collaborators™®? were the first to take
up the question of the calculation of the intramolecular forces
in benzene on a broad basis. WiLsoN JuNR.Y, indeed, about the
same time had been occupied with the potential function for

the vibrational degrees of freedom, but in his calculations had -

only deduced formulas applying to a so-called “valence force

1 Ann. Soc. Scient. Brux. L1V, 230 (1934).
2 Anmn. Soc. Scient. Brux. LV, 129 (1935).
3 Ann. Soc. Scient. Brux. L.V, 237 (1935).
4 Phys. Rev.45, 706 (1334).
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model”. WiLsoN’s work includes no numerical calculations. At
these it is soon proved, as will appear from what follows, that
the valence force system is very little suitable for a rendering
of conditions of force in the benzene molecule. In MANNEBACK’S
paper' some of the constants of the general quadratic potential
function were calculated, but it was published three years be-
fore Lanesern and Lorp’s work, so that the problem could
only be subjected to a very incomplete treatment. Furthermore,
the caleulations seem to have been made in an unnecessarily
complicated way. Finally we shall have a use for expressions
of lthe connexion between the force constants in the potential
function and the frequencies of the partly deuterated benzenes.
These are completely absent in MaNNEBack's paper. So I have
had to make up my mind to start all the calculations afresh.

The general quadratic potential function for the vibrations

- of benzene must be formulated with regard to the grouping of

the vibrations in symmetry classes. The potential is expressed
as a function of certain so-called symmetry coordinates S;, found
in the same number and having the same symmetry qualities
as the vibrations in the symmelry class to which they belong.
Here, of course, LaNgseTH and LoRrp’s classification is followed

(loc. cit., Table D. Table I is a survey of the symmetry coor-
dinates.

Table I.
. ) Elements Number -
S)I:l:]sztr} of symmetry |, of fre L;etr())c Symmetry coordinates
Cé C:z (;g i jvibrations quencies
Ay + + + + 2 . 81 8s
Ay |+ + — 1 R. |S,
Agy + 4+ — — 1 T, Ss
By, + — + — 2 57 Ss
By, + — — + 2 Sy Syg
Bzu + - — 2 SIISIE
EF S+ 4 S15 514 S15 S16 S17 S15 Sto Sz0
Ef o4 — 2 .- Sa1 Sap Sez Soa
E, 4 - 1 Rey R, | Ses Sos
E, R 3 1., T; So7 Sag Sag S0 Sa1 Ssa

L Ann. Soe. Scient. Brax. L'V, 237 (1935).
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The four last symmetry classes include degenerate vibrations,

hence two symmetry coordinates must be defined for each

vibration. And consequently the potential function is rendered
by the equation:

2V = a; 82+ ay ST+ a3 S; S, + a, 53+ ag S? + a5 S, S+ a7 S+ ag S

+ag Sy 4 a9 STy + a1 S Sy + aygy S%s 4 @13 Syy Spo + ayg STy
+ a5 (85 + S+ age (ST + Sis) + ag; (S35 +S%5)

+ ay5(S3e + S%o) + a1 (S1581s + S17S18) + @20 (S15915 +S17 Sis)
+ oy (S15S16 + S17Se0) + Ay (S14S15 + S5 S10)

+ aay (S14S16 + S15S20) 1 @4 (S15S16 + S19.Se0) + @25 (S5, +S55)

+ ass (ng -+ 834) + dy7 (Spy Sop + Soy Say) + Qgg (537 + Séa) .
+ Qg (839 -+ S%o) + ago (531 ‘}“"ng) + agy (Sa7 Szg + Sag Sso)
+ dgy (Sor Sy + Sog Sga) -+ ags (Sag Sg1 + Sy Sgo) 1 dgg (535 + Sie)-_

‘The a’s are the so-called force constants, 34 of which thus

being found in the complete potential function. It is the nume-
rical values of these 34 constants I shall try to calculate.

k)’
*H
H g H
-\C 5/ \7C -
I
l (0,0,0) l X
c? 2¢

Fig. 1.

At the definition of the symmetry coordinates and the sub- :
sequent calculations the molecule is supposed to be placed in:

an orthogonal xyz coordinate system as shown in fig. 1.

The z-axis is perpendicular to the  paper and has a positive
direction towards the redder. The distance from (0,0,0) to C is
denoted by r (= 1.40 AY), the distance from (0,0,0) to H is
denoted by R (= 2.48 AY). The H and C atoms are numbered
as shown in the drawiog.

The components of the displacement of C atom no. j away
from the position of equilibrium is denoted by

X, Y2 (j=1,2,3,4,5,6).

The components of the displacement of H atom no.j away
from the position of equilibrium is denoted by

x;, Y2 (J=1,2,3,4,5,6).
We define
U; =X, +1Y, o= +iy

7 — —1 = —
U; = X;—1Y,; u; = x;— iy,

Inversely we have

S URUEN 1 .
X, = 5+ ) 2 = o (w+up)

i .
y. = (u].~u].).

