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1. Introduction. The present paper deals with two limit
theorems on integrals in an abstract set. The first limit theorem
is a generalization of the well-known theorem on differentiation
on a net, the net being replaced by an increasing sequence of
o-fields. The second limit theorem is a sort of counterpart of
the first, the sequence of o¢-fields being now decreasing. The
proofs follow the lines of the proof of the theorem on differen-
tiation on a net.

In case of integrals in an infinite product set the theorems
lead to known results, when for the n'™ o-field of the sequence
we take either the system of measurable sets depending on the
n first coordinates only, or the system of measurable sets depend-
ing on all except the n first coordinates.

If the abstract theory of integration is interpreted as proba-
bility theory, our theorems lead to -two theorems concerning
conditional mean values.

For the convenience of the reader the main definitions and
theorems used are stated at the beginning of the paper. For
references and proofs we may refer to the book by Saks [1] or
to a series of articles by Jessen [2], which we follow closely.

2. Sets and functions. Let E be a set containing at least
one element. Elements of £ will be denoted by x,y,--- and
sub-sets of E by A,B,---. The set E itself and the empty set
0 will be reckoned among the sub-sets of E. The nolation
xeA means that the element x belongs to the set A, while xed
means that x does not belong to A. If A is a subset of B we
write ASB or B2 A, while AcB or B> A means that 4 is a
proper sub-set of B. By ©A or 4, { 4,4 --- we denote the

. n 1*
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sum of the sets A, 4,,---. If no two of the sets have elements

in common the signs © and + may be replaced by X and +.

By ®A, or AjA,--- we denote the common part of the sets
n

Ay, Ay, ---. The notation A—B will be used only when A2B,
and denotes the difference between 4 and B.

A real function f in £ is given, when to every element x of
a set A there corresponds a value [(x), — oo < f(x) <+ oo, The set
A4 is called the domain of f Functions in E will be denoted
by f.g.---. By [---] where --- indicates a number of expres-
sions or relations involving functions in E, we denote the set of
elements « of /£ for which these expressions are defined and
the relations are valid. For example [f] denotes the domain of f.

3. Systems of sets and set-funetions. Let I denote the set of
all sub-sets of E. Sub-sets of MM will be denoted by &, &, - -,
and will be called systems of sets, the notation ‘set’ being
reserved for sub-sets of E. '

A system § is called additive, if Ay 4 --- L A e when all
A, and malliplicative, if A, --+A e when all A It is
called subiractive, if A — Be®¥F when AP, BedF, and A2B. It is
called completely additive, it A; + A, + - - - ¢F when all Ae%, and
completely multiplicative, if A;A,--- &% when all 4cef.

A system of sets is called a field, if it contains at least one
set and is additive and subtractive (and hence also multipli-
cative). :

A system of sets is called a o¢-field, if it contains at least
one sel and is completely additive and subtractive (and hence
also completely multiplicative).

Functions in I, i.e. functions for which the domain is a
syslem of sets, are called sef-functions and will be denoted by
Wy V- ) ’

A set-function p with domain § is called additive, if w (4, -+

o A) = w(A) + - +p(A,) when all Al and A, + - -+ +
A €. Itis called complelely additive, it w (A, + A, + -+ ) = p(4,) +
#(4) + -+ when all AeF and A;+ 4, + - - - 5.

If two set-funclions ¢ and » have the domains § and &,
we call » an exfension of w or w a contraction of » and write
v or noy when FC® and p(4) = »(4) for all A€
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4. Content and measure. A set-function p is called a con-
tent, if

(i) its domain F is a field,
(ii). 0= (4) =+ o0 for any Aef,
(iil) @ is additive,
(iv) to every Ae$ there corresponds a set © A, where all 4 &%,
n
such that AC&A  and ,w(An)<+oo for all nt
A set-function g is called a measure, if

(i) its domain ¥ is a o-field,

(1) 0=Zu(4) =<+ oo for any A=,

(iii) w is completely additive,

(iv) to every Aefy there corresponds a set S A, where all 4 €,

n
such that AC®A, and p(4,) <+ oo for all nl
n

Of fundamental importance is the following

Extension Theorem. If p is a content, then there exists a measure
o 2w if, and only if, p is completely additive. If so, there exists
a unique measure » 2w, such that w2» for any measure o2 y.
The domain of » is the smallest o-fleld conlaining the domain
of w.

The measure v is called the narrowest extension of u to a
measure. '

For the complete additivity of a content we have the follow-
ing criterion:

A finile content p with domain § is completely additive if,
and only if, lim w(4,) = 0 for any sequence of sels A4 &%, for

- .

which 4,24,2--. and D4, = 0.

3. Integration with respeet to a measure. By the system
of functions over a o-field ¥ we mean the system of all functions
[ for which [f>a]ed for any a, —co<a<+oco. If § is the
domain of a measure g, the functions of this system are called
w-measurable.

The theory of integration of w-measurable functions with
respect to the measure p» may be developed in the usual way.

1 This is the definition adopted in Jessen [2]. In the'sequel we shall in
the main only consider contents and measures for which E€f and u(E) < + 0.
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For the integral of the function [ over the w-measurable set
AC[f] we shall use the notation

{7 wiap).

