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I NTROllUCTIO N

I
n the first paper1> (in the following quoted as I) we especiall y

considered those general properties of HEISENBERG ' S charac-
teristic matrix S wich, in all essentials, are a consequence o f
the connection between the matrix elements of S and the cros s

sections for all kinds of collisions between elementary particles .

In the present paper we shall in the first place treat the questio n
how the discrete energy values in closed stationary states of a
system of elementary particles are determined by the charac-

teristic matrix. In I it was shown that new fundamental assump-

tions regarding the characteristic matrix are necessary for th e
solution of this problem .

Besides the energy values of closed stationary states ther e

are, however, another group of quantities which are so closel y

connected with the experimental data obtained in laboratorie s

that they must be considered "observable" in any theory, viz .
the decay constants for systems of particles which can emit
one of the particles . An a-radioactive nucleus represents a typica l
case of this kind . If, as claimed by HEISENBERG, the charac-
teristic matrix is to give a complete description of all "observ-
able" quantities for any atomic system, the energies of the

particles emitted in a radioactive process as well as the deca y
constants of the systems must be derivable from the charac-

teristic matrix of the system .

The clue to the solution of these problems was given by
KRAMERS 2 , who remarked that the Schrödinger wave function ~1~ypn
belonging to a continuous energy value W° in all physicall y

important cases in ordinary quantum mechanics is an an-
alytic function of the variable W° . By the process of an-

alytic continuation iPw o may then be given an unambiguou s

meaning also for complex values of the variable W° as well as
1 .



4

	

Nr . 1 9

for real values W° smaller than the minimum value Wm of th e

energy in a continuous state . In any case zlrwo will be a solution

of the Schrödinger equation but it is not possible to give a

physical interpretation of this solution for all values of W° .

Consider, for instance, the case of a real W° < WI; then th e
asymptotic expression of Wm for large values of the relativ e

distance between the particles consists of two ternis, the firs t

of which vanishes for large distances while the other increase s

exponentially with increasing distance . This last term contain s

an eigenvalue S° of the characteristic matrix as factor . Thus

t71ryo will be an eigenfunction corresponding to a closed stationar y

state only for those real values of W° < 117 which make S°

equal to zero .

Therefore, in order that the energy values in closed stationary

states are to be derivable from the characteristic matrix, w e

must assume that the characteristic matrix in all cases is a n

analytic function of the total kinetic energy W of the system .

The energy values of the closed stationary states are then simply

given by the zero points of the eigenvalue of S on the rea l
axis in the complex W°-plane, the eigenvalue W° of W bein g

regarded as a complex variable .

In the first section of the present paper the extension o f

the ordinary quantum mechanical transformation theory to the
case of complex eigenvalues of W is treated in detail . In sectio n

2 the asymptotic expression for the wave functions of a tw o
particle system in the case of complex values of W° is explicitl y

written down, and in section 3 the "observable" quantities o f

the discrete stationary systems are derived from the eigenvalues
of the characteristic matrix . Since S is an invariant matrix ,

the treatment of the discrete states may he performed in any

Lorentz frame of reference with equal ease . In section 4 a new

general condition regarding the character of the zero points o f

S° is derived, and the question is discussed whether it i s
possible from a given characteristic mat r ix S to construct a

Hamiltonian which by means of the Schrödinger equation give s
the sanie values for the cross sections and for Lhe discret e

energy values as those derived from the matrix S .
In section 5 it is shown that also the energy E and th e

decay constant 2. of a radioactive system may he calculated
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from the eigenvalues of the characteristic matrix . In fact, thes e
quantities are given as the real and imaginary parts, respec-

lively, of those complex values W° = Is-i of

	

in the lower

half plane for which 5° = S (W 0) is infinite . Finally, in th e
last section, we shall treat a few simple familiar atomic system s
by means of the characteristic matrix in order to illustrate th e
general theory .

It thus seems that all experimental results may be describe d

by means of HEISENBERG ' s characteristic matrix without makin g

use of the wave functions of ordinary quantum mechanics, an d

the way is open for a relativistic description of atomic pheno-
mena which does not involve the difficulties inherent in al l
relativistic quantum field theories of the Hamiltonian form .

1 . On the Use of Complex Variables in Quantum Mechanics .

In the first place we shall treat a simple system of tw o

spinless particles with the rest mass K according to quantu m

mechanics . If we introduce the total momentum K and the
"relative" momentum 1: defined by

l1 = 1$1 Î li 2 , ]é, -
Ic2 - lil

	

(1 )2

we get for the total kinetic energ y

W = ltir l + W 2 =

1
2 Ié ku (2)

where
k

2t = -
k

is a unit vector in the direction of the relative momentum k .
For a given value I%' of the total momentum the eigenvalu e

(3)
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W' of the total kinetic energy may take on all real values of

the interval

Wm<W'<oo, (4)
where

Wm' = 1/(2 K) 2 + K' 1 2 (5)

represents the minimum value of W attained for k = O .

From (2) we get

(6)

O W

a k

which is zero for k = 0, but positive for any other value of
k > O . Further, by solving the equation (2) with respect to th e
variable k, we get ,

k
If W 2	 (2 x)2-~K

12
(7)

2
VW'-(2	

W2 - (I~n)2

	

_

If . (ki kz I) and (K'k' I) are the representatives of the sam e

state in two representations where the variables (L, 1 , 1e2 ) and

(Ii, k) are on diagonal form, respectively, we have simpl y

k', I) = (il'k'I),

	

(8 )

since the functional determinant
a (Ii', k') _ 1 Furthermore ,
a (k.i, k )

if we introduce the variables (x) _

	

p) defined by the equation s

(x) = (S , T)
R y

= cos 9 = liz , cp = arctg

	

,
11

x

we get for the representative of the state in a (lî, W, x)-repre-
sentation

(li' k' I) = J/'~ /' (li' I1w"x' I),

	

-

	

(10)
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where the positive functional determinant is given by

(11)
â (Ii', W', x')d'

=
__ (vz - vi) n'

	

1

	

8W '
â (K' , k') k,2

	

k' 2

	

8 k'

on account of (6) .

Now, if X and x denote the coordinates of the centre o f

gravity and the relative coordinates, respectively, we hav e

X
_ xi +x 2

2

x = x2 -xi ,

and, since the functional determinant
a

(Y'
x)

= 1, the transfor-a (x i , x2 )

mation function connecting the (X, x)-representation with the

(Ii, k)-representation is identical with the function (I, 80) ex -

pressed in terms of the new variables . However, the relativ e

coordinate vector x commutes with If, we may therefore als o
use a (K, x)-representation and, for a suitable choice of the
phases in the (K, W, x)-representation, the transformation func-

tion connecting these two representations is simply *
t (ce " i . ' ) k'

(K" x" K' W' x') = (22-r)_3d(K„-K)~	 . (13)

From now on, we shall have to do exclusively with state s
where If has a well-defined value K° . All wave-functions wil l
thus contain a factor d (K'-K°), which will be omitted in th e
following . In the same way we shall omit the factor d (K'-Ii°)
occurring in all matrices like W, T, U, V (cf. I, 16 . In the

(h', W, x)-representation the wave matrix Ur , defined by th e
equations (10), (15), and (16) in I, then takes the for m

( W'x' i u1 i W° x°) =

= d W'-W° d x'-x° +

	

W'- W°) v' eiui wax'
J (14)

with

* The variables x and x should not be confused! While x denotes th e
angle variables (9) determining the direction of the relative momentum, th e
heavily printed x throughout this paper denotes the coordinate vector in th e
relative configuration space .
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(W'x'I
U I W' x°) = ( W'x' I UK aj W°x°) .

The function (14) is a solution of the Schrödinger equation (I, 7) .

If a = (K, W,8) is a complete set of collision constants ,

the transformation function connecting the (If, W, x)-represen -

tation with a (K, W, ß)-representation is of the for m

(W'x'I W°ß°) = d(w'-III°)(x'If°),

	

( 15 )
where

(x' I ß°) = (x' ß°)KO,wo

	

(16)

also depends on K° and W° . In a mixed representation we ge t

for the representative of the wave matrix W

(W'x'ItIfIW°ß °) =

= cI ( W' -W°)(x'I ß°) +d+ (W' - W°) (11~' x' I UI W0 ß°) .

On account of the equatio n

d+ (W'-W°)+(l1"-1170) = å(W'-W°),

	

(18)

following from (I, 14), this may be written

(W' x' I OIf I W° ß°) =
l (19)

= ô_(W'-W°)(x'I )8°)+à, (W'-W°)(W'x I AI W° ß ° ) , I

with
(W' x' IAI W°ß°) = (x,I

ß°)+(W'x' I UI W°ß°) .