L i
Y = —2(U;— ) ] >

Becanse of the presence of the symmetry element C% it is

_ further convenient to define the coordinates h; and v, given by

the equations

hy = ny + g+ u,
hy = u+ euy + 20,

h, = u, 41, + ug

h, = u,+ eu, -+ fug

hy = by + e2ug +cuy hy = u, + &, + e g
v = zy+ 73+ 25 Uy = Zo & Zy + 23
vy = z;+ e25 + &2z vy = 2o+ ez, + 6%z
vy = z; + &2z + ¢z, vy = zo+ &%z, + ez4
1, i,
§ = ———+—|/3
2 2V

1 The distance C—C = 1.40 A, the distance C—H = 1.08 A.
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and analogous definitions with capital letters instead of small By a rotation of 180° round the y-axis we get
letters. . * ‘
Inversely we have hy ==y hy—=—h, Ui Ty Vo™ — U2
hy > —&hy ~hy——¢h} vy — — &2v; v, —ev,
3wy = hy+ hy + Iy 3uy, = ha-+ NIy + hg hy — —shl  hy— — ¢, Vi —ep, vt — %,
3u; = hy+ &*h, + sh; 3uy, = hy+ 2h + ehg ' ’ '
Suy = hy +ehy 4 ehy 31, = hy -+ ehy, -+ g By inversion round (0,0,0) we finally get
5n=uv,+o, -+ 3z, = v+ u,+ o] hy <= hf ST U;
3z, = v+ Loy + eyt 3z, = vy 4 &0, + e fiy <> =&, Ui T l:‘l‘
3z; = v+ evy + p,* Bz = vy + ev + v, ha‘“‘**‘fhn Uy — U

Corresponding relations are valid for capital letters.

Next, we may pass on to construcling the symmetry co-
ordinates S,. :

In my doctor’s thesis' 1 have had an. opportunity to show
how this is done in practice. With the symmetry class A,
benzene as an example I shall therefore only briefly state ac-
cording to which criteria the symmetry coordinates S, and S,
have been constructed. S, and.S, are linear coordinate combina--
tions which fulfil the following requirements:

(1)- 8; and S, must both be 0 at translational and rotational
movements. '

-(2) As the vibrations in the 4,, class have the symmetry
character C; (+), C5(+), CY(+), and i(+) S, and S, must be
invariant at the symmetry operations C, C;, CJ, and i(0,0,0).

(3) For vibrations in the 4,, class we have (S, S,) +(0,0),
for vibrations in other symmetry classes (8,,55) =(0,0).

As appears, the symmetry coordinates may be selected in

Ap expression of the kinetic energy T of the molecule may
now bhe drawn up, as

-6 6 - - ' .
21 = 3 my (3 G+ )4 D m (X4 Vi + 2) =
1 1
g My (hy 0y o I+ Ay B + By 1+ hi 1+ b B + 0% + 20,05 + 03 +20,0})
1171 (IIIH _I_H')I'I +Hr‘H +H—L "l”[‘[ I«[ +HG ‘]2_‘“)‘]@‘7*‘*—‘/9;2‘/‘/

For the use of the coordinates h;, U H]., and V; for the
definition of the symmetry coordinates it is further of import-
ance to know how fy, v;, H;, and V, vary during those symmetry
operations whose corresponding symmetry elements are found
at the top of col. 2 in Table I.

By a rotation of 120° round the z-axis in the direction of
the arrow we get

an infinite .number of ways. The S, sen are rendered In
hy—¢ehy ho— ¢, Dy Uy Dy —> Dy Table 11 ways S; cho
able II.
hy — h, hy— hy vy —> £, vy, €70,
o 2] * % LI % Table II.
hy — ey Dy — &thy Dy > £y Uy eny

S1 = 1(82113—-811.;*—}- &= ]14*8114 )

. . . = i(2Hs— e H. —s
and corresponding relations in capital letters. Ss = Ny — e Hy" + Hi— e H* )

By a rotation of 180° round the z-axis we get Sy = ehg + e W — g hy— 2 h,* __(ézH3 + e Hy* — o Hy— 62H,*)
| S5 = 1+ g — (Vi+ Vo)
[ll < — hg D Dy 8; = i(shg*— 2hy+ e2hy*— s hy)
h3 “r— Ezhi Ug <> 5204 Sg = i (e Hy*—2H3+ 2H,y — ¢ Hy) {To be continued)
hy<>—¢h, U; “>¢g l): ! B. Bak, Det intramolek. Potential. Kebenhavix 1943.
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The vibrations in the 4, class contribute to the potential
with the-amount

Sis = ehs+ s2hy* — e2Ng— ¢ hig*

Sop = & 5+ €9H5**62}]6f€H6*

Sgl = i(~8203+ 803$—6U4+ €2U4*)
Soo = [(— 2 Vgt e Vy*— e Vy+ 2V*)
Sag = &2v3+ e U™+ cv;+ 204

Say = 2Vg+ eVa* -+ e Vi+ 2V"

SSQ O lll. Drawing up and Solution of the Equations
10 = Y1—Va . " .
Sty = 6%yt e he* -+ e ho b 2het for the Vibrational Movements.

— 2. # 2], * e 4 . .
?2 ~ ‘;(fﬁ]‘:[j‘”' —Itfﬁ:;)e Hi In what follows it is to be shown how this is done in the
13 = — Iyt —hs : : ;
S1i _ i(Ii—Ilﬁ*—Hﬁ Hs*) ] ; ) case of the vibrations in symmetry class A, As regards the
Sis = i(— e hs-+ 2hs* + ehg— & hs*) I C; (+) coordinates rest of the symmetry classes I shall content myself by stating
Sig = i(—e Hy+ 2Hy* + 2 Hg— ¢ Hg*) in Table III the connexion between vibration frequencies and
S17 = i+ hy*—(ha + ho™*) force constants.
Sis = Hy+ Hi* —(Hy + Hy") C?(—) coordinates

¥ (4) coordinates

JQVZQI.Si—[—azSS'FagSlSZ.
N : .
} C, (=) coordinates The equations for the vibrational movements are drawn up