If the integral of f over its domain [f] exists and is finite,
the function f is called u-infegrable. The set-function

¢ () =\ r@u )
A
is then defined for all sub-sets AefF of [f] and is called the
indefinite infegral of f.
Two p-integrable funclions f and ¢ with [f] = [g
same indefinite integral if, and only if, p([f#+g]) =

] have the
0.
6. Completely additive set-funetions. Let ¢ denole a boun-

ded set-function with domain 5. We define two other set-func-
tions qJ+ and ¢ with the same domain by placing

g)+ (4) = upper bound ¢(B) and ¢ (4) =lower bound ¢ (B),

where the upper and lower bounds are taken with respect to
all sub-sets Be§ of A. We then have the following

Decomposition Theorem. If F is a field, and ¢ is completely
additive, then q)+ and —¢ are completely additive contents,
and ¢ = ¢ + ¢ . If moreover ¥ is a o-field, then ¢ and —¢
are measures.

The set-functions g)+ and ¢ are called the positive and ne-
gative parts of ¢. .

Moreover we have the following

Extension Theorem. If ¥ is a field, and ¢ is completely addi-
tive, then there exists a unique set-function ¥w2¢, which is
bounded and completely additive and is defined on the smallest
o-field containing §. Moreover ¥ ' 2¢" and v 2¢ 7, ie. '
and —~ are the narrowest extensions of the contents ¢* and
—¢ to measures.

This theorem implies that if % is a field, and © is the smal-
lest o-field containing &, then a bounded, completely additive
set-function defined on &, for which the contraction to § is
non-negative, will ‘itself be non-negative.
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7. Continuons and singular set-functions. Let p denote a
measure in K with domain %, and suppose that Eef.

A bounded, comptetely additive set-function ¢ defined on
is called w-continuous, if ¢ (M) = 0 for any MeF with w (M) = 0.
It is called pe-singular, if there exists a set NeFF with pw(N) = 0,
such that ¢ (4) = 0 for every sub-set Ae% of E—N.

We have the following

Decomposition Theorem. Any bhounded, completely additive
set-function ¢ defined on & admits of a unique representation
9 = ¢, + 9, where ¢, and ¢, are bounded, completely additive
set-functions defined on %, of which ¢, is p-continuous, while
¢, 1S w-singular.

The set-functions ¢, and ¢, are called the p-continuous and
w-sinqular parts of ¢.

A set-funclion ¢ defined on ¥ is the indefinite integral of
a w-integrable function f with [f] = E if, and only if, it is boun-
ded, completely additive, and p-continuous.

8. First limit theorem. Let £ be a set containing at least one
element, and g a measure in E with domain §, such that Eef
and p(E) = 1. Let §,S®,Z --- be an increasing sequence of
o-fields contained in , such that Ee%,. The system & = &g _is

n

a lield. The smallest o-field containing & will be denoted be F'.

The contraction of w to ¥, is a measure, which will be
denoted hy w,. Similarly the contraction of u to ¥ is a measure,
which will be denoted by p'.

Let ¢ be a bounded, completely additive set-function defined
on &, whose contraction ¢, to §, is u, -continuous for any n.
By § 7 this means, that ¢ is the indefinite integral with respect
to w, of a w, -integrable function f , i.e. there exists for every
n a g, -integrable function f , such that

an (x)p (dE) = ¢ (A) for every Ae%,.
A .
This function f, need not be uniquely determined. In the sequel
f, denotes for every n some such function. We shall consider
the functions
f=liminf £, and f= limsup f,.
- n n
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Evidently these functions are w’-measurable. The contraction of
¢ to ¥ will be denoted by ¢’

The first limit theorem now states:

With the above notations we have the relalion

w((f<fD) =0,

and ¢ (C) = 0 for any sub-set CeF of [f< [.

Moreover [ and 7 are w'-integrable, and their indefinile infegrals
with respect to ' are the y'-continuous part ¢, of ¢', i.e. for any
Aely we have

o, =\ r@n@r) = {F@wn.

A A

Finally, the positive and negative parts of the u'-singular part
v, of ¢ satisfy for any Ae$’ the relations

e (A) = ¢ (A [f = +00]) and ¢~ (4) = _‘P(A [f = _DOD‘I

9. The proof will be based on the following lemma:
Placing H = [f<h] and K = [f > k] for arbitrary numbers h
and k we have for any Ce%’ the inequalilies

¢ (HC)<hu(HC) and ¢ (KC) > ku (KC).

In order to prove the first inequality we put

n

H = [inf fn+p<hn]
and ’
I (/o 1<h,] for p=1

np l [fn+lzlzn,..-, fn_!_p_lghn, fn+p<hn] for p>1,

where h;, hy, - -+ denotes a decreasing sequence of numbers con-

verging towards h. Then H &% and H _CJ < h_]. Clearly
np n-tp np n-tp n

 (for a given n) no two of the sets H,, have elements in com-
mon, and H, = X H, . Further H;2H,2--- and H = DH,.
p n
1 The assumption 4 (E) =1 has been introduced for the sake of convenience.

The theorem may easily be extended to the case where E¢ and u(E) is
arbitrary (finite or infinite).
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Now, if Ce® = &F , we shall have CeF, for all n> (somc)

n,; hence ancs%n—i-p for ngnO and all p. We therefore have

v

¢ (H,0) = 9 (3 HyC) = g (H,, 0 = S\ (ear)

A p
H”p(?
=3 (H,0) = by (3 H,,C) = by (H,0).