By means of the equations (23), (49), and (26) in I we ge t

for W = W °

(W°x'IAIW°ß°) = Ç[å (x' x°)+(x'IRIx°)]dx°(x°Iß ° )

= S x'IS x
°)dx°(x°Iß°) = S°(.l.'Iß°),

	

J

where S° is the eigenvalue of S, corresponding to the value s

a° = (K°, W°, ß°) for the collision constants in the complete set .

When the equation (I, 7) is written in a mixed representa-

tion it is seen that the function

l

1
17)

(20)
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`IJ~ (W' x') = qf W"

	

( iIr' x') = (W' x' IIf W ° ~°) (21 )o

	

i
3 "

is a solution of the Schrödinger equatio n

( W° - W) uf,,° o" ( W'

(22)
W' x' V I W" x") d W" dx"

`FWo3° (

I~~„ x")
r

for all real values of W° in the interva l

W°1 <W°<oc
~ (23)

= V(2 K) 2 + I . .K° I 2 .

Until now, the variables W°, W', IV" as eigenvalues of th e

total kinetic energy have been considered real quantities whic h

could take on all values of the interval (23) . In what follows ,

this "original interval" will be denoted by the symbol J1 . Fol -
lowing KnA\IEns ' idea we shall now consider solutions of the

Schrödinger equation corresponding to a complex value of th e

energy W° . If all the functions occurring in (22) are analytic func-

tions of the variables W°, W', W", they will have a meanin g

also in a certain region outside the original interval and all inte -
gral relations, such as the "Schrödinger equation" (22), wil l

hold also in this extended region . From now on, the "eigenvalues"

W°, W', W" of W will be regarded as complex variables, whil e
the eigenvalues of K, x, ,6 • • • in general are real variable s
as before .

Now, we shall first give a meaning to the functions å±(W'- W°)

occurring in (14) for complex values of W' and W° . In the
original interval Jl these functions are defined by (I, 14) ,

and the integral
s

f (W')

	

W°) dW' is understood to mean

the Cauchy principle value of the integral extended from Wm°

to oo . If f (W') is an analytic function these integrals, as men-
tioned by HEISENBERG, are equal to the complex integral s

+f(W')dIV'
~271; i(W ' -IV m) '

C±(W° )

where the paths of integration C (W°) and C(W°) are two

curves consisting of the portions of the real axis joining th e
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points (W°, , W° s) and (W° + e, + co) and of small semi-circle s
with centre in W° and radius e below and above the real axis ,
respectively. The curves C 1 (W°) may, of course, be arbitraril y

deformed inside the region of the W '-plane, where the integran d

is analytic .

Fig . 1 .

If W° has a complex value, we may now define the func-
tions 6y (W ' - W°) by the equations

(+ f (W') dW '
f(W)`I+

(w'- W0 ) dW' = 1 27ri(W'-W°)'

	

(24)

,, C_(W° )

(W ° - Lig'

	

=

	

f(W') dW'
f(W)dW

	

2Tri(IV W')' (
2 5)

c C T_ (W')

where the paths of integration C + (W°) and C_(W°) are two
curves connecting the points W°,, and oo in such a way tha t
W' lies to the left of C+ (W°) but to the right of C_(W°) .
Further, C+ and C_ must be chosen such that f (W') is analyti c

at all points on the curves and inside the region bounded b y
the curves C ÿ and Ji (see Fig. 1). Strictly speaking, the function s

a+ and ô_ thus have a rigorous meaning only when they appea r

as a factor in an integrand, just as in the case of real W ' and
W° . For W° Jl (W° inside J1) the equations (24) and (25) ar e

easily seen to be in accordance with the definitions (I, 14) .

By means of (24), the equation (25) may be writte n

Ç ± (W°- w')f(W')
(1

W' =

	

9	

7fiu( ,	 °
wdjt~ )

•°C T

= f (W') d + (W' - W°) dW ' . (26)



This result, which holds for an arbitrary (analytic) function f,
can be expressed by the equatio n

W') = d, (W' - W°) .

	

(27 )

Further, we may define the functions d(W '-W°) and d(W° W ' )
by the equations

f(W')d( W ' -W°)dW' = d.(W°- W')f(W')dW =

	 f (W')dW'

	

(28)

~2 ri(W' 1V°) ° f(W°) ,
c av")

where C (W°) is a contour encircling the point W° in the counter-

clockwise sense in such a way that f(W ' ) is analytic at any
point inside C . From (24) we -then get

f(W') [d+ (W'-W°)+d_(W'-W°)] dW ' =

f(W')dW'
2TCi(W'---W°) = f(W ' ) d(W'-W°)dW' ,

c oal/9

a result which may be expressed by the equatio n

d+ (W' -W9)+ = (W'- W9 ) = d(W°-W' ) . (30)

In the same sense we have, according to (24), (25), and (28) ,

2 ri(W'-W°)d+(W'-W)=-2rri(W'-W°) d( W'-4V°)= 1

(W '-W°) d (W '-W°) = 0,

	

f
)

(31 )

just as in the case of real arguments .
Now, let f(W') be an arbitrary analytic function originall y

given in the interval Ji and defined in a larger region Sl of

the W'-plane by the process of analytic continuation . In the
following, S2 will be a common notation for the regions where

the functions considered . are analytic . 2 may very well contai n

singular points where the functions have poles of any order .
The extension of the region S2 will thus depend on the kind of
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function considered . By the "adjoint" function f(W') t we mean

that (uniquely determined) analytic function, which in Jr i s
identical with the conjugate complex function f (W')* . Outside
Jl the functions f t and f' will not be identical and the region s

S?, where the functions f and ft are analytic, generally will
also not be identical . The functions f and f t will be identica l

only if f is real in the original interval . In particular, we have

W't = W' .

	

(32)

Let g (W°) be the functions connected with f by th e
equations

g+ (W°) = f (lV') (W'-W°) dW' .

	

(33)

For W°-<J1 we then, according to (I, 14) and (24) have ,

9,1 (W°y =

	

f (W') å± (W' - W°) dW'

_ ~ f (w')* ~T (W'- u'0 ) d W' = + Ç 	
f (W')t

dW '
27Ci(W' W°)

W °r
,

	

t C~(yy " )

By "analytic continuation" of this relation we thus ge t

	

W ° t

	

Ç f
	 (W') t	

dW ° = ÇfW')to+ W'_Wo dW' . (34)

	

9 ~ ( )

	

2Tri(W -W )
t C$ (Wo)

	

e

The result of comparison of (33) and (34) may be expresse d

by the equation s

å± (W' - TV°) t = aT (W ' - W°) = dt (W°- W'),

	

(35)

where we have used the equations (27), also . Further, we ge t

from (30) and (35)

(W' - W°) t = d (W' - W°) .

	

(36)

Consider now an arbitrary transformation function connect -

ing two representations in the quantum mechanical transfor-

mation theory, e . g. the functions (W'x' ~ W° ß°) in (15). Since
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(W°,8° W' x ') is equal to (W' x ' I W°,8°)* for W' and W° inside

Jl we have quite generall y

(W11f° W' x)

	

( W'x' Î i4'0 ,ß°) t

	

(37)

for W' and W° inside Q . All integral relations between thes e

functions which hold inside .11 will hold also inside the wider

region 9., i . e . we have e . g .

S(W' fi ' W"x") dW"dx" (W„x„ W° /3°) = d (W'-W°) d (,8 '-/3 °) , (38)

or by (15),

(39)Ç(f I x,) tij,a dx' (x" Ifi°)wo = d(6'-/3°) .

If (W' x ' I A I W°x°) denotes the representative of an operato r

A in the (W, x)-representation, this function is defined for al l

values of W ' and W° inside J1 . Supposing that this function
is an analytic function of W' and W°, the "matrix elements"
(W' x ' A I W° x°) may, by the process of analytic continuation ,

be defined in a larger region SQ comprising also complex value s

of W' and W° . We now define the "adjoint" matrix A t by the
equation

(W°x° I At I W'x') = (W'x' I A I W°x°)t .

	

(40)

For W ' and W° inside J l the equation (40) is identical wit h
the ordinary definition (I, 17) of the Hermitian conjugate matri x

A t . For matrices of the form (I, 15) and (I, 30), i . e .