R by substitution in the formula
Sos = - (—2Ve—eVa"+ e Vit a2V®) + o205+ s0g* — s0y— 620"

cy (=)
R d 027\ 62V
Sao = 1 r (&2V3—eVy® — e Vit 62Vs*) — i (e205— evg® — v+ 204*)  C§ (+) dt (B—‘]K-) EE{ -0
Ssr = i+ hy*+ Mot h2* —(Hy+ Hy*+ Hyt+ Hy®) Ci (- '
S = 1(— hut hy*— hyt he*) + {(H— Hy*+ Hy— Hp*) Cy () For ¢, =S, we derive g2v = 2a, S, +a,S, and from the ex-
Sao — ehs 2hy*+ 2l s he* (=) koot S, PUL e
Szo = i{&ehs— &2h* 4 e2hg— ¢ hg*) Ca(+) pression for 27T: 2.T _ Mug
Sut = & Hy+ 2Hy* + 2Hg+ e Hg® CI(— a8 12
Spe = i (e Hy— 2Hs* + s2Hg— & Hg*) CE(+)

Thus the equations for the movements are

Finally the possibilities of a translational and rotational:
movement away from the position of equilibrium are excluded

my - .
'ESI 11" 2 alsl+ aSASZ = 0
by the equations :

IT[C -
my (hy— Ay +hy—h3) +m (H,—H;+H,—H;) = 0 g Set2a:S,+ a8 = 0.
my; (hy + Iy + hy+hy) + m (H, -+ H;+ H,+ Hy) = 0 L .
my (0g + v,) +m, (V+ Vy) =0 For harmonic vibrations we have §; = —=zS, and §; = —=3,,

my R (—v,— v+ sv,+6%0) +mor (—e*Vy—eVi+eV,+ 6V = 0 - so that
my R(20; —svi — v, + 20+ mpr (82V,— eV — eV +£2V)) =0

m
(2aﬁilx)sl+%s2 =0
myR(*hy+ ehy—eh,— ehy) +mer(Hy+ e Hy— e Hy— °H,) = 0

12

N mc '
ay S+ (2a,— 75 %] Sy = 0.

The equations have only solutions + (0,0) for
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13
) my
2a, =45 @ _ ‘ Table III.
m = 0. :
g 2a, — ‘cz ) mmetry|,. s .
2 12 ) (s !Frequency Relations between frequencies and force constants
The roots of this quadratic equation in % are called #; and "
%5. We then have piwg | xpboaa =24 (F-i-ﬁ—) Ay g = m(4a1aa—a§) @)
HLC
my R4 mer?
2, 42y = ‘)4(“" ﬁL) D xm = g a—ad) @) v |7 24“4.—1;,;%% 3)
mc ITII_I mCmH -
. g+ me
The connexion belween x; and the frequency for the corre- ”u =0 m, @
sponding vibration v, is ] N 24( G )(r); 1 T,
o Aty 12 V13§ %12 g = m. " my D); #pxp = ﬁ_mumc(‘laTas_aG) (6)
2 :. e - E
Table III shows the results of corresponding calculations | virs 24_[_35:6(;1_1;4_59;,)»(/); #axs = mHmC(A‘a"am_a%l) (8)
in the other symmelry classes. In the first column the symme- s | ay 144
try class is staled, in the second the designation of the fre- i | et =24 (mr m,>(9) 214215rm—H—;;(‘iawau—am)(lO)
quency in close accordance with LaneserrH and Lorp. The
third column gives the derived relations between force constanis v 2a15—%z ao asy tIoy
and frequencies of vibration. me
L4 dig 26— 5 12 z 250 dag
=0 (11
vy e Q2 2611.*.%1 % sy o
[V. Calculation of Some of the Force Con- . . g M
stants of the Potential Function. B ROOt: . e A: B o ST 7
ts: g, x7, Xs,
In what follows this calculation is to be carried through o, o 6 7
on the basis of frequency values from Lanagsera and LoRrp's v 7 | et = 12 (m ";:1>(1 )i i1 = m“nH(Aae‘;—,ags—agq)(w)
work. As exclusively frequencies from the molecules CqHg and — -
CgDy are used, the formulas of Table 1II are immediately ap- v10 Ay = 12a34%’£ (14)
plicable. The results are rendered in Table IV. _
It appears from the Table that in the symmetry classes” - 9 tog— mpi; oy s
Alg, B, ng, and E] a calculation has been carried out from- 12 (my + me) m
three constants on the basis of four frequencies. 1 asy 2 oy — 1;’ a3 =0 (15)
Only in case theory and experiment completely cover one me
another it will be unimportant which three frequencies are used van . U2 G 2az0— 13 *
in the calculation. But here this is not so because of anhar- Roots: x1s, x19, .

monicity, and therefore 1 have, with the Bzg class as example,
adopted the procedure of substituting the frequencies from:

v
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Table 1V. obtained by using a similar procadpre in other symmetry
classes. _—
Frequencies calcula-~ The experimental material in the classes Ay, By By, and
Sym- | Exgle;:;ﬁ;tal For- | Calculated force te«ioszle tCI:; Sﬁzf:tssof E, is given In square brackets. The frequencies stated are not.
metry mula constants; dyn stated observed in the spectra of the Cy3H; and the C,D; molecules,
class : used per cm. but by considerations which will be discussed below, it is pos-
(c(f:ﬁi) (c(:;l*)i) CoHy Cals - sible to determine their values approximately on the basis of
] } the partly deuterated benzenes. ‘
vi= 9925 | 9452 D (2)«‘ ap=2068-10° | »= 9925 9349 The frequencies in symmetry class B, given in square
Ay, | v = 30615 | 22032 \‘ ay = 5.678 104 ve = 3061.2 | 22965 brackets deviate .inconsiderably from those stated by LANGSETH
_ 9-10¢ ‘and Lowbp, loc. cit. p. 75. The values given there have been ob-
4 l ds =+ 4.51 tained as the result of some calculations carried out on the:
to | e = 11202) ‘ ] ) 1 g = 0.2778 - 10¢ basis of the valence force system (pp.29-—30). In these cal-
- ) - ‘culations it is assumed that the potential belonging to vibra-
Ay, |vi = 671 \ (@) 3 a; = 0.4083 - 101 i } tions in the symmetry classes 4,,and B, may be described
; by using three constants, K, &, ¢g. We have here used six con-
vio = [1011.6]] [955.2] s = = 4.330 - 10¢ | pya = 1013.0 | 955.7 stants, a;, @y, a3, @, @7, and ag, and therefore, in order not.
By, irs = [3055.1]] [2283.8] ) ®) @ = 2.078 - 10¢ |5 = 3051.8 | 22833 tO_ cor?fuse two po_lnts of view, we must find another start-
“ ‘Ig-point. :
as = 5.560 - 10¢ We shall first try to estimate the size of »;,. The frequency
[ \ 1 § not Raman active in CyHg and C3;D4, but in a number of
va = [664] [578] . ay =1.014-10* |} » = 6528 587 “deuterated benzenes it makes its appearance in the spectrum.
By, |vs = (1048] (856] g =.6.200 - 10* vs = 1065.1 | 837 ~The line is often displaced from its “normal” position, viz. in
' hose deuterated henzenes in which it belongs to the same
ap;p = +£1.698 - 104 . .
' ymmetry class as »,. It is unperturbed in o0-C;H,D, and
veg = 406 350 g = 09757101 | yyg = 4048 | 3511 -CeHg.D4 only, and thus we ‘may fair'ly we'll from the I_)(?sitionn
(12) (13) : ' of », in these spectra—by extrapolation—infer the position of
EF o = 1845) [690] age = 1.859 - 104 }ws = 849.7| 6895 1, in CyHg and CgDlyg.
ag = +0.8375 - 10¢ G, 0-CyH.D, o-CoHyD, cD,
B |vjo = 8497 i \ (14) ‘ az = 0.2809 - 10* Qbserved 992.8 974.0
Extrapolated (1011.6) ' 955.2

CeHy and CgD; in (7). In this way ay and a;, were determined.
By substitution in (8) two different values of (4ay-a—a}y) |
were calculated. In the continued calculation a mean value was

used. Thus the value for a;; of Table IV was found. Inversely
we now by means of the values for ay, aj,, and a;; and the
formulas (7) and (8) compute », and »; in CgHy and CgDs. The
results are rendered in col. 6 of Table IV together with results’.b‘

" These values only immaterially deviate from those’ found
by LangseETH and Lorp. (1010 and 962.)

- Next »;3 was calculated in the following way: Those vibra-
tions which in CgH, and CgDg are grouped in two symmetry
asses 4, and B, ,,1n sym-trideuterobenzene belong to one sym-
metry class, A,. All the frequencies in this symmetry class




16

have been measured in the Raman spectrum of sym-trideuntero: -

benzene. Hence we may calculate »;; by means of TELLER's
product rule!

vy ¥y ¥yo #13 (Co He)
vy s V1993 (5-CeHy D)

vy g Viavy3 (8-CoH3 D)
vy vy ¥10 Vi3 (Calg)

= 1.414

In these equations w5 (CsHy) and »;5(CsDg) are the only
unknown quantitities. They are calculated to be 3055.1 and
2283.8 cm.~ !, respectively, in good agreement with LANGSETH
and Lorp, who record 3060 and 2290.

ag, a;, and ag then could be calculated in the way stated
above. It is interesting to compare the numerical values of
these conslanls with the numerical values of «;, ay, and a,.
It is seen that these constants are really with good approxima-
tion equal in twos, so that the potential in the classes 4, and
B,, may be described by means of three different constants as
assumed and shown by LanaseTH and Lorb.

The frequencies in the square brackets in the B, class are
estimated values as in LangsetH and Lorp’s paper. Only, in-

order not to confuse various points of view, the correction for
anharmonicity has been omitted.

1 1 + C . .
As for the frequencies in the I, class, reference may be

made to the chapler on The Non-Planar Vibrations p.66 ff.

in Langsetn and Lorn. For the [requencies in the 4, class see .

ibid. pp. 65—66.

Thus it has proved possible to calculate 75 out of the 3%
constants of the ‘potential function. The reason why not all
the 34 constants can be computed is a double one, viz. parlly
difficulties about the calculation which have not yet been over

come, partly lack of experimental material. Difficulties of the

- + —
first category are found in the symmetry classes £, and E, .

o

In these classes respectively 70 and 6 constants enter. In CyHg,

C¢D;, and s-C;H,D; the available spectroscopically determined

namerical material includes 37 frequencies, and in the spectra
of the other denterated benzenes there is also numerical ma-

terial from which the values of the 16 constants mentione

depend. But so far I have not been able to overcome the dif-

! Laneserd and Loun, loc. cit. pp. 14—17.
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= 1.414.
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ficulties of a solution of the complicated equations (11) and
(15)—that is to say, if these equations are to be utilized for
the determination of the unknown force constants.

The lack of experimental material is felt particularly
in the symmetry class B,,; for here the vibrations are neither
active in the Raman spectrum nor in infrared absorption.