» np

Since H,C2H,C2--- and HC = DH C, we have w(HC) =
n
lim p(H C) and ¢ (HC) = lim ¢ (H,C). We therefore obtain ¢ (HC)

< hu (HC).
We now define a set-function » on § by placing

#(C) = hu (HC) — ¢ (HC).

Clearly x is bounded and completely additive. Moreover, since
¢ (HC) < hu (HC) for Ce®, the contraction of % to & is non-
negative. Hence, by § 6, the set-function « is itself non-negative,
i.e. the inequality ¢ (HC) < hp (HC) is valid for all Ceg.

The inequality ¢ (KC)>ku (KC) is proved analogously.

10. By means of the lemma we shall now first prove that
y,([_f<f]) =0, and that ¢(C) = 0 for any sub-set Cs% of
[f<fl

Since [f<fl=6&([f< h, f > k]), where the summation is with
respect to all pairs of rational numbers h and k, for which
h <k, it is sufficient to prove that u(C) = 0 and ¢ (C) = 0 for
any sub-set Ce§y’ of [f< A, f> k], when h< L.

This follows from the lemma. For, when Ce$j’ is a sub-set
of [[< h, ]7>Ic], we have CC H and CZ K, and hence

hu(C) 2 9 (€) Z ku (C).
Since h <'k, this shows that 4 (C) = 0, and hence also ¢ (C) = 0.
11. Next we prove that the functions fand f are p/-integrable

and that their indefinite integrals with respect to u’' are the
w’-continuous part ¢, of ¢
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Placing N" = [f= +0o0] and N™ = [f= —oc] we shall first
prove that ¢ (N7) = 0 and ,w(N ) = ~

For every k we have NTC[f= +OO] [f >F]. From the
lemma it follows that when k>0 we have

Making k— 1 oo we obtain #(N) = 0. Analogously it is proved
that w (N )} = 0.
For an arbitrary finite d>0 we now put

nd for xe[nd < [ = f<(n+1)d],—oo<n< o0,
fd(m)=

0 for xe[—oo< f= f<+o0]

and apply for an arbitrary set AeyF the lemma on the set
C, =A[nd=<f= f<(n+1)d] together with H, = [f<(n+1)d]
and K, = [f>nd]. This yields

ndu(C)<g(C)=(+1)du(C).

If we choose A = E, these inequalities show that f, is w'-inte-
grable. For an arbitrary Aed” they show, together with the
velations w(A[f<f]) = 0 and ¢ (A[f<[]) = 0, that

Sfd @) p(dE) = g (AD) =7, (@) w (@) +d
AD AD
where D = E—(N*+ N").
Since in the set D—[f<f] we have f,<f= f<f,+d, it'is
plain that f and ‘_fare w-integrable, and that for an arbitrary

Ael

\ 1@ wtam)
Sfd @ wp @) <] Y ég f, (@) p (dE) + d.
i V@ uan | i

AD
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Since d may be chosen arbitrarily small, the preceding in-
equalities show that

v (D) = f@) (@) = \F@ wam),
AD

AD

The set-function w(4) = ¢ (4D) defined on & is therefore
w'-continuous, and since ¢’ (A4) = ¢ (AD) + ¢ (A (E — D)), where
w(E—D) =0, so lhat y(A) = ¢ (A (E—D)) is p’-singular, it
follows from the decomposition theorem of §7 that w and g
must be the wp'-continuous and p’-singular parts of ¢’. Since
the integrals of f and f over AD are equal to the integrals over
A, the last relations may therefore also be written

vo ) =\ r@ e @B) = \7 @ wian).

A A

12. The set-function yx being the wu’-singular part of ¢, it
is plain that for any Ae®’

9. (4) = 9 (A(E—D)) = g (AN") + ¢ (AN").

Since ANT C [£>0], it follows from the lemma that ¢ (AN") >0
for any Aed’. Similarly it is proved that ¢ (AN7)<0.

For any sub-set Bl of A we therefore have 0 <¢ (BN') <
¢ (ANT) and ¢ (ANT) <¢ (BN ) <0. Since ¢,(B) = ¢ (BN")+
¢ (BN7), this shows Lhat ¢ (AN7) < ¢, (BY<g(AN").

Hence by the definition of §6 we have for any A&’

g (A) = ¢ (ANT) and ¢ (A) = ¢ (AN).
This completes the proof of the theorem.
13. Corollaries of the first limit theorem. If in particular

& = & we have ' = p and ¢’ = ¢, so that the first limit
theorem contains statements about the set-function ¢ itself.
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Even if <%, we may, however, under certain additional
assumptions, deduce less precise results regarding the set-func-
tion ¢.

Let us first assume that fo any sef Ae{ there exists a set
Be%, such that B2A and u(B—A) = 0. We shall then prove
two results:

(i) If ¢ is non-negative, then the indefinite integrals of f and
fwith respect o u are the wu-continuous parl ¢, of o, and the
w-singular part of ¢ satisfies for any A€y the relation ¢ (4) =
g (ALf — + oo,

Proof. We have the decomposition ¢ (4) = ¢ (AD)+ ¢ (AN™).
The set-function ¢ (AN™) is u-singular, since uw(N*) = 0. The
set-function ¢ (AD) is u-continuous. For if AeF and p(4) = 0,
there exists a set Be{, such that B2 A and p(B—A4) = 0, i.e.
w (B) = 0. Hence, since  is non-negative, 0 < ¢ (4D) < ¢ (BD) = 0,
and therefore ¢ (AD) = 0. Finally ¢ (AD) is the indefinite integral
of f and fwith respect to w. For to an arbitrary A& there
exists a Be§y, such that B2A and w(B— A) = 0, and we then
have

V1@ w@n) = f@ )

¢ (AD) = ¢ (BD) = | =¥ ar
\7@wm = (7@ @,
BD AD

(ii) Without restriction on the sign of ¢ the indefinite inlegrals
of f and f with respect to w are the p-confinuous part ¢, of ¢.