(W ' x ' I Tl I W°x°) = d_ (W' - W°) (W'x' I U± I W °x°), (41 )

we get, by (40) and (35) ,

(W ' x ' I Tt I W°x°)= d d_ (W'-W°) (W'x'IUl I W ° 3 °)• (42 )

The ordinary rule for "matrix multiplication "

(W ' x ' IAB I W°x°) = `(W'x' I A I W"x") dW" dx" (W"x"I B IW °x°) (43)

may be extended to the case of complex values of the variable s

W . The path of integration in SdW" may then be arbitrarily

deformed inside the region .2 . From (40) and (43) we ge t
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(W°x°I(AB) t IW ' x ') _ ( Th ' x ' IABIW°x°) t =

-S(W'x,
I
A

I W„x„)t dW
„

dx" (W" x" B 14TOx°)t =

1 9

= S(W°x° !Br I
W" x" ) dW" dx" (W" x" I At I W ' x ' ) =

= (W°,x° B tAt

	

TT% 'x ') .

Thus, the ordinary matrix rule

(44)

(AB) t = BtAt

	

(45)

is seen to hold also for the generalized matrices with complex

values of the W-variables . From (34) or (35) and (42) it follow s

that the equation (44) is true also in the case where one o f

the functions, say (W'x'IBIW°x°), contains a factor 6 + (W' -W°)

like the matrix T+ in (41) .

If A is a Hermitian matrix in the original interval the

equatio n

will hold also in the larger region Q , i . e . A is a self-adjoint

matrix . Similarly, if A is a unitary matrix in the original sens e

the generalized matrix will also satisfy the generalized equation s

AtA = AAt = 1 .

	

(47)

Thus the matrices ! and S, connected by the equation (I, 43) ,

will satisfy the generalized equations (46) and (47), respectively .

In a representation where the collision constants (W, ,B) are

diagonal we hav e

(W'ß' I ry/ I W°/3°) - ~7°cl (W '- W°) c1 (ß '- ß°)

The "eigenvalues"

	

, S° are functions of the variables (W°, ß° )

and they will satisfy the equation s

ri ° t =ryi o

S°{ - 1

	

(49)

.

	

S 0 '

At = A

	

(46)

(48)
(W' ß ' S I W°ß°) = S° cl (W'- W°) 6 (ß ' -ß°) .
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respectively. All matrix equations derived in I for the origina l

region also hold in the wider region S2, provided, of course ,

that the representative of the potential energy V in the (W, x) -

representation is an analytic function of the energy-variable s

in the original interval . This restriction is, however, not serious .

It does not mean that the potential function in configuralio n
space must be an analytic function or even a continuous functio n

of the position coordinates . From FOURIER ' s theorem it follows

that, if the potential vanishes sufficiently rapidly with increasin g

distance of the particles, the representative of the potentia l

energy V in momentum space will always be an analytic func-

tion of the momentum variables .

2. The Asymptotic Form of the Wave Functions .

We shall now consider the wave function qi, (x ') in a
(If, x)-represenlation where x is the relative coordinate vecto r
defined by (12) . Omitting again the factor d (Ii' -I't°), we ge t
from (13) and (19)

wao(x ') = ufu;ai,a (x')

	

(x' I zlr I 14I7 ° /3°) _

	

l
(,x.-n-) k '

= (2 rc)- ~ \ e

	

d d ' dx ' rS_ (4t7' -W°) (xVJ 'C

+ e

	

dW' (Ix' (W' - W°) (W'x' A W° /39 ,
VJ'

where n '

	

n (x ') is the unit-vector corresponding to the value s
(x ') of the variables (9) . Further, k ' = k (K°, W', x ' ) is th e
value of k obtained from (7) by putting If = n = n' ,
and ' ,W = W ' , and /l' = z(K°, W' , x ' ) is the correspondin g
value of the functional determinant (11) . Thus, using (23), w e
have

(50)
2 Ge92))f'

(51)

On account of the square root occurring in the expression
for k ' we shall have to make a cut in the W '-plane along a
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suitable curve connecting the singular point Wm and (K° n ')
on the real axis in order to make k ' analytic and one-valued

throughout the cut plane . Since we are particularly intereste d

in the real values of W'< W ,'n , we cannot make the cut alon g

W ' plane

Fig . 2 .

the real axis, but we can make it as close to the real axis ,

W' 2 - Wm
as we like. Putting U = W, 2 - (K° n,)2 we shall define th e

square root of U by the equatio n

Vu = j/e e ` 2
if

U= ee `''P

-rt

	

<p<~t-E .

Here E is a finite positive number which may be chosen a s

small as we like. This definition corresponds to a cut alon g

the radius vector cp _ rc-E in the U-plane. The corresponding

cut in the W'-plane is easily seen to have the form of th e
curve R in Fig . 2 .

Now, let R° and Ri be the R-curves corresponding to !K°n' = 0

and 1Ii-°n' j = 111 0 1, respectively. Outside the region w cir-
cumscribed by the curves R° , RI and the part of the real axi s

joining the points 0 and 1 K°`, k ' will thus, for any value of n' ,

be an analytic and one-valued function of W', and we shal l

in what follows consider such values of W ' , only. If E is mad e

sufficiently small, the forbidden region ca can be made as smal l

as we like. Also the functions /1 ' and VA' are then seen to be

analytic functions of W ' outside w .
We shall now calculate the asymptotic value of the functio n

11-twop, o (x ') in (50) for large values of the relative distance
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x, '

r ' _ x ' Î = x2 -x l ~ . If we introduce the unit vector e ' =
the integrals in (50) are of the form

	

r

x = S''')f(W',x') dW'dx ' .

	

(54)

For r ' -- oo we get, if terms of higher order in 1, than the firs t
r

åre neglected,

2 7r

	

eir'k'

	

ir'k'

`Y=

	

k' f('',x)dW'
Se	

k, f( W', (55)

where (x ') _ (5 ' , y ') are the values of the variables (9) corres-
ponding to the direction n' = e', while (x_) _ (- c', cp'+m)

correspond to the opposite direction n ' = -e ' . Similarly, k '

in (55) is the value of k ' in (51) for n ' _ +e' . The equatio n
(55) follows at once by a partial integration if we temporaril y
introduce (k ' , x ') instead of (W ' , x ') as integration variables .

Since the functions fin our case contain a factor d ± (W '-W°) ,

we have to calculate for r ' ->-oo integrals of the typ e

e ir k' d+ (W' - W°) g (W') dW' _ L(56)

2e ri(W' -W°) '
t cl(w°)

Zt = e-tr x (W' -1 i0 ) g (W') dW' = ,e

it k g (W') dW' . (57)
± 21ri (W'-W°)

Now, let R (z) and I (z) denote the real and imaginary parts of
a complex number z, respectively . From the definitions (51) ,

(52), and (53) it then follows immediately that the imaginary
part of k ' is positive for R (W') > 0 if W ' lies above the rea l
axis and outside w . Further, we have I (k' ) <0 for R (W') > 0
if W' lies below the forbidden region w . Let S? + and S?_ h e
those parts of the region SI for which I (k') is positive and
negative, respectively . For W ' S2 + the exponential functions in
(56) contain a factor e"r' , where a is real and positive. Those
parts of the paths of integration in (56) which lie inside S? +

will thus give a vanishing contribution to Y± in the limit
r ' * «D .* Similarly, those parts of the integration curves which

lie inside 1-2_ will give a vanishing contribution to Z t for

* Provided the interchange of the limiting process r' -* oo and the oper-
ation of integration is allowed .

D . Kgl . Danske vidensk . Selskab, Mat.-fys . Medd . XXII, 1l1.
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r ' > oc . If we choose the curves C + and C_ as in Fig . 3, we

get for r' -~ oo the asymptotic expression s

e ir k
'	 g (W') dW'

2sri(W ' -W°)uc tw o)

0 ,

where k° denotes the value of k ' following from the `theorem

of conservation of energy', i . e .

W°1I/ W° ' -

2 Y W° 2 -- (Ii° e') 2

By a suitable choice of the curves C_i_ and C_ in (57) w e

similarly get the asymptotic expression s

( 0
Zy = {l -ir'k °ir'k°

	

(60)
g (W°) .

Thus, by means of the equations (54)-(60) and by (20), w e

obtain the following asymptotic expression for the wave func-

tion (50) in the limit r ' > DC

Wwo,3'° (x' ) _ (x' -P'' W° F3° )

with
Li° = LI(K°, W°, x ' ) = 4(K°, W°, x'_) .