In what follows the reliability of ihe values of the force
constants compuled here is to be tried through a precalculation
of vibration frequencies for the partly deuteraied benzenes and
a comparison with those determined experimentally, For three
of the constants, a,, az, and a,,, it is already now possible to
carry out a test calculation. These constants were calculated
by means of frequencies from the CyHy spectrum. We may now
by means of the values of the constants and the equations (3),

(4), and (14) precalculate three of the vibration frequencies in
the spectrum of CyDy. ’

Caleulated frequencies

933

Observed frequencies

Vg = 924
Yy — 492.5 503
vyp = 661.0 663.5

The agreement must be designated as good.

V. Calculation of Vibration Frequencies in
the Partly Deuterated Benzenes.

In the following considerations it is very useful to look at
figs. 2a and 2b in LanagseTH and LORD (p. 14). Fig. 2a is a
survey of symmetry classes ol the planar vibrations in C.H,
and deuterated benzenes. Fig.2b is a corresponding survey of
‘the non-planar vibrations. The symmetry classes in the CzH,
and CgDg molecules are stated against the symbol D,,, the de-
‘signation of the symmetry qualities of these molecules. The
‘symmetry classes in p-CH,D, (symmetry class V,) are stated
against V, etc. For the molecules with Dy, symmetry (CoH,
-and CgDg) we have in the preceding section calculated numerical

values for the force constants in the symmetry classes A,

D. Kgl. Danske Vidensk. Selskab, Mat.-fys, Medd. XXII, 9, 2
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B,,> and 4, (planar vibrations), and B, , 4,, E}, and ES
(non-planar vibrations). From fig. 2a it appears that it will be
possible to precalculate the frequencies in the 4] class in mole-
cules with D,, symmetry (s-C;H;D,), because the A) class in

D,, molecules arises by a combination of the symmetry classes:

A,, and B, in Dy, molecules. But the force constants in the
Azg class cannot be utilized for precalculations, as these must
be combined with the force constants in either the B,, or the
E; class, which we do not know.

Matters are considerably more favourable in the case of the
non-planar vibrations. Here the force constants in all the four
symmetry classes of the D,, molecules are known. It is evident
from fig. 2b that a calculation of the frequencies for all non-
planar vibrations in all partly deuterated benzenes is possible.
Therefore we shall in what follows calculate the vibration fre-
quencies for. the A class in s-CoH;D; and a selection of non-
planar vibrations in deuterated benzenes specified below, every-

where comparing calculated and experimentally determined

values.

1. Calculation of frequencies in s-C./H,D,. The A class.

The deaterium atoms being supposed to be placed in the
positions 1, 3, and 5 (fig. 1), we have

1 o o
2T = 5 My (hyhy + hyh + hehy + 05 + 2 0,0%)

1 i L% AR A ] bt M
+ 5 M (h.R + hyhy + hehy + 0F +2p303)

1 o TSN - - .
+ 5 me (HHY + HoHy + HH + HHY A+ HoH;
+ B4 VIV, VL VEL 2V, VD).

The potential function is the sum of those contributions
which in Dg, molecules are distributed to the classes A,  and
B, , thus ‘ ' :

lu’

42V = ;57 + ayS] + a3 8, Sp + a; 87 + a5 S5 + a4 51 S

the a’s and the S's of course having the same signification as
above.

Nr. 9

Next, it is easily inferred that

02T _ mH—f—me. mH.—ng.
88, 24 * o4 7
82T  mg . |

88, 12"

02T my—my, . my +mp .
T T
02T  mg .

88, 12°%

in the equation:

9 my -+ my, mp— My
ay — 57 % ag 94~x
m
. Jo]
ay 2(12 EZ 0
my, me 0 . mH+_mD‘
24 = 2%
s
0 0 ag 2 ag

(LaneseTH and Lorp) frequencies are compared.

s-CeHyD3. (4] class).

Calculated Observed
y, = 945.0 956.6
vy = 30568.2 3055.1
Yig = 1003.5 1003.9
iy = 2290.5

2283.8

19

The equations for the vibrational movements being drawn up
as shown above, it it seen that the frequencies must be roots

From this the vibration frequencies may be computed. As
for a; and a4, the sign of which is uncertain, it appears that
only the squares of these enter. Below, calculated and observed

2*




20 - N9

The agreement must Dbe called excellent. The vibrations
here considered arc planar, so-called valence vibrations (see
figs. 1, 2, 12, and 13 in Lanesera and Lorp, p. 10). It is a
common experience that particularly with vibrations of this type
one obtains good agreement between experiment and calculation.

2. Calculation of frequencies in s-C,H,D,. The A class.
The expression for 2T is the same as above. The expression
for 42V is .
A2V = a;82+ aySE + a5, + a;,S9S1,-

Further we have

a217 - mo(mg+mp) . m(mp—my) . 02T m, .
= 5 9 10

85, 3N 3N

62T m.(mp—my) . 2mm +m.(m,;+m,) .
_inglny #¢ o =Malp ¢ Uy D’ ¢

b 9

95, 3N 3N

N = 2m,+mg+ my.

The detlerminant for the determination of the vibration fre-
quencies here is

- mg (mH—&—mIL) me (mg— myp)

245 sN 3N ¢ !
mg (mg—mp) ‘ 2 mgy mpy -+ mg (ng+my)
sN ¢ ST 3N .~ i
. m
0 ayq QGIO*T;;C

The unknown sign of a, is of no importance for the value
of the solution. We find

s-CeHyD5. (A, class).

Calculated - Observed
vy = 666 691
vy = 964 914
i = 525 . 533

“~
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The observed values originate from the infrared spectrum.’The
vibrations are vibrations perpendicular to the plane of the benzene
ring. Here the agreement between calcalated and observed frequen-
cies is considerably inferior to those for valence vibrations. The
amplitude for non-planar vibrations is considerably greater than
for valence vibrations. The anharmonicity therefore comes to
play a great réle, so that the assumption on which the calcula-
lions are made, viz. that it is sufficient to include square terms
in the potential function, is less well fulfilled.