"Proof. The statement follows from the decomposition ¢ =
¢+—|-gf, when we apply the previous result on each of the set-
functions ¢' and —¢ .

We mention that not only the relations 93: (4) = ¢ (ANT) and
¢, (1) = ¢ (AN7), but even the relation ¢, (4) = ¢ (4 (NT+ND)),
need not hold generally. This is shown by the following
example:

Let § consist of all sub-sets of a set E of three elements aq,
b, and ¢, and let p ({a}) = 1, p({b}) = p({c}) = 0, and 9 ({a}) = 0,
p({b}) = 1, 9({c}) = —1. Let each of the o-fields &y, Ty, -
consist of all sets containing either both or none of the elements
b and c¢. Then the above condition is satisfied, but ¢ is singular,
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and there exists no set Neg¥ for whlch p(A) = ¢ (AN) for all

A

14. Next, let us assume that fo any set Acy there exists a
set Bedy, such that u (A3 B— AB) = 0. Evidently this condition
is weaker than the preceding one. We shall then prove:

If ¢ is p-continuous, then ¢ is the indefinite inlegral of f or?
with respect to w. -

Proof. Let A€ be arbitrary, and let Bs%} be chosen such
that w (A-- B—AB) = 0. Since u(A—AB) = 0 and u(B—AB) = O
we have

9(4) = 9(B)+9(A—AB) —9(B—AB) = ¢(B),

and, denoting by [ any of the functions f and f,

Nr@een =+ lr@pen =@,
A B

B A—AB B—AB

frbm Which the result follows.

15. Differentiation on a met. Let E be a set containing at
least one element, and w a measure in £ with domain.%}: such
that Ee{ and u(E) = 1.

By a partition of E with respect to u we shall mean a parti-
tion E = 3D, of E into sets Dps%, for which u(D,)> 0. These

P
sets D are called the meshes of the partition. By a nef in
E with respect to.w we shall mean a sequence of partitions

7 = VD}), E = ED?J, -+ with respect to p, each of which is
p p
a sub-partition of the preceding one.

If we denote by % the o-field con51st1ng of all sums of
meshes from the n'™ partition E = ED , it is plain that the

conditions $ SH S ---CF and Ee%1 of §8 are satisfied. More-
over, since ,u,(Dz) >.0 for all meshes, it is plain that for any
bounded, completely additive set-function ¢ defined on $, the
contraction ¢ to 3, is u,-continuous: Thus the first limit theo-
rem is applicable. The u -integrable function f, in this case IS
uniquely determined by
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9 (D) n
f,(x) = —= for xeD).
(D)

The two functions f and )_”are called the lower and upper
derivatives of ¢ with respect fo w on the net.

16. Density of a set with respeet to a o-field. Let x be a

fixed measure in E with domain &, such that Ee§ and p (E) = 1,
_and let $ be a o-field contained in §. Let » denole the con-

traction of u to 9.

For an arbitrary set A the set-function ¢ on § defined
by ¢(B) = p(AB) is bounded, completely additive, and u-con-
tinuous. Its contraction ¢ to § is therefore bounded, completely
additive, and v-continuous, and is therefore the indefinite inte-
gral with respect to » of a y-integrable function /. By the den-
sity of A with respect to © (and the measure w) we mean any
such function f, i.e. any p-integrable function f with [f] = E,
such that

w{(AB) = Sf(w),u(dE) for any Bed.

B

Suppose now, as in § 8, that a sequence of o-fields F, EF,C - -
contained in § is given, such that E:%,, and let § denote the
smallest o-field containing & = & . Let further A&y be arbi-

n

trary. From the first limit theorem then follows:
Denoting by f, the density of A with respect to ¥, and by
[ the density of A with respect to § we have u([im f, = ') = 1.
) n

If to the set A there exists a set Ce%d’, such that uw(A 4+ C
—AC) = 0, we have the more precise result, that g ([lim f.=1D
n

= 1, where f denotes the characteristic function of A.

This implies the following nought-or-one-theorem:

If for every n the density f, of the set A with respect to F,
salisfies the relation w([f, = k,}) = 1 for some number k_, and
there exists a set CeF such that w(A+C—AC) = 0, then the
measure of the set A is either 0 or 1.
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We shall also give an independent proof of this theorem:

From the relation u (AB) = k,u(B) for any Be®, we obtain,
by placing B = E, the equality u(4) = k,. Hence w(4B) =
w(A) w (B) for any Be®. By the extension theorem of §4 the
relation w (AB) = p(4) u(B) is then valid for any Be®". Choos-
ing B such that w(A -B—AB) = 0, we have p(AB) = u(4)
and w(B) = w (A). The relation therefore becomes p(4) = u (4)?,
which shows that w(4A) is either 0 or 1.

17. Second limit theorem. Let E be a set containing at least
one element, and w a measure in E with domain %, such that
EeF and p(E) = 1. Let now $&;2%,=2--- be a decreasing se-
quence of o-fields contained in §, such that Ee%, for every n.
The system § = DF, is a o-field, and EeF".