	

(62)

For a system consisting of two particles only, we may tak e

for the collision constants /3 the variables L and in defined by

(173), (183), (163), and (160) in I, and in the followin g

sections the symbol /3 is used simply as an abbreviatio n

for the two quantities L and m, which have the discret e

eigenvalues L° = I° (1° + I), 1° = 0, 1, 2 • • • and rn° = -1° ,

-1°+ 1, • + 1°, respectively . Since T" is a pseudo-four-vector

the variables L and rn are invariant under spatial reflections at

the origin. However, L and rn are invariant also under th e

transformation (x')> (x_) or k'>-k' , which corresponds t o

a reflection in the relative space only; for this transformatio n

is equivalent to a permutation of the two particles, as is seen

(58)

eir'k°g, (
W°)

k° = (59)

ir

(-

'k°

) (61)
~~~	 	

ar k°r ~ a0) + e ir

e

	

(x

	

5° (x' ~ Q °)N
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Fig . 3 .

from (1), and the variables L . and in are symmetrical in the

particles . Thus, if r denotes the operator corresponding to thi s

transformation, 'r commutes with L and m and the eigenfunc-
tions (x ' ll°m°) of L and rn will also be eigenfunctions of T .

Now, since r 2 = 1, the eigenvalues of z are +1, hence we get

r (x ' 11°rn°) = (x_ 1°rn°) _± (x ' ~ 1°°) .

	

(63)

In the centre of gravity system the variables L and in are
identical with Ilr and Ill,, and the functions (x ' 1 1° 0°) are th e
usual spherical harmonics Y10 ,,('', (p ') . Thus we have in thi s

frame of reference

(x I1° In°) _ (-1)10 (x' 1° m°) .

	

(64)

However, since r commutes with the variables N and lal defined

by (132) and (139) in I, r is a relativistic invariant on accoun t

of (I, 135) and (I, 138), and the equations (64) will, therefore ,
hold in all frames of reference .

The asymptotic expression (61) for the wave function thu s
takes the form

we

	

= wW o lu,no (de') -

(65)
(2

	

1° - 1

	

ir'k' 0

	

, 0 m o )
irkJld l

where S° = S (a°), according to (I, 185), is a function o f

K° = Je w"- IK° I 2 and 1° only :

S° = S (°, 1°) .

	

(66 )

(de ' ) is a solution of the Schrödinger equation, i .e . zil «o(x ')
is an eigenfunction of the Hamiltonian H. However, since H
does not commute with the variables L and in . 1il, o (x' ) is not

2*
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in general an eigenfunction of L and M . This is seen also from

the asymptotic expression (65), since k° and 4° occurring in the

factor of the eigenfunction (x' I 1°m°) depend on (x ') . Neverthe-
less, the eigenvalues 1° and m° of the collision constants L an d

m may be used for labelling the eigenfunctions of H instead o f

the eigenvalues of a set of constants of motion which ar e

customarily used for this purpose.

Only in the centre of gravity system, i . e . for K° = 0, where

L and m are essentially equal to M 2 and M Z , respectively, k°

and 4° will be independent of (x'), and 'I'ao(x ' ) will be an

eigenfunction of L and m, also . In fact, in this case we ge t

from (59), (23), (62), (11), and (6)

k° _ /(
W
2

0
/jl
~ 2

k° vK2 + kp2 '

which are independent of (x ') . The same is approximately tru e

also in the `non-relativistic' case where K° may be treated as

small compared with W° .
The adjoint wave matrix 111t satisfies the equatio n

W ~t -Ipt W= 21.0 y,

	

(68)

as is seen from (1, 7) when it is noticed that W and V are

self-adjoint matrices . If (68) is written in the mixed represen-

tation, we find that the adjoint wave function

Ww,ß,(IV'x')t = (W'x' l W I W°N°)t = (Wo,golt7stj W 'x') (69)

satisfies the adjoint Schrödinger equation

lya , (W 'x ' )t (W° - W') =

= (' a (W„x")t dW„ dx„ (W" x„ I V j W°x°)

In the (K, x)-representation the adjoint wave function 2a.(x ')t

has the asymptotic form (for r ' -- k oc)

- K2

(67)
2

40 =



Nr.19

	

2 1

Ilcc (x )t =

	

ir'k°
	 {e(_ 1)

	

+ e

	

S°t 1
(l°m° x'), (71 )

as is seen from (65) when we consider the fact that k° and
V,1° are real for 1V"-< I, i . e .

1.° =k°

for W°-< S? .

3. Determination of the Discrete Stationary States .

The function ill,, . = iJI rr . °r „ io = iltwn is a solution of the
Schrödinger equation (22) for all values of W° inside S?, i . e .
also for real values of W° in the interval J2 , defined by

IK°I<iv°<11'm,

	

(73)

provided that the region Sl, where ilh i,° is analytic, contain s
this interval . However, ilfc, ° is not an eigenfunctiou of H, unless
glf,X° is everywhere regular, and this does not apply to all value s

of W° in .12 . From the definitions (59), (52), and (53) we ge t
for IV°-{ .1,,

W° / W, - IV° 2

	

(74)
k° =

	

Z I k°, = - Z 2 I ' I1' U2 - (li° e ' ) 2

and the curled bracket in the asymptotic expression (65) become s

e
-l>,°

' r (-1)i°+I+elk 1r S o .

While the first term vanishes for r ' -->- x, the last term increases
exponentially with r ' . Hence, the condition for llfc, ° being an
eigenfunction is that S° is zero and the energy values of th e
system in the closed stationary states are determined as the

values il'R (°) of W° inside J2 , which make S° = 0 . They are
thus determined by the equation s

S° = S (Kn(l °) , 1°) = 0

Kn (10) = V 1;'n (10)2

	

12
>

,, //J°t =V .
-
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where n is an index labelling the zero points of S° corresponding

to a fixed value of ' I° . The quantity K n (1°) simply denotes th e

value of the rest mass of the system as a whole in the station-
ary state considered . It has a well-defined physical meanin g

independently of the frame of reference .

This general result from quantum mechanics may now b e
assumed to hold also in cases where ncr Hamiltonian of th e

system exists . Thus, in the special case of a system of tw o

particles we shall postulate that the characteristic matrix S =
S (K, L) is an analytic function of K for all values of L and that

the values of the rest mass K of the system in the discrete stati-

onary states are determined by the equation (75) . The determi-
nation of the closed stationary states in the new theory ma y

therefore be performed in any Lorentz frame of reference wit h

equal ease . This is a particularly beautiful feature of the ne w
theory, which is due to the extremely simple transformatio n

properties of the characteristic matrix .
In order to find further general conditions for the charac-

teristic matrix we shall now return to the case where a Hamil-

tonian and a Schrödinger equation exist . Using (17), (16), (18) ,
and (I, 23), (I, 26), we get for the wave function W o (W 'x' )
in (21)

wc,o (W'x' ) _ zFW oi3 a (W'x') = ( W'x' w I w °,a°) =
(76)

= (W'x' S W°,e°) -a_ (W'-W°) (W'x' UI W°ß°)• )

If W° is one of the zero values WW (l°) defined by (75), we hav e

(W'x' I S I W°ß°) = (W'x' I W°ß°)• S ° = 0 ,

	

(77 )

and if r = (r7, 1°, m°) is an index labelling the closed stationar y

states, we get for the normalized eigenfunction W r (W'x ') be -

longing to the discrete energy value

Er = Wn (le)

	

(78)

the following expression :
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r~r (W 'x ') = iVr ' Z~yyo 1!.
° ( 1•~7 x) -

,•~ ~

-Nr Cf_(tiV'-Er)( 11,'x' ~ U l r ) ,

where Nr is a normalization factor and

(W'x'~Ur)=(W'x'U~W°= Er ,fi°)•

	

(79 ' )

For W ' - .J the difference W ' -E r is real and positive, and

we have simply

(jV'x ' ~ U~r) ,

since the interval J 1 has the character of a C (Er)-curve .
The corresponding function Zr (x ' ) in configuration spac e

has the asymptotic form, following from (65), (74), and (75 )

I

7~ (x)
=

(2 ~)	 Nr (-1)t.+1 e_	 ~ ,	
(x' l°m°),

	

(81 )
l 4/°

	

r
Y

	

r

where k°r and ,J° are the values of 1c° and J° for W° = Er . The
eigenfunction zl;, (W'x') in (80) is a regular normalized solutio n

of the Schrödinger equation (22) with W° = l r .

While yvor,o is regular for W° = Er the adjoint wave funct -

ion u,oßo (W 'x ' ) t in (69) diverges for W°-->- Er . This is seen ,

for instance, from the asymptotic expression (71) when accoun t

is taken of the equation (49) which shows tha t

N
2jfr

	

ix,)

	

2 Tc i(WJ
( tl~

	

' -Er )
(80)

SDI = -so-

WO Er .
for

Let us, therefore, consider the functio n

(De (W'x ') = S° zlrno (W ' x ' ) t ,

	

(83)

which is also a solution of the adjoint Schrödinger equation (70) .
(The wave matrix S heft occurring in (83) is closely connected with
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the matrix

	

defined by the equations (29)-(31) in 1) . From