3. Calculation of frequencies in s-C,H,D,. The E” class.

The symmetry coordinates to be used are Ssgs Soq, and Sy,
originating from the symmetry classes EI and E; in the D

6h
molecules. Thus we have.

A2V = ay; S35+ ‘126324_‘!‘ 5793 Sp4+ 34535 .

Finally it is inferred that

32T 1 o
_ 2 . 2\1 ¢
55, 6N [mp (mer® 4+ myR?) + my (mgr® 4+ m R )] Seq +
1 : .
+ oN (mpmer® — mymer?) S,,
82T 1 , . e
75 ~ N [mp (mer®+ mg B —my, (m 1+ mp R?)] Sy, +
‘ 1 .
_ +éTV(mDmC1'2+ mpyme1?) Sy
2T  mg .
— = —8,, N =2mgr®* + (my+mp) R2.
83, 6

After setting up the determinant, etc., as above, we get:

s-CeH3D;. The E' class.

Calculated frequencies Observed frequencies?

vy = 676 ’ 712
Mg = 848 815
v1s = 376 373

! IncoLp, Nature 139, 880 (1987).
* LangserH and Lorp, loc. cit.
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The vibrations are non-planar vibrations. Considering this

p-CeH.D,. The B, class.
the agreement must be regarded as good. o

Calculated frequencies ‘Observed frequencies
vs = 939 o 927
4. Calculation of frequencies in p-C,H. D, and p-C.HD,,. Vigp = 732 765
The B, class. v, = 606 ‘ - 605

The deuteriom atoms in p-C.H,D, are supposed to be placed

The agreement is best for p-CyH,D,, presumably because
in the positions 3 and 6. We get

the molecule contains more deuterium atoms than C.H,D,. Be-
cause of the greater mass the amplitudes of the deuterium atoms
are smaller than those of the hydrogen atoms. The deviation
of the vibrations from the harmonic mode of vibration there-

- fore becomes smaller. (Compare the results with o-CgH,D, and
- CgHyD,).

2T = % mg (FHE - HyHy + HyHy -+ HH + HyHy -+ HoHy -+
+V2L2V, Vs V22V, V)

+ % gy G+ gt + gl + b+ byt + holy + |
o ot ot o ek '
For 2050+ oa 4 20,09 5. Calculation of frequencies in 0-C,H,D, and 0-C,H,D,.
The B, class.

The deuterium atoms in o-CyH,D, are supposed to be placed
in the positions 4 and 5. Thus we find

4+ Mo My ((hy + e2hy + ¢ hy) (R} + e k) +&2h%) +
+ (h, —}E—) ehy+ e®hy) (hy + e2h) + e hy) + (0, + 20, + 2 03)* +

+ (g + & D, + 6207, .
6‘2-T _ my+2 ij‘i 4 my—my, .

mH—mD — .
: Ses+ —2—LV3 H
88, 9 : 18 2 18 4

62T 3 mr? (my, —my) St 3my R (my,+2my) + 3m r? (2 my + my)
- 25 .

ER 9N 9N ,

Sy ? 02T mH*‘mDA mD—'r5mHS. mp—mg .
927  mer®(mp—mp) . mer*(mg+2my) . g2 T mCS" 0S5 N 18 36 2 36 Vs
—— = - 9 ) 25 - a& g tw
0 Sas 3N 6N 9510 3 : 02T rmg . 02T mg

N = K = —
N = 3mgr*+ (mg+2 m,) R®:

A2V = ay85+ a1, + a11.SeS10 + @54 S35 -
6r RV3

mpy—m I{ng, m,r
4+ M H( " C)Sgg]

| RY'3 mer mgr
_ A= —|m, (my+mp)+——=}S; +——(ngy —mp) Sy +
On the basis of this the frequencies are calculated in the ‘ - R 6 R
below table.

p-CeH,D,. The B, class.

6 3r RY3
Calculated frequencies Observed frequencies : :
1 [Rmg(mp—mg) mgr
vy = 1040 966 = — Sy — =(2my+mp,+3mg) Sy +
Vi, = 700 738 N 3r SRY3
v, = 629 634

© (mpg—mp) R
+ B D (my + mg,) 523}

These vibrations, too, are non-planar vibrations.




1 mpy—m : I .
K = v {mc —9—5——2 S+ li—S (8 mg(myt+ mp) +mi4-5mymy,) Syt |
+(1nH~1nD) (m, + mc)s ] :
6 23
N — Iil/d [m2,+ 5 mymp, + 3 myg (my+mp)]+
or

"o (o impyt mp+ 3me)
— (4 m m ITIC
3ysr 7 P

A2V = a3S3+ ay5 855 + dog S5y oy Sag Saq 1 U3y 3 -
By insertion of numerical values we calculate:
0-CgHD,. B, class.

Calculated frequencies Observed frequencies®

V10 = 678 782
vy =571 582
Vies — 369 384
v, = 841 825

o-CiH,D,. The B, class.

Calculated frequencies ~ Observed frequencies®

V1o = 684 739
vy, = 027 . -
vigp = 399 . 369
Vi7p = 315 778

V1. Estimate of the Error in the Force
Constants.