: N n

The contraction of w to %, is a measure, which will be
denoted by p,. Similarly the contraclion of u to ' is a measure
which will be denoted by u'.

We shall consider a p-integrable function f with [f] = E.

Its indefinite integral

¢ @) = 1) paB)
A
with respect to w is, by §7, a bounded, completely additive
and w-continuous set-function,in F. Since the contraction of ¢
to %n is for every n a w,-continuous set-function, there exists,
by §7, a p,-integrable function f,, such that

an () w(dE) = ¢(4) for any Ae$,.
A

Similarly there exists a wp'-integrable function f’, such that

Sf’(x)y(dE) = ¢(4) for any A&y,
4 .
The functions f, and f° need not be uniquely determined. In
the sequel f, and f° will denote some such functions.
The second limit theorem now states:
With the above notations we have the relafion

,u([linm fi=1FfH=1.
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To prove this it is sufficient to prove that wf<fD=0
and u([f'<f] = 0, where

f=liminff, and f = limsupf,.
n n

For E—[lim f, = FIS[f< 1417 <])

18. The proof will be based on the following lemma:
Placing H = [inff, <h] and K = [sup f, > k] for arbitrary
n n

numbers h and k, we have for any Ce%’ the inequalilies
¢(HC) <hu(HC) and ¢(KC)=ku(KC).

In -order to prove the first inequality it is sufficient to prove,
that if for an arbitrary n Wwe put

H, = [min < hl,

pP=n
we have ¢(H,C) <hp(H, C) for any Ce®’. For H{CH,C ---
and H = ©H,_. Hence u(HC) = lim p(H,C) and ¢ (HC) =
n n
lim ¢ (H,C).
n
To prove the inequality ¢ (H,C) <hu (H,C) we put

H I[fp<h: fp.{.lzha MR fHZh] fOI' p<n
P l[fn<h} for p = n.

Then ans%p and H, C[f,<h]. Moreover H, = 2 H,,. Since

p=n

Ced, for any p, this implies

9 (H,0 = 3¢ (H,,0 3 |
p=<n pEnR

fp(:c) w(dE) < Eh,u(anC) = hu(H C).
" c p=n

np

The inequality ¢ (KC)> kp (KC) is proved analogously.

19. The proof of the theorem now runs as follows:
In order to prove that u ([f<f’]) = 0 it is sufficient {o prove
that w([f<<h, f'>k]) = 0 for any pair of rational numbers h
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and k for which h <k. For [f<f]= &[f<h, f'> k|, where the
summation is with respect to all snch p_alrs
We now apply the inequality ¢ (HC) < hyu (HC) to the set
= [f<h, f/>k]. Since f is p,-measurable for all n, it is
M'—mes;surable hence Cel’. As CS H, we obtain

¢ (C) < hu (O).

On the other hand, since CC[f' > k], we have

¢ (C) =k (C).

Since h <"k, these two inequalities show that u(C) = 0.
The relation ux([f' < f]) = 0 is proved analogously.

20. Corollary of the second limit theorem. If in particular
#' only attaing the values 0 and 1, i.e. if for any set A&’ either
u(4) = 0 or w(4) = 1, we must have
= \r@um) = 1,
B

since otherwise one of the sets

—

lf >S f(x)uw(dE)] or f’<Sf(ac).w(dE)]

E E

would have the measure 1, which is impossible, as
V7 @) = (1w ap.
E E

By the second limit theorem we therefore in this case have

w(ltim £, = { @) @B)) =
E

21. Approximation of a Lebesgue integral by Riemann
sums.- Let E be the real axis —oo<ax <400, § the system
of Lebesgue measurable sets 4 on E with period -1, and w (4)
the measure of a period of A. Let %, denote the system of Le-

besgue measurable sets of period in Then F2F2F.2--+, and
2

D. Kgl. Danske Vidensk. Selskab. Mat.-fys. Medd . XXII, 14 2
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Ee3, for all n. The systems ¥, &, &, - -+ are o-fields. The o-field
F' = DF, consists of all Lebesgue measurable sets having the
n

period — for any n. Hence' for any A% we have either
2

w(A) = 0 or u(4) = 1. The corollary of the second limit theo-
rem is therefore applicable and leads to the following theorem:2

If f(x) is a Lebesque integrable funclion of period 1, then the
sequence of functions T

21
, | i
hi@ = 5 St gl
k=0

converges for almost all x towards the integral

1

Sof(a:) dx.

22, Product sets. Let E,, F,, --- denote a finite or infinite
sequence of sets. By the finite or infinile product

E=(E.FE, )
we shall mean the set of all symbols

x = (x17x2: )

where x eE for every n. The elements x, are called the coor-
dinates of x.

For every n except the last in case of a finite product we
shall write
E=(E,---,E) and E,=(E

n n+1’14‘n+2"”)‘

For an arbitrary element x = (a, a,, -+ -) of I, the correspond-
ing elements

1 By the well-known theorem, that a Lebesgue measurable set with
arbitrarily small periods is either a null-set or the complement of a null-set.

. . oo 1 . .
We mention that in case of the periods —; this theorem is an easy conse-
2 N

quence of the nought-or-one-thecrem of § 16.
2 Jessen [1].
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xp, = (xy, - -,a) and a) = (x4, T, 0 )

of K, and E, are called the projections of x on E, and E.. We

may write ,
= (E,, E}) and x = (x, ).