(I, 10) and (I, 21) we get for urt in the mixed representatio n

(W°fi° t I W'x' ) =

	

}

(84)

For W° = Er = Wn (P) the first term is zero and the functio n

tD , .(W 'x ' ) = øno_E po(W 'x) = a_ (W ' -W°) (r SUt I W'x') (86)

is a regular solution of the adjoint Schrödinger equation (70) .

While (W'x ' I U I W°,6°) was regular for W°-)- Er we see that

(W°ß° I Ut I W 'x' ) diverges for W° -0- Er , since (W°,B° I SUt
S°•(W°,8°I Ut W'x') remains finite and S°--0 for W°-)- Er. I f

W' -( Jl , we have simpl y

(W ° ld° I 1 ~ W'x') + a+ (w0_ W') (W °,B° i Ut 1 W'x' ) .

Hence, on account of (27),

D . (W'x' ) =
(85)

= (Wo,8°ISIW'x')+a_(W'-W°)(W°,80 1SU t 1 W'x') .

1
o r (W'x') = 2 1L i (W ' -Er)

(r I SU t I W'x'),

	

(87)

since the Interval Jl is a C_ (Er)-curve. The correspondin g

function O r (x') in configuration space has the asymptotic form ,

following from (71), (49), (74), and (75) ,

O(~,) - _(2~1)/-i
e

i~~l~(P°m°Ix') .r

	

I kr IV~~

	

r'

Now, for W° = Er we have

(88)

(P°m° I x ' ) _ (x' P°m o )*

In the centre of gravity system, i . e . for K° = 0, these

relations are obviously true, since the functions (x ' I 1°m°) in this
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case are ordinary spherical harmonics
i im o ,f '

Yen. (x ') = P 1 , (~')

and «i°., by (67), is given by % 2 Jr

~

	

4 t
® =r

	

k° Er

The second equation (89) then follows immediately from the

definitions (:52), (53) of the square root . Using the connectio n
(I, 175) between the transformation functions (x ' I l°m°) in tw o
different Lorentz frames of reference as well as the general de -

finition (62), (11), and (6) for we may easily prove th e
equation (89) to hold in an arbitrary Lorentz frame.

A comparison of (88) with (81) then shows that th e

asymptotic expression of lIJ` and Ør deviate only by a facto r
i(-1)

	

e .

wr = 1(-1)t° iA'i •

	

(91 )

for r' - oe . But, since both IF and 7r are solutions of the
conjugate complex Schrödinger equation, (91) must hold for
all values of r ' . For Tl'' { J l we thus from (91) and (87) get

w*

	

2~r i (li~'- %r)
(r I sut ll' 'x ') ,

	

(92)

and from (80) and (92 )

(lti"x' t.'

	

= i (-1)z ° (r I s ut 1V 'x ' )

	

(93 )

for IV' -< Ji .

4. A New General Condition for the Characteristic Matrix .

Consider the General equation (I, 20), which holds for an y
form of the Hamiltonian . By means of (I, 15) and (I, 21) and
by the definitions (24) and (25) the equation (I, 20) may be

written in a (1Y, ß)-representation as follows :

(90)
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(W' ,8' I

	

~ N0)+(Yr%,ß'
utI W„x")dW"dx"(W"x"

I	 UIW°ß°)UI Ut W0

	

2 7r i (W'-W" )

C_ (W')

+(W' ß' I Ut W" x") dW"dx" (W"x" U iTV O )8°) = 0
>

22T i (W" -W°)
c+ (W°)

(W',8 ' I u+ U t I W°,8°)+

(W'ß' U t I
W"x

")dW"dx"(Ll~'"x" I UI W°ß°) -
o)

~

+(W~~ w

	

0
2 ~ i(w'-til,„)(~~,"-W °)

	

- .

[C+(W° ) . C_(W')]

In the last integral the path of integration in the W "-plan e
must be a curve which is simultaneously a C + (W°)-curve and

a C_(W ' )-curve, i . e . the points W° and W ' must lie to the

left and to the right of the path, respectively. In the equation

(95) as it stands we cannot, therefore, let W' -*- W°, and in a
subsequent integration over W ' the point W° must lie to the

left of the path of integration . Thus, if (95) is divided by

2Ai(W'-W°), the matrix elements of U+ Ut will be multiplie d
by the function ô + (W'- W°) .

	

Hence, by

	

(24),

	

(25) ,

and (I, 21), we get

(I, 15) ,

(W'ß ' I T -I- Tt + Tt T I W°ß°) = 0 ,

or by (I, 10)

(96)

(W' ß ' I
zFt z~

I W°,8°) _(W' ß ' I 1 I W ° ß°) • (97)

This is a new and very much simpler derivation of th e
equations (61) and (62) in I, holding now , for all values o f

W' and W° inside Q . For W' and W° inside the original inter -

val J1 the equation (97) may be writte n

(W ' ß ' I Z~ t IW"x„) dW" dx" (W" x" I zlr l W°ß°) =

= rI (W'-W°)

It then simply expresses the orthogonality and normalizatio n
conditions for the continuous eigenfunction s

or

(94)

(95)
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2 7

,6°
(W„x„)- (W„x„ i

uf
i E°ß°)

ZIE(j (jViixii)* _ (E'ß' I Wt I W"x")

of the Hamiltonian .
We shall now see that the equation (95) (or (97)) contain s

the orthogonality conditions (I, 72) for the discrete eigenfunc-

.S
tions, too . Let us multiply (95) by

Tl/f
	 tlo and afterward s

let W' -- 11/n (0 = E,,, W°-->- E°, where Er is one of the value s

of W ' -<J-2 which make S ' = 0, while

	

J1 . Then we get

(r	 SUt I E ° ,3 °) +

L;r - L00

' (r SUt W"x" ) dW"dx" ( W d

	

"-E°) (W-"x" I UI -E°ß°)

	

(100)
=

E,. - W"

	

0

By (92), (99), and (14) this may be writte n

(W'x') dW'dx' WE,, ° (W'x ') = 0,

	

(101)
~

which is the second equation (I, 72) . Further, since

dW"

	

_ dlV"

	

+ dW" ,

	

(102)
[C +(W°), C__(w')1

	

`C_(iY"°,kV')

	

G(W°)

where C_ (W°, W') is a path with both W° and W ' to the right
and C (W°) is a contour encircling the point W° in the counter -

clockwise sense, the equation (95) after multiplication with S ' ,
may be written

S ' (lV'ß ' U I W°ß°) + (W'ß ' I sut i W°ß°) S° -} -

(llT,ß, i SUt illj„ x„) dW"dx"(W„ x„ IUW°ß °)

	

(103)+ (W'-W')

	

2rri(W -W„)(W„-W°)

G~ Il

r = (n, 1', rn ' ) .

1'V')
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or

Here, we have used the relation s

(W' fi ' ~ Ut W°x" ) dx" (W°x " I U W°,8°) =

(I1,,,8, I Ut
W"x") dW"dx" (W"x"

R I W°fi °) =

= (ßW,8 ' UtR W°,8°) = (W ' ,B ' Ut W°fi°) R°

and S° = 1+R° following from (23) and (26) in 1 .

If W' -->Er and W°-"-Es with Er +Es , we have S' -

S° -- 0, and, on account of (80) and (92), (103) become s

1
~r (W'x') dW 'dx ' aWs (Wx') = 0

	

(104)
' J ,

in accordance with the first equation (1, 72) .

For Er = Es a closer investigation is necessary. Since W°

and W ' lie on the same side of the path of integration in (103),

we can here let

	

W° and we get, firs t

d
[3, 13"

• S° [R° + R° t (1 + R°)] = 0 ,

S° t S° = 1 + R° + R°t -I- R° tR° = 1 ,

i . e . the equation (49) . Further, if we differentiate (103) wit h

respect to W' and
Q
afterwards let W ' -> Er and W°-- Es with

Er = Es, r = (n' , N ') = (n ' , l ' , in '), s = (n° , fi') = (n° , 1° , m°) ,

we get

dS (K r , 1°) E r

d Kr

	

K r

	

/3, 0°

( r~ SUt W'x')dW' dx ' (W' x' I UI S)
= 27u å

	

(27.t 0 2 (W' -Er) (W' -Es)
J,

since S ' = S° = 0 and R° _ -1 for W' = Er = Es = W O. On

account of (80) and (92) this may be written

(105)



(_ 1) ro dSr _ ( 1)1° .
dS (Kr , 1°)

d Kr

	

d Kr
>O .

	

(108)
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~~Jr (lI''x')dL[''dx'r7s(lI"x °) =

,
(- 1 ) r' N*

	

(106)
	 rNr

	

dS	 (Kr , 1°.) d
27r

	

K

	

d K

E

	

rs .

Thus (106) together with (104) is identical with the firs t
equation (I, 72) if we put .

E r dS (Kr , 1°) ' r

	

(n, 1°, rn °) . (107)

d K r

Since S r = S (Kr , 1°) does not depend on m 0, Nr is a functio n
of n and 1° only. Further, since Kr , Er and !NJ' are real and

positive quantities, dSr. must be real and satisfy the genera l
condition

	

dKr

The inequality (108) represents a new general conditio n
for the characteristic matrix which holds in quantum mechanics
independently of the form of the Hamiltonian and whic h
may, therefore, be supposed to hold also in the new theor y
even in cases where no Hamiltonian of the system exists . The
condition (108) implies that the zero points of the eigen -
values of S in the interval J2 , which are defined by (75), hav e
the multiplicity one, i . e . in the neighbourhood of K r the func-
tion S (K°, 1°) has the form

S (K° , 1°) = a r (K° - Kr) ,

	

(109)
where

dS
ar =

dK
$ 0

r

is a real positive or negative number, according as t° is even
or odd, respectively .

r

	

r

0 Kr

	

1
1 Nr12 = 2~(- 0' • -
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If Si is a unitary matrix satisfying all the general condition s

of a characteristic matrix, in particular the condition (108), Si

defines a certain atomic system. The matrix S 2 = S1 is then
also a unitary invariant matrix, but in general it will not satisfy

the condition (108) and therefore may not always be taken as a

characteristic matrix . However, if S 2 satisfies all the general conditi -

ons, it defines a new atomic system which may be called the 'adjoint '

system . Since R2 = S 2 -1 = St -1 = Rt, all cross-sections in

the two adjoint systems are equal, but the two systems wil l