It may be said at once about all the force constants that-
experimentally badly determined differences of frequency no-
where enter into the calculations. Hence there is practically no
uncertainty originating from the measurement of the spectra
as regards the numerical values. On the other hand it must:

1 Lavasern and Lomp, loc. cit.
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be admitted that the values involve minor errors. For actually

the equations (1)—(15) were deduced:.on the assumption that

the vibrations were harmonie, this ‘oniy being so where the
amplitudes are small. This assumption is fulfilled best in the
case of the planar valence vibrations, so that the constants.
ag, @, a3, ay, d;, and ag,” which describe the potential for
these vibrations, are determined best. Hence it also appears that
at the precalculation of the vibrations in s-CgH;D, (the 4] class),
where the values of these constants are used, we find values
deviating at most 1 per cent. from those found experimentally.

On" the other hand the constants describing changes of
potential with non-planar vibrations are less well determined.
The amplitudes here are so great that the vibrations become
slightly anharmonic. Let us look at e. g. (14):

: — 2,9 _
o9 = 4 vy, = 12ag,

vy is the frequency for one of the non-planar vibrations.
As a rule a lower value for », will be determined than the
one which would appear if the vibration was harmonic: In rare
cases, however, also a higher value. Of course it is not possible:
to give a common value for the error committed for all non-
planar vibrations, because, as done here, we reckon with the
observed frequency instead of the “harmonic” one, but in what
follows, however, we shall, in accordance with ordinary spec-
troscopic experience,’ reckon with an error of 42 per cent. in
frequencies belonging to non-planar vibrations. As appears.
from (14), this involves that ay, is determined with an error
of about +5 per cent. As for the constants a,? and a; we ob-
tain the same result.

For the constants ag, ay,, a;, @55, as5, and ay; the con-
nexion between frequencies and constants is more complicated.

(D), (8), (12), (13). In what follows we shall assume that these

constants, too, are exposed to an error of 5 per cent. The
assumption of a possible error of 45 per cent. in the constants,

~corresponding to all non-planar vibrations, gives an unstrained

1 Cf. LanaseTH and Lorbp, loc. cif. p. 81.
? a4 belongs to a planar deformation vibration, but the remark on an-

" harmonicity also applies here.
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explanation of the deviations found between calculated and ob-
served frequencies for the partly deuterated benzenes.

VII. The Intramolecular Forces.

It is now possible to calculate the forces acting on the
individual atoms of the molecule when the atoms are removed
from the position of equilibrium, to the same extent as we have
above succeeded in establishing numerical values for the force
constants in the potential function of benzene. With a view to
the possibility of later treating the mechanism of reaction in
processes in which benzene is involved, it should be noted that
it is of the greatest importance to study those movements away

from the position of equilibrium by which the numerically
smallest forces become active. Among these movements we -

find all the non-planar vibrations, in which the amplitudes are
great, i. e. there is a much greater chance to find a hydrogen
atom outside the position of equilibrium perpendicular to the
plane of the benzene ring than in this plane. :

According to the above considerations the changes of po-
tential by displacements of atoms perpendicular to the plane of
the benzene ring are rendered by

A2V = a;,S% + agsg + S%o + @1189 Sy 1 a5 (831 +S§3)+

+ g (S5, + S54) + ay (521 Sgo + 95 82y) + @3, (S35, + 830) .

Measured in dyne/cm. the numerical values of the force
constants were determined as '

a; — 0.408 - 10* ay = 1.01 - 10
a, = 6.20 - 10* lay | = 1.70 - 10*
55 = 0.276 - 10% " as = 1.86 - 10

| ap;| = 0.837 - 10*

Il

0.281 - 10%.

The values are supposed to involve an error of 45 per cent.

In order to learn about the forces active between the atoms. :

of the benzene molecule on the basis of the above values,
we shall examine a particularly simple movement away from
the position of equilibrium. Supposing, by means which, indeed,
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cannot be realized in practice, that the 11 atoms are kept in
the positition of equilibrium, while the 12th, H-atom no. 6 in
fig. 1 (H (8)), is supposed to be displaced perpendicular.to the
plane of the benzene ring towards the reader. To this' con-
stellation applies

zg> 0 Xy =Yg = 0
(x; y;z;) = (0,0, 0) (j=1,2,3,4,5)
Xpy Yy Z;=(0,0,0) (j=1,23,4,5,6)

By going through the expressions for S,, etc., we find under

- these circumstances

S5 = z4 Sy = —z Sog = 225 . Soy = — 2z

Sio = Sop = Ssp = S24 = S5 = 0,
so that

A2V = a; 87+ aySs + a%S;;} + 34 S35+

On the basis of this we find

ov
Ky = _6_26 = —zq (a5 + ag+ 4,(azs + azy))
ov
= T9L. —zg (a5 —ay + 2 (agy —asp)) = Ky s,
<1
ov - \
=5 = —zz (ay + a9—2(aglk+025)) = KH (4)
oV )
—= = —zg (a5 — g + 4 (Ao — a34))
.47 -
v R
- ~az = —z —a5‘4;aa4
o1 R
:_azzzgzg(—as—%a%) = K¢ )
ERY R . :
c@” "oz (_CI5+27(134) ~fea
a‘,} R
K, ® " 9z, hze(_aﬁ+47a34). ,

K denotes the force acting on the atom used as index.
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By subslitution of numerical values we find set up by him for numerical calculations. But it has been used

' to a limited extent by Repricu and Stricks' and LANGSETH
and Lorp®. The question is whether it may also be applied to
all the vibrations of benzene. .