If A), is a set in E, the set (4], E) in E is called a cylinder
in E with base A in E; it consists of all elements xeE for
which the projection x; on E; belongs to A’ . Similarly, if A]
is a set in K, the set (E), A7) is called a cylinder in E with
base A, in E;.

Suppose now that every E, contains at least one element,
and let §, for every n be a fleld in E, such that E e, . A set
A = (4;, 45, --+) in E, where A 7, for every n, and A, = E,
for all n from a certain stage in case of an infinite product,
will be called a simple set in E wilh respect to the fields Tp- We
notice that in case of an infinite product any simple set 4 is a
cylinder with base in some E.

The smallest fleld containing all simple sets will be denoted by

%: [%v%‘z"“]-

This field & consists of all sels in E which are a sum of a
finite number of simple sets no two of which have elements in
common. Hence, in case of an infinite product, any set in &
is a cylinder with base in some E,.

The smallest o-field containing all simple sets will be

denoted by
@j = (%1’ %2! o )
On placing

%;1: v%lf""%n]: %;: [%n+1’ %n—l—2"“]’
@;1 == (%1’ "'7%,1)’ @;-: = (%n+1’ %\S‘n+2:"')r

it is easily seen that
F = [&, T and O = (F,, T = (@, §).

23. Measure and integration in product sets. Let w, for
every n be a content in E,_ with domain f,, such that E ¢%, and
Pad
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#n (E) = 1. Then it is easily seen that there exists a unique
content w in E = (E;, E,, -++) with domain & = [§,, &, - - ].
such that

p(4) = (A s (4y) -+

for any simple set A = (4, 4,, - --). We notice that the factors
of the product u; (4;)pus(4,) - -+ are 1 from a certain slage in
case of an infinite produect.

This content @ will be denoted by

= LU/I’ fa, * -1
On placing
e R O (R Ty P
it is easily seen that
M = [lu/n’ H’n]'

We shall now prove the following theorem: :

If the contents w, are all complefely addifive, then the content
= [y, po, * ] is also completely additive.

By the criterion of §4 it is sufficient to prove that for any
sequence A; 24,2 -+ of sets A e7F for which u (4, )> (some)
k>0 for all m, there exists an element z* = (x},z},---) of E
~which belongs to all A4,

In the proof we shall use the relations

E, = (En+l’ E;:+'1) and 'u’; - [‘w"*‘l'y‘;:*l].

For an arbitrary set 4 in E and an arbitrary element
x, = (xy, -+ -, ,) ¢E, we shall denote by A (x) =A(xy, -+, x)
o 44 144 3 ’ r
the set of all elements x ek for which * = (xn, xn) belongs

to A.
We choose an arbitrary sequence of numbers

o>y > ko> e >0

Corresponding to the relations E = (E,, E}) and p = [u,, p]]
we begin by considering for every m the set B of all xeE,

for which Y
‘Uzl (Am(xl)) > ](‘1.
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A simple consideration shows that

g (B 4k (1 —p (B L)) 2 (4,) > k,
whence )
k—1Fk,

wy (B,) > Tk,

Since B, 2B,2 -+, and p is completely addilive, this implies
the existence of an element xjeE,, which belongs to all B_.
Thus for this =] we have for all m

py (A, (€)= k.

Corresponding to the relations EY = (E,, E;) and g} = [y, )]
we may now repeat the argument to the sets 4, (x]) 24, (a})=--
in EY. This proves the existence of an element x}eE,, such that

oy (A, (27, x3)) > ky

for all m. Continuing in this manner we arrive at a sequence
xy, xy, -+, where aeE_, such that

(A (1, - 2) > ky

for every n and all m.

It the product .E = (E,, E,,---) is infinite, the element
x* = (a7, x;, -+ +) of E must belong to all A . For every A_ is
a cylinder with base in some E, and the set A (&, ,x))
is not empty. _

If the product E = (F,, E,, - - -) is finite, say E= (E,, - - SE),
the above procedure breaks off for n = p—1, and the last rela-
tion hecomes

oy (A @, - ) =K, .

Since 4, (x}, -, &, )24, (af, o, )2+, and o, 18
completely additive, this implies the existence of an element
x‘l')eEp, which belongs to all A _(x7,--- ., _y). The element

x* = (7, -+, x;) of E then belongs to all 4.
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24. The conditions of the previous theorem are in particular
satisfied if the contents w, are measures. Applying the extension
theorem of §4 we therefore oblain the following theorem:!

If E = (Ey, Ey, - -+), and g is for every n a measure in E with
domain ,, for which E €5, and p, (E,) = 1, then there exisis
a unique measure y in 11 with domain @) = (& Fas - -), such
that

v(4) = oy (A1) gy (4,) - -

for any simple set A = (4, 4,, ).
This measure » will be denoted by

. v = (o, oy, -0
On placing

’

v, = (g, -, p,) and Vi = (4 40 fsgs ")

it is easily seen that
v= (v, 7).

25. Regarding integralion in a product of two sels the usual
theorem on repeated integration is valid. Applying this theorem
to E = (E,, E;) and v = (3, »,) we obtain the following results:

If fis a v-integrable function defined in E, then on placing

fo @) = \ 1. ) v (dEy)
when the integral exists, we have [f]e® and p, (E —[f]) = 0,
and for every set A’ e®

\l f ) v (dE) = S fr @) v, (dE).

