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PREFACE

s the nucleus of the theory of abstract measures and integrals
A is a generalization of the Lebesgue results, this theory must
naturally be of rather new date, and actually the whole
development has taken place in the present century. Funda-
mental works by Rapon and FreécHET" had shown the pos-
sibility of transferring the Lebesgue integral to the abstract
space, and had shown the fact that this new notion thereby
acquired the greater part of the properties of the Lebesgue inte-
gral; although it was, of course, impossible to prove for this new
notion the properties intimately connected with the metrical struc-
ture of the Euclidean space. After these works the theory
developed rapidly, and out of the great number of papers
whose results have been of the greatest importance for the
rounding off of and the high stage reached by the theory to-day,
we shall mention only those of Bocaner, Daxizir, Nikopyw,
and Saks. In 1933 appeared a monography by StanisLaw Saks
about the theory of integrals in the Euclidean space, as well
as in the abstract space?. Later on B. Jessen has given a con-
centraled description of the theory in a series of articles in
“Matematisk Tidsskrift”®,

[t is the purpose of the present paper to investigate some
problems of existence in the abstract space or—to say it more
precisely—to study more closely the set of values of certain
functions of a set whose defining region is a collection of subsels
of the abstract space.

The paper is divided into four parts. Owing to the fact that
the theory of measure and integral in an absiract space is of

1) Ravown [1]; FricreT (1]

2) Saxs (1), [2].
3) Jessen [13-[5].
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relatively recent date, and further because the terminology used,
is not quite fixed, we have considered it natural as well as
necessary to give a rather detailed account of those parts of the
theory underlying the further description. This accourt consti-
tutes the first part of the paper. The special types of classes
of sets, which will be treated in the following, will be in-
troduced, and the special functions of a set, contents and
measures as well as the most important theorems on these,
will he mentioned. In the same section we shall, furthermore,
briefly treat the important theorem on extension, stating how a
content must be constituted in order to be exlensible to a
measure. After this will follow a description of the definite
integral of non-negative functions. The two notions, an absolutely
continuous and a singular function of a set, will then be intro-
duced, and the important theorem on the unique decomposition
of a function of a set in an absolutely continuous and a sin-
gular part (the Lebesgue decomposition) will be proved for a
special case. As a lrelp in the proof we shall make use of the theo-
rem on representation of a function of a set as a difference be-
tween two measures (the Jordan decomposition). Finally we
introduce in the last section of that part the indefinite integral;
and the theorem of Radon-Nikodym on the necessary and sufficient
condition of the possibility of writing a function of a set as an
indefinite integral, is quoted; whereas the proof is givén only
for a special case essential for the following problems.

The first section of the second part contains an account
of already well-known results regarding monotone functions?,
The notions, the variation V,(x,, xy) and the total discontinuity
D, (x(, x;) of a monotone function f(x) in an interval (x;, a,)
are introduced; and the proof is given for the theorem on
decomposition of a monotone function f(x) into two addends
g (x) and h(x), one of which is continuous, whereas the other
has in any interval a variation equal to its total discontinuily
(which again is equal to the total discontinuity of the original
function on the interval considered). In the next section we shall
deal with theorems on functions of a set defined in the Borel
class on the axis of the real numbers. It is well-known that
the Borel class is the smallest totally additive ring, containing

1} A detailed treatment is given in CaraTHiopory [1].
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all half open intervals of the [orm [a=< 2 < b]. It will be discussed
on what conditions the function of an interval can be extended
to a measure defined in the Borel class. Finally we shall con-
clude the second part by giving in its last section some con-
siderations. of the region of value of certain special types of
functions of a set, whose defining region is the Borel class of
the interval (0,1).

In the third part we first prove an auxiliary theorem on con-
vergent series with positive terms. It is proved thal the set of
numbers, whose elements are all finite or enumerable partial
sums of such a series, is a closed set. By application of this
theorem, we can in the next section of the third part prove
the set of numbers, whose elements are the values taken by a
bounded measure, defined in the Borel.class of the interval (0,1),
to be a closed set. In the third section of this part one of the
main results of this paper will be oblained. It is' here shown
that a bounded measure, having_ as defining region a class of
sets consisting of subsets of the abstract space, and having the
space itsell as element, has the same property as the bounded
measure of the Borel class, i. e. that the set of values is a closed
set. As our chief means to prove this we make a representation
from the class of sets in question in the abstract space on the
Borel class of the interval. This representation can to some
extent be regarded as a generalization of a well-known construc-
tion by Prano®. The fact that we work in this paper especially
with the Cantor set is of no consequence except its being the
most fitted for our purpose. Many other methods of representa-
tion might have been used without essentially complicating
the proof.

In the fourth part we shall regard pairs of bounded measures
(¢ (4), ¥ (4))instead of one bounded measure, thus extending the
theorem proved in the preceding part. Suppose both measures to
take on the value 1 on the abstract space E, i.e. ¢ (E) = Ww(E) =1,
and the point (¢ (A4), v (4)) will for every A belong to the unity
square. It is proved that if the measures have the same defining
region §§, then the set of points defined by (¢ (4), w(4)) will be a
closed set. The prool takes place in several stages. The theorem

1) Cf. Hupeir (L) Jussen [6); Lesuscue [1); F. Rigsz [13; pE LA VALLEER-
Poussin {1].
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will first be proved for ¢ and 1 as bounded measures defined in
the Borel class of the interval (0,1). By application of the theo-
rem on decomposition of monotone functions this case can be
retraced to two simple fundamental cases, which will then be
dealt with separately. The first, which—rather unprecisely ex-
pressed—corresponds lo the purely discontinuous elements of
the monotone functions, is