From personal information® it is known that LaneseTu and
Lorp tried to carry through more exlensive calculations on the
basis of WiLsoN’s potential function, but that the correspondence
between calculated and observed frequencies ofien was so bad
that they had to drop the matter. The
reason why WiLson’s potential system is
applicable to a limited extent only is easily
seen. Let us, as above, suppose H(8) to
be shifted from the position of equilibrium
perpendicular to the plane of the benzene
ring towards the reader. Fig. 3 represents
the vertical plane through C€(6), H(6)
and the shifted H(6) as placed in the
horizontal plane of the benzene ring
(1-2-3-4-5-6). | ,

Moving H (6) requires some work, as, Fig. 3.
according to WiLson,

(a) an angle uy arises between the line C (8)—H (6) and
the plane defined by C(6), C(5), and C(1). Thus we have

KH(l): KH(2) :KH(S): KH(4) :KH(s):KH(G) :Kc(l): K. @ °

D Ko gyt Ke @ Koo Ke Chal
0.595:—0.308:0.626 : — 0.308:0.595: —3.65: 1.40 : —0.589:
:—1.568:—0.589: 1.40 : 2.40.

The result is illustrated in fig. 2, where the length of the .
arrows is proportional to the magnitude of the forces.

!

Fig. 2.

The force is of course greatest on the directly “attacked”
hydrogen atom and its adjoining atom C(6). But further it is
seen that forces are active on all the other atoms as well.
It is seen that the forces do not decrease the longer the atom -
is removed from € (6) and H (6), but that e.g. Ky, and Ky
are of very nearly the same magnitude and both nearly {twice
as great as KH(2). Or, in other words, the hydrogen atoms in
ortho and para positions to the H atom subject to force are
influenced fairly in the same way, while the hydrogen atoms
in meta positions are only influenced by nearly half the force.
Nearly the same rule (applying to the numerical values of the
forces) may be set up as regards the carbon atoms.

A control calculation shows that these results in the main
are independent of the error of 4-5 per cent. assumed in the
values of the force constants.

The above considerations may be utilized in a discussion
of the usefulness of WiLson’s' poiential function for benzene.

As mentioned, WiLsoN has not used the potential function

A4V = h(R--r)?ul,

where h is a constant. :
(b) The valences C(5)—C (6) and C(6)—C (1) make a tor-
sional movement. For this is required the work

AV =k, (5052,,6 + 97;1):

-where k, is a constant and ¢, is the angle by which the bond
C(3)—C(6) is twisted.

. As appears, V only becomes a function of the rectangular
-coordinates with indices 1, 5, and 6. But this means. that the force
acting on the ¢ and H atoms no. 2, 3, and 4 becomes zero. We
“have above had an opportunity of ascerlaining that the effect

* Monatshefte, loc. cif.
* Loc. cit. p. 29.

1 Phys. Rev. 45, 706, (1935). 3 From Professor LaNGSETH.
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of force on these atoms is as great as that on the atoms no.l
and 5. WiLso~N in his potential function thus disregards the
reciprocity of action between atoms which are not in the
generally assumed structure formula connected with valence’
lines. Hence, WiLson’s potential function is unsuitable for a
rational treatment of the problems pointed out here. ‘

This fundamental defect in WiLson's potential function must
also be expected to appear at a consideration of the expressions
for the connexion hetween force constants and vibration fre-
quencies deduced by WiLson. According to WILsoN

VIII. Summary.

(1) In the equations (1)—(15) the connexion is given between
the vibration frequencies and the 34 force constants in the
general quadratic potential function for ‘CﬁHG and isotopic
molecules. :

(2) On the basis of some of the experimental material from
the Raman spectra of C¢H, and CiD; and data from infrared
absorption, numerical values are established f01 15 of the force
constants.

(3) The cotrectness of the deduced numerical values of the
force constants is checked through a precalculation of (requencies
from the Raman spectra of C¢Dg, s-CiHyDy, p-CoH,D,, p-CoH,D,,
0-GgH,Dy, and o-CiH,D, and a comparison with the observed
values. It is estimated that the differences between calculated
and observed values which are bound to arise where the vibra-
tions are anharmonic, may be explained on the assumption that
the force constants involve an érror of about 5 5 per cent.

(4) As only 15 of the necessary 34 constants can be cal-
culated, only an imperfect picture of conditions of force can
be drawn. Only by movements perpendicular to the plane of
the benzene ring a complete description of the potential may
be obtained. By a specified displacement of one of the atoms
fairly equal forces appear on all the atoms. The considerations
advanced make it possible to demonstrate a fundamental defect
in WiLson’s potential function.

2 2

me -+ my me e -+ mygR

xllzh—%* xm:h—————-—T—
mg My ' mpmel

In the present work it was deduced that

- 9 9,
. mg+ my , ) mqré+ myR
. m,my mgm,

WiLsoN uses one force constant, A, where two are used in
the present work, viz. 6 a; and 12ay,. This approximation can
be applicable only if 6a; = 12a,. By substitution of the
numerical values found here, it appears that 6 a; = 2.45," while
12 ay, = 3.37.1 Hence, it must be chdracteuzed as too rough an
approxunallon to use one force constant only

The results obtained in this paper seem to be of interest
in another connexion. In treating problems' of the electronic
structure of molecules roughly two methods have crystallized
out: the method of ‘localized pairs’ and the method of ‘mole-
cular orbitals’. It seems as if the above considerations represent
a new means of deciding empirically which of the two methods:
shonld be used. In the case of the benzene molecule where a
disturbance at one atom of the molecule produces a great effect:
on all the other atoms—independent of the distance from the,
atom attacked—the result is that benzene should be treated by
means of the ‘molecular orbitals’ method, consistent with the
views of E. Hicker? '

» The. author wishes to offer .his cordial thanks to Professor
LaneseTH for helpful discussions on the subject.

1 Unity: 104 dyne/em.

Indleveret Lil Selskabet den 16. Maj 1944.
2 E. HickiL, Z. Physik 70, 204 (1931); 72, 310 (1931).

Frerdig fra Trykkeriet den 4, September 1945.