(An * En) [fn] An

1 Lomnicki and Ulam [1} have given an incomplete proof of this theorem
(in the proof of lemma 4 the number N is chosen twice). The proof given here
is taken from Jessen (2, article 4]. An analogous theorem on arbitrary measures
in product sets has heen given by Doob 1], but his proof seems incomplete

(it is not scen how the sets 4 on p. 92 are chosen). The proof by Sparre An-

dersen of a more general theoxem is incomplete (the relation sup f(z) (xo) =1
on p.21 needs not be valid).
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Similarly, on placing

fa () = S f(xl, xl)y v, (dE))

E

when the integral exists, we have [f)]e®” and u, (E, —[f']) = 0,
and for every set A ¢®’

V7 v @m) = (1o .

(E,, A7) [7,] 4,

26. Let @™ denote the system of all cylinders in E with a
base in E; belonging to &, i.e. the system of all sets (4., E}),
where 4! e® . Evidently 8" is a o-field, 8 C®¥C .-+, and &
is the smallest o-field containing all &, Finally Ee®Y.

Let f be a »-integrable function defined in E, and let

¢ () = | F@) v ()

A

be its indefinite integral. Let " denote the function f, introduced
in § 25, considered as a function in E which is independent of
@, Then [f]e®" and » (E—[f™]) = 0, and for every set Ae@”

9 () = { /) v (ap).
(4
By the first limit theorem we therefore oblain the following
result:!
If f(x) = f(xy, X, *-+) is a v-integrable funclion defined in
E, then the sequence of integrals

£ @ = { g a7 @By

E

n

converges towards f(x) for all x outside a set Ne®& with v (N) = 0.

21. Let in particular f be the characteristic function of a sel
Se® having the property, that any two elements x = (x;, xy, - )

1 This theorem, and the two which follow, have heen stated without proof
in Jessen and Wintner [1], where some applications are given. Proofs were given
in Jessen [2, article 4].
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and y = (Y, Ya, - - -), for which x, = y, for all n from a certain
stage, either both belong to S or both do not belong to S. Then
[ is for every n actually independent of x),. The integral 7 (x)
is therefore in this case defined for all x and is a constant k-

The nought-or-one-theorem in § 16 therefore gives the follow-
ing result:

If Se® is a setin E, such that any two elements © = (x,, 25, - *)
and g = (Y, Y, - - *), for which x, = y, for ull n from a certain
stage, either both belong to S or both do not belong to S, then
v (S) is either 0 or 1.

28. Let ™ denote the system of all cylinders in E with a base
in E, belonging to &, i.e. the system of all sets (E/, A"), where
Ale®”. Then G 2> 2 - .- is a decreasing sequence of o-fields
contained in ®, and E¢®"™ for all n. The system § = DG is

the system of sets Se®, which for every n is a cylinder with
a base in E., i.e. satisfying the condition of §27. Thus »(S)
is either 0 or 1 for any Sef.

Let f be a v-integrable function defined in E, and let

o @) = 1@ »an)

A

be its indefinite integral. Let /™ denote the fanction fo introduced
in § 25, considered as a function in E which is independent of
x, . Then [f*1e®™ and » (E—[f""]) = 0, and for every set 4¢®""

¢ () = {1 @) » (@B).

ma

By the corollary of the second limit theorem we therefore
obtain the following result:

If f(x) = f(ay, @y, « - ) is a v-inlegrable function defined in E,
then the sequence of integrals

£ @ =\ @ v, @ey

E

n

converges towards
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™
o

{r@v@m

E
for all x outside a set Ne® with v(N) = 0.

29. Applications to the theory of probability. Let E be a
set containing at least one element. A measure w in E with
domain %, for which Eef and p(E) = 1, may also be called
a probability distribution in I£. The measure w(A4) of a set A&y
is then called the probabilily of the event A. A p-measurahle
function f with [f] = E is called a random variable, and the
integral ‘
W(p) = { 7@ ap),

E
when it exists, is called the mean value of f.

Besides E we shall now consider another set E*. We suppose
that to every xeFE is assigned a delinite element x*cFE*. Let &*
be a o¢-field in E* such that E'¢®*. For every set A*:®* we
consider the set A of all elements xeE for which x* belongs
to A*. The system of all sets Ae of this particular type will
be denoted by ®. As is easily proved, & is a o-field, and Ec®.
The contraction of g to & will be denoted by ».

Let now f be a random variable for which the mean value
M () exists. Let .
o) = 1@ (am)

: A
be its indefinite integral, and let g be some »-integrable function
with [¢g] = E, for which

¢ (4) = Sg(:r) w(dE) for any Ae®.
A

The function ¢ evidently depends on x* only, i.e. it has the
same value for any two elements xeF with the same correspond-
ing element x*¢E*. We call g (x) the condilional mean value of
[ by known x*, taken with respect to the o-field ©*, and shall

use the notation g(cc) _ me* (f)_l

1 If for &* we take the system of all sets in E* the conditional mean
value is that defined by Kolmogoroff [1, chap. V]. The modification here adopted is
necessary for the results of §§ 33—34.
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From the definition of g it follows, that
M(g) = M. () = M.

When f is the characteristic function of a set A%, the con-
ditional mean value me* (f) is also called the conditional proba-

bility of A by known x*, taken with respect to &*.