have no closed stationary states which are identical, since S i

and S2 can have no common zero points .
By use of the equation (I, 26), the `condition of complete-

ness' (Vollständigkeitsrelation) (I, 74) of the eigenfunctions o f

the Hamiltonian may be writte n

(W'x ' I T+ Tt +TT t W"x")
+2' Wr (W,x , ) L1Yr

	

= 0, (110)

where the variabies W' and j r0 are values of the original in-

terval Ji . By means of (80), (92), and (107) the sum in (110 )
becomes

(W'x ' I Ulr)(r Ut IW„x„ ) s
(W ' x ' ) Zlfr_ ~	 	 1 .

r 2 7T i (W'-Er ) (El. -W" ) dS r

dEr
_

	

~ (W'x ' I U W°,8°) dW° (W°ß°Ut I W"x")

(27ri)2 (W'- W°)(W°- tiV")
~ ' 'C(Q)

where the path of integration C (0) in the W°-plane is a series o f

contours encircling in a counter-clockwise sense all the zero point s

(75) of S° in such a way that the integrand has no singularitie s

inside C (0) . Here, we have used CAUCHY ' S theorem and the

fact that S° in the neighbourhood of any zeropoint W° = Er
is of the form

dS
S° =

dFr
(W° - Er) .

r

If we multiply (110) by '2 r, i (W ' - W"), we get, by means

of (111),

(11
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3 1

(W'x ' I U-}- Ut ti-V"x") -I -

(W'x ' U 1W°,3°) dW° (W°/3°~Ut 1147"x")

	

(112)+
(W'-W")~

~

	

2 7çi(W'-W°)(W°-W")

	

= 0 ~

tu

	

[C+(°, w") C__(W') ]

where the path of integration is a C + -curve for all the zero

points and for the point W" and, simultaneously, a C__curv e

for the point W'. The equation (112) is a general conditio n

for the matrix U, holding in quantum mechanics for any syste m
and for all values of W ' and W" inside Q . (112) has a similar
form as the equation (95) .

We shall now discuss_ the question how far the atomi c
system is defined in the quantum mechanical sence, if only

the characteristic matrix S is given . Assuming that the given

matrix S satisfies all the general conditions (I, 27), (I, 28), and

(108), we can try to find a matrix U which satisfies the genera l

equations (95) and (112), and which, further, is connected by
the given matrix R = S-1 by the equation (I, 23) . If we have
found such a matrix U, we can define a wave matrix W b y
(I, 10) and (I, 15) . Furthermore, we can define a set of function s

Wr by (80), where r is an index enumerating the zero points of

the eigenvalues of S, and Nr may be taken as the square roo t
of the right hand side of (107). The functions Wr together with
the functions (99) are then the eigenfunctions of a `Hamiltonian '

H defined by

(W 'x' H W
„x„)

=

=
(W'x' I ~.IE°,ß°)E° dE°E°,3° W t l W"x")

-F-

	

(W'x') Er zIl ( W"x„) *
r

with the discrete eigenvalues Er = W,, (1°) given by (75) and th e

continuous eigenvalues E° in the interval J 1 , i . e . W,, < E° < c .

If the operator (113) is used as Hamiltonian in a Schrödinger

equation, we get the same result as regards the `observable '
quantities of HEISENBERG as that following directly from th e
given S-matrix . However, if there is a solution at all of th e

equations (95), (112), and (I, 23) for the matrix U, it is easil y

seen that there are many solutions. This means that there are

(113)
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many Hamiltonians (113) which give the same result as regard s

the `observable ' quantities of HEISENBERG, but the wave function s

corresponding to the different Hamiltonians will only be identica l

for large distances apart of the particles and they will, thus, i n

general lead to different results regarding, for instance, the pro-

bability of the particles being in small distances from each other .

To see this, let us consider the simple case where the eigen -

values of S have no zero points in J2 , which means that the

system has no closed stationary states . In this case the equation s

(95) and (112), expressing the orthogonality properties and th e

completeness of the eigenfunctions, may be expressed in term s

of the wave matrix zF by the simple matrix equation s

zp-t zit = 1

zpzpt = 1

showing that the wave matrix IP is a unitary matrix in this

case . (Cf. (I, 62) and (I, 63)) . Now, let us assume that we have

found a solution of (114) of the form (I, 10)

W = 1 + T

	

(115)

(P' x' I TW 0x°) = a+(tf'' -),V°)(W'x'I U I W°x°), (116)

where U is a matrix satisfying (I, 23), i . e .

(W°x' I U I W°x°) = (x' I R I x° )

R= S-1 .

The Hamiltonian (113) is then given by the matrix equatio n

H = WWzart . (118)

However, the matrix

IF= IFA (119)

with
A t A = AAt = 1 (120)

will also satisfy (114), i . e .

(121 )wt zlr = ïlrzlrt = 1 .
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Putting
A = 1+B (122)

we get from (120) for B

B+Bt -i-Bt B = 0
(123)

Bt B = BBt .

Since the new wave matrix must have the same form (115) ,

(116) as the old one we have

	

= 1+ T

	

(115 ')

(W'x' ~ T ~ W°x°) = a+ (W'W°) (W 'x ' ûj W°x°) . (116' )

Thus, from (115 '), (119), (122), and (115), we ge t

T= W-1 = WA-1 = W-1-{-WB= T+B±TB. (124)

On account of (31) we then get from (116 '),. (116), and (25) ,

(W'x ' ) U W°x°)

_ (W'x ' U W°x°) + 27r i (W '- W°) (W 'x ' B W°x°) +

°
(W'x'I U)W"x„) du)"dx'(W"x'~BIW°x° )

27ri(W'-W")
' C (W' )

Now, we are only interested in those matrices U which satisfy

also the equation (117) with the given R . This means that
the matrix elements of U and U must be equal for W ' = W°.
From (125) this is seen to be the case if (W'x' I B +W°x°) has

no singularity for W ' = W° .
Thus, if B is any matrix whose matrix elements are finit e

for W' = W° and which satisfies (123), the matrix U defined

by (125) will satisfy the conditions (95), (112), and (I, 23)

provided that U is a solution of these equations, and the Ha-
miltonian

	

H = zTr w zit

	

(118 ' )

will give the same results as regards HEISENBERG ' S `observable '
quantities as the Hamiltonian H defined by (118) . This mean s

that for a given characteristic matrix S we can either define a
D . Kgl . Danske Vidensle. Selskab, Mat.•fys . Medd . XXII,19 .

	

3

(125)
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large number of different Hamiltonians or we can find n o

Hamiltonian at all for the system considered .

5 . Non-Stationary States . New General Conditions for S.

Determination of the Decay Constant of Radioactive Systems

by means of the Characteristic Matrix.

Since the function 11;w°3° (W'x' ) defined by (21) satisfies th e

time independent Schrödinger equation (22) for all values o f

inside P . the function

- iLY° t
= ~w° 3 ° e

satisfies the time dependent Schrödinger equation

(126)

(127)

for all values of W° inside P . However, for complex values o f

W° the function (126) does not correspond to a stationary state .

If W° lies in the lower half plane inside 9,, we may writ e

W° = Ei- i

	

(128)

with E l and 2 real and positive, and the time factor in (126)
takes the form

which means that the amplitude of the wave function (126)
decreases exponentially . The asymptotic expression for the wav e
function (126) is obtained from (65) by multiplication with

In the centre of gravity system we get for this asympto-

tic expression

	

-ir'

	

ir' k°

C [e	 / 1 )
t°a-l + e 	

r
	 so] yvino

	

rw°t ,

	

I, r

	

\

	

i °rn °

where C and k° are constants determined by (67), i . e .

2

k° = 2 Ei-4x 2 -12)
-iEi 2 = k ° -ilc2

	

(130)

(129)
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with k° and k2 real and positive for 2 >O . The first term in
(129) corresponds to an ingoing spherical wave in the relative
coordinate space and the corresponding current density in th e
direction of increasing r ' is proportional to -2 14 e

2r~r

~ ya°m°~ 2
Similarly, the second term in (129) is an outgoing spherical wav e
with the corresponding current density equal to 2 k° e2k r Sri°n :° ~2
From this it follows at once tha t

A the eigenvalues of S, i .e. S°, cannot have any zero point s
for W°- n in the lower half plane, where E l and 2 are
positive ,

for this would correspond to a state in which we have ,an in -

going current through the surface of a large sphere while ,
simultaneously, the total probability of the system, having a n
r ' smaller than the radius of the sphere, decreases exponentially

with time, the rate of decrease being determined by the dampin g
constant 2 . But this would obviously be in contradiction with
the continuity equation following from the Schrödinger equation

for any form of the Hamiltonian . Thus, the statement A repre-

sents a further general condition for the matrix S .

If we multiply (126) by S° t = (S°)- 1 , we get a solution of
the Schrödinger equation with the asymptotic expressio n

ir'k°[e-

r

	

(-1)i°+1S°t+	
r.,

	

e-`W°i

	

(131)

Considering now a value of W° -< it in the lower half plane fo r
which S°t = 0, i . e . where S° has a singular point, the wave func-

tion (131) corresponds to a radioactive decay process, since w e

have then an outgoing wave only, for large values of r ' , Thus, if
S° has singular points inside. .Q in the lower half of the W°-plane,
this means that our system may undergo a radioactive disintegration.
The decay constant 2 for this process is equal to twice the nume-
rical value of the imaginary part of the value of W° for which
S° is singular, and the real part E 1 of W° may be interpreted as
the energy of the decaying system . Of course the energy of th e

system is only defined with a definite uncertainty given by th e

constant 2 which also determines the breadth of the energy level .
Considering now a value of W°-{ Q+, i .e . in the upper half o f

the W°-plane, where
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tiij 0 =E7 -f-i, E1 >0, ti> 0

	

(132)

we find from (131) in a similar way as before

B S°t has no zero points, i . e . S° has no singular points for

W°-4 .f-2 in the upper half of the lß' 0-plane, where the real and

imaginary parts of W 0 are positive ;

for this would contradict the continuity equation . Further, in-

troducing (132) into (129), we see that the zero points of S° i n

the upper half plane correspond to states where we have in -

going spherical waves only, and an exponential increase in tim e

of the probability of finding the particles in distances r ' smaller

than a given value. These slates thus correspond to processe s

which are the reverse of a decay process, and the imaginar y

parts of W° in such cases determine the probabilities of capture

processes .
Throughout this section we have worked in the centre of

gravity system where the total momentum is zero . Let us no w

consider a decaying system from the point of view of an ob -

server in a Lorentz system, where the total momentum is .Ii° � 0 .

If v is the velocity of the centre of gravity system relative t o

the Lorentz system of the observer, the total momentu m

and energy Ei are connected with the energy E l in the centr e

of gravity system by the equation s

E=	 iv

	

E =
I.1-

	

(133)
1

	

2'

	

7.	 	 J .

Vi- U

Here, we have assumed the decay constant to be so small com-
pared with the energy that the system has practically a well de -

fined energy .

Now, let

	

K°

	

-

	

- jl'°

	

(134)

be a complex value of the invarient K° for which the invarian t

function S° = S (K°, 1°) is infinite . If we put W° = El-i -- and

and W° =

	

the quantities

	

and 7, represent the decay

constants of our system in the two Lorentz systems of reference,
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and the equation (134) gives, by means of (133), a relatio n

between and 1, . To be consequent, we have here to neglec t

all terms of the order 2. 2 and 1. 2 , thus we get, if (134) is squared ,

E2 v 2
Ei-î E1

1
1	 E1-i E 1

The real part of this equation gives just the second equation

(133), while the imaginary part yield s

i . e .

which leads

(135)
J/1 - v 2

for the lifetimes of the system in the two Lorentz frames .

6. Examples Illustrating the General Theory .

In all cases, where the system considered has a Hamiltonian ,

the characteristic matrix is determined by the solution of the
Schrödinger equation and, from (65), we see that the eigen -
values S° of S may be obtained from the asymptotic expression s

for the continuous stationary solutions . In the simple case o f

a non-relativistic two particle system, we have in the centre o f

gravity system of reference the following differential equation

for the radial part 2L-Or of the wave function in the relative
r

coordinate spac e

s

	

(o

	

)

dr2
+ (k° 2 -- x V (r) -

lo l1,2	
1	

)
0,

	

(136)

where V (r) is the interaction potential . k° is the relative mo-
mentum given by (67 )

k° = 2 V Iy' 02 (2x)2 ,

	

(137)

which, in the non-relativistic approximation considered here ,

reduces to

1, Ei. = 1, E1

= ß•Vi -v2 ,

to the well-known formula
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(138)

(139)
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with

Now, let us assume that the potential V is zero for r> R ,

where R is a finite, but possibly very large distance . In the

region r> R the solution z H (r) of the equation (136) is given b y

=

	

y«) S°zz

7c

p ti) = i r~ +l l T2- k°

	

(k ° l') ,

i
1a

+ V~ k°r'Hio+~.(k°r) •
~

Here S° = S (W°, l°) is an eigenvalue of S which, in the centre
of gravity system where K° = W° ,'is a function of W° and 1 °
only. Further, H O and W2) are the Hankel functions of the

first and second kind, respectively . xzz is obviously a solutio n

of (136) for r > R and the asymptotic expression of xzz for
r oo has the right form

é
r (-1)1°+i+ etkur

S°,

	

(142)

as is seen if we use the known asymptotic expresssions for the

Hankel functions . In the region r < R, our solution may be writte n

xI = C - x (r) ,

	

(143)

where

	

is a solution of (136) which is zero for r = 0, an d

C is a constant .

The condition that our solution and its first derivative mus t

be continuous for r = R gives us at once two equations from
which we can determine the constants C and 8° . For S° we get

S° = S (W°, 1°) = -
~( t ) (R) x ' (R) Ta)' (R) x (R) .

Let us now consider the simple case where the potential i s

a negative constant for r < a and zero for r> a, i . e .

with
(140)

(141)

(144)
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V° = constant for r < a
V =

	

(145)
0

	

for r>a .

In this case, we may put R = a and the function x in (143)
is simply

x(r)

	

2k4 -J o+2 (k2r),

	

(146)

where Jio__ is a Bessel function of the first kind and

14'

	

VK Vo .+ k°2

If we introduce (146) and (141) into (144), we get a genera l
expression for the eigenvalues S° _ S (W°, l°) and, from this ,

we easily obtain the matrix elements of S in a (W, x)-represen-

tation. Omitting the factor d (W' - W°) we get for these matri x

elements
(x ' S x°) =

~ (x' 1° m°)S°( 1 °m° x°),

	

(148)
10 n o

which directly determine all scattering cross-sections . Since

Jt

	

= J o x, H ßå> t l = Mo) 1 and H(2)t =

we see that the function S°, defined by (144), (141), and (146) ,
satisfies the equation (49), i . e .

Sot = 1°
S '

For 1° = 0 we get from (141) and (146)

(147)

cP~ it = e
ik"r ,

and, thus, by (144)

sinke r

i lc°

	

o
1-+ - /c° tg kI a

S° = S (jV°, O)
iIc°

	

o
1 - k° tglcI a

(150)e
-Eiko a

•

To get the energy values of the system in the closed station-
ary states corresponding to 1° = 0, we have to determine the
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zero points of S° in (150) for W° < 2 x, i . e . for e< O . Since
we have, in this case, k° = -- i lIc° = --- i V- x e the zero points

are determined by the equatio n

0

1 +	 ~ O tg kI a = 0 .

The values of W° or e, given by (151), are equal to the discret e

eigenvalues of the Hamiltonian following from the Schrödinge r
equation .

It is easily verified that the function (150) satisfies th e
general condition (108) and the conditions A and B on p . 35

and p. 36, respectively . The function (150) has no singula r

points in the lower half of the W°-plane, which means tha t
our system cannot undergo spontaneous disintegrations . Further ,
we see that our system has no adjoint system, since the func-
tion S2 = 5°t does not satisfy the conditions (108) .

It is now possible in an infinite number of ways to defin e
the S-matrix of a relativistic system which, in the non-relativi-

stic approximation, is identical with the system just considered .

In the centre of gravity system of reference we may, for instance ,
take the S-matrix defined by (150) (or, more generally, by (141) ,

(144), and (146)) with k° given by (137) or with k° equal t o

any other analytic function AR") of W°, which, in the non -

relativistic approximation, becomes identical with (138). Th e

only condition for f (W°) is that S must satisfy the genera l

conditions (108) and A, B on p. 35 and p . 36. In order to ge l
the expression for the characteristic matrix in an arbitrary fram e