30. Let &, C®;C--- be an arbitrary increasing sequence
of o-fields in E*, such that E*¢®], and let 8" be the smallest
o-field containing €G). Let ®,,®,, - -+, and &, be the correspond-

n

ing o-fields in E. Clearly  C®,C--- C®. Assuming that for
every set A*e®* the corresponding set A in E belongs to § we
shall now prove that & is the smallest ¢-field contammg @@’)

Let for the moment this smallest o¢-field be denoted by ®’,
and let §* be the system of sets A* in E*, for which the cor-
responding set 4 in E belongs to &', From the mere fact that
®" is a o-field, follows easily that $* is a o-field. Moreover,
by our assumplion every @ < H*. Hence & CH*. Thus for every
set A*e®" the corresponding set 4 in E belongs to &', i.e. @',
and hence & = @'

81. Next, let & 2@;2 - - - be an arbitrary decreasing sequence
of ¢-fields in E*, such that E*¢®] for all n. Then &' = DG is

n
also a o-field, and E*e¢®*. Let ®,, ®,, .-+, and &, be the cor-
responding o-fields in E. Clearly &, 2®,2 - -- =@, We shall now
prove that @ = DG, .

n
To see this, we have to prove that any set A¢D®_ cor-
: n

responds to some A*e®". Since Ae®_, it corresponds to a set
Are®r . These sets 4. will differ only by elements =* which do
not correspond to any x. Hence any set A" in E* for which
DA, CA*CS4] will have 4 as its corresponding set. Let us take
n n

A* = lim sup A} = DE4} . For every m we have ALe® for

n np
n=m. Hence A%®] for all m, i.e. A*eG"

32. Let us now consider a finite or infinite sequence of ran-
dom variables g,, g5, - -+, and let E* be the space (R;, R,, - --),
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where each R is the real axis —co<x
let us assign the point

x" = (g, (), 92 (%), - - -)

of E*. Let & denote the system of Borel sets in E*, i.e. the
smallest o-field containing all sets x, <a, . The corresponding o-field
® in E will then be denoted by @ghgz"_,, and the correspond-
ing conditional mean value M .(f) will be called the conditional
mean wvalue of f by known values of gy, g,, -, and will be

denoted by
: LN ()

A

L=+ oo. To every xek,

If f is the characteristic function of a set Ae%, the conditional
mean value M, (f) is also called the condilional probabi-
lity of A by known values of g, g5, - - -

33. Let us now suppose that the sequence gy, g, - - - is infi-
nite. Let @3; for every n denote the system of Borel sets in EY,
which are cylinders with base in (R;,--:,R ). The bases of
these sels!being just all Borel sets in (R, -+, R,), the o-field
in E corresponding to & will be %gl,m g,

Now @1 CH;C -+, and ©* is the smallest ¢-fleld containing
S67; moreover, it is easily seen that for every set A*e®”* the
n

corresponding set A in E belongs to . Hence by §30 we have
By E8y, S v» and F, . is the smallest o-field containing
©%,,. ... 4 - The first limit theorem is therefore applicable and
O, -, 4,

yields the following result:

The conditional mean value 932% ,gn(f) of f by known values
of g1+ +,g, converges for n— oo with the probability 1 towards
the conditional mean value Emgl’gh . (f) of f by known values of
G1> Gas = .

When [ is the characteristic function of a set Aef, the
theorem becomes a theorem on conditional probabilities. If in
particular ‘48%91,51,,-“’ the theorem shows that the conditional
probability of 4 by given values of g, ---, g, converges for
n—» oo with the probability 1 towards 1 in A and 0 in E— Al

! Lévy (1, pp. 128—130].
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34. Still assuming the sequence gy, g5, - -+ to be infinite, let
us now by & denote the system of Borel sets in E*, which are
cylinders with hase in (Rn+1, R .. ---). The bases of these
sets being just all Borel sets in (R R - --), the o-field in
E corresponding to & will be %nggnﬂ’_“.

We have 72052, Let us put @ = DE’. Then @ is

the system of Borel sets A* in E" with the property that two
points x* = (xy, x5, -+ +) and y" = (y;, y», - - -), for which &, = y_
for all n from a certain stage, either both belong to A* or both
do not belong to A"

The class of all sequences obtained from a given sequence
Xy, Xy, -+ by changing only a finite number of elements will
briefly be called an end, and will be denoted by {x, x5, -~ }.
The o-field & in E corresponding to the above o-field & = DG}

n+1° ftn420

will be denoted by g, ...}, and the corresponding conditional
mean value M _,(f) will be called the conditional mean value of [
by known end of the sequence g,, g, - -, and will be denoted by

Mo, g0, -y (F)-

From §31 it follows that %, 2%, , ..2 -, and that

%{gl,g,, ST H%Uw—v PR The second limit theorem is there-

fore applicable and yields the following result:

.. Yy
The conditional mean value "R!Iwugnﬂ,“'(f) of f by known

values of g, . 1, G, .o -+ converges for n— oc with the probability
1 towards the conditional mean value Wyy, o, ..\ (f) of [ by known
end of the sequence g, gs, - = - . ‘

The corollary of the second limit theorem shows that if the
probability of any event As%{g“g“ ...y is either 0 or 1, then the
conditional mean value méﬂ“—mgnﬂw“(f) converges for n— oo
with the probability 1 towards the mean value I (f). In par-
ticular, this will be so when the probability of any event A what-
soever with the property, that two elements « and y for which
g, (x) = g, (y) for all n from a certain stage, either hoth belong
to A or both do not belong to 4, is either 0 or 1.
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