of reference, we have then merely to replace W° by K° in the

expression for S° . For a system defined in this way, it wil l

not in general be possible to define a Hamiltonian of the system .

In his third paper in the ZS. f. Phys., HEISENBERG2> con-

sidered a system defined by a characteristic matrix with the

eigenvalues

(151 )

i a
1-I-	 k °

S (K° 0) -	 Ki cc

1-	 k °
K

S (K°, 1° > 0) = 1 ,

where a is a constant, and
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k° = f (K°) = x V
4K2
KG- (153)

It is easily seen that this system may be obtained as a limitin g

case from the system defined by (144), (141), and (146) with
Ic° = [(K°) given by (153) . For, if a --~ 0 and V°-* oc in such
a way that

tg(VKV° a
lim	

VK Vo

we just get the expressions (152) for the eigenvalues of th e
characteristic matrix . The system defined by (152) has onl y
one bound state if a is negative, and for the rest mass of the
system in this state we get from (152) and (153 )

K°-	
2x

1
(154)

V I
a

Let us now consider the case of a non-relativistic system o f
two particles interacting according to the Coulomb law . Since
our formalism applies only to eases where the potential goe s

to zero faster than 1- as r tends to infinity, we shall assum e

the Coulomb potential to break off at a large distance R, i . e .

e'e for r< R
V (r) =

	

r°

	

(155)

0 for r> R

where e t and e 2 are the charges of the two particles . The eigen -

values of S are again determined by (144) and (141), where
z(r) is the ordinary solution of the Schrödinger equation for
the Coulomb case. If R is chosen sufficiently large, we may us e
the asymptotic expressions for pti>, P(') and z in (144) and we get4 )

	

st

	

N 1-I ö

	

S° = s (W°, 1°) = (2 k°R) k'a	 __ lc a

	

(156)
]'I

	

le
-I- 1--~-

a,
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where k° is given by (138) and (139), and

2
a =,

K e i e2

The closed stationary states are determined by the zero points

of (156) for k° = - i I k° I , i . e . by the equation

0 -I- 1 -I- I k°
I
a = -v, v = 0, 1, 2,

	

(158)

Thus, we have only closed stationary states if a is negative, i . e .

in the case of attraction . Putting n = v + 1° + 1> I° + 1, we get

for the energy e the formula

°E - - _ -1
K a 2 n2

,

which gives BOHR'S formula for the energies of a Coulomb sy -

stem if we introduce the ordinary units . The condition (108)
as well as the conditions A and B in Section 5 are easily see n

to be satisfied by the expression (156) . The adjoint system is ,

in this case, simply a system in which the sign of a i s

reversed, i . e . where we have repulsion instead of attraction .

All cross sections are identical in these two cases, but in th e

case of positive a we have, of course, no bound states .

As in the case of a rectangular potential well, we also her e

get a relativistic generalization of the non-relativistic Coulom b

system by replacing k° in (156) by an arbitrary analytic funct-

ion f (W°) which, in the non-relativistic approximation, reduce s

to (138), (139) . In order to determine the function f (W°) we

need some information about the scattering of charged particle s

in the relativistic region . Now, in the approximation where e 1 ,

e 2 may be treated as small, the cross section for the scatterin g
of fast charged particles may be determined in a relativisticall y

invariant and ,unambiguous way by a simple correspondenc e

treatment s) . The condition that our S-matrix shall give thi s

scattering cross section in the limit of small e l e2 uniquely de -

termines the function f (W°) . The S-matrix determined in thi s

way then represents a relativistic system which, in the non -

relativistic region of velocities, corresponds to a Coulomb po-

(157)

(159)
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tential and which, for large velocities but small values of e l e2 ,

gives the right scattering cross section as determined by th e

correspondence principle .

Finally, we shall consider a non-relativistic two particle -

system with the potentia l

0

	

for r< a

y = U = const . for a < r < a + 1

	

(160)

l 0

	

for r>a+1 .

For 1° = 0, we in this case get from (144)

S° = S(W°, 1°=0) _

(a+1)	 (y+ 1) (1kÎ +_- ik°) Old-ik°) e-2 001
1

= e

	

(y + 1) (i kÎ - ik°) - (y - 1) (ikj + ik°) e 2' 1

Here,
0

Y = kô tg k°a ,

k° is given by (138), (139), an d

kÎ = l~lcD2 -KU.

For real values of W° < TV, , i . e. for k° = - i j k° l, S° has n o
zero points, i . e . the system has no closed stationary states . But

S° is singular for certain complex values of W° in the lowe r
half of the W°-plane, i . e . for

(162)

(163)

(161)

E = 2i,-I-r>0, 2,>0 .

This indicates that the system has radioactive states in whic h
the system disintegrates . According to the general theory i n
Section 5, these states are determined by the singular point s
of (16l), i, c, by the equation
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I)fÎ+-2ik°I
y+ 1= (1' - 1)

ik° ilc°
e

	

(165)
i -

(165) is a complex equation from which we can determine th e

real and the imaginary part of W°, i, e. E and )1 . For U> e ,

the exponential on the right hand side contains a real facto r

e
21'n(U_ ) < which in all practical cases is a very small quantity .

This makes the solution of (165) very easy to perform . For the

real part E of W°, we get the equation

tg (1%x Ea)

and for the imaginary part

=	
16 s= (U -E)l	

é
2I1Ic(u_F) i

U 2 (1 +a Vic (U- s) )

The equation (166) determines the energy values E of the sy -

stein in the radioactive states, while (167) gives the relatio n

between the decay constant and the energy . Both formula e

are, of course, in agreement with the results obtained from the

theory of GAMow and CONDON and GURNEY for the potentia l

(160) ° r . The expression (161) is in accordance with the con-

ditions A and B in Section 5 .

Conclusion .

In the present paper we have investigated in detail onl y

simple systems consisting of two particles with no possibilitie s
for creation and annihilation processes . It has been shown tha t
the closed stationary states may be obtained by analytic con-

tinuation of the functions S° = S (W°, fi°) representing the ' eigen-

values' of the characteristic matrix in a representation wher e

the variables (W, ß) of the complete set of collision constant s
are on diagonal form . In this analytic continuation W° is con -

sidered a complex variable, while the eigenvalues ,8° of the othe r

collision constants are regarded as real variables .

(166)

(167)
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If S° has any zero points for real values of W° smaller tha n
the minimum value W,°„ of the total kinetic energy, the syste m
considered has closed stationary states , with energies equal t o
the values of W° in these zero points, i, e. the energy value s

are determined by the equation (75) . These zero points have

the multiplicity one in accordance with the general condi-
tion (108) .

Further more, if .S° has any poles in the lower half of the W° -
plane, this indicates that the system has radioactive states with
energies and decay constants determined by the real and imagin-

ary parts of the complex values of W° in these singular points .
Finally, the functions S° satisfy the conditions A and B in
Section 5, stating that S° has no zero points in the lower hal f

plane and no singular points in the upper half plane inside th e
region S where S° is analytic .

The results obtained for two particle systems in this pape r
may be supposed to hold also in the general case of a many

particle system with possibilities for creation and annihilation

processes, the only difference probably being that the numbe r
of collision constants 4 which together with W constitute a
complete set is then larger than in the case of a simple tw o
particle system .

Added in proof : After completion of the present paper, S .T.MA 7 >

has published a note in which he points out that the conditio n

(75) for the energy values in closed stationary states is only a

necessary condition, i . e . that, in some cases, S° may have zero
points which do not correspond to closed stationary states . A
subsequent investigation by D . TER HAAß s > shows that, anywa y
in the case considered by MA, the condition (108) may be used

in order to discard these redundant zeros .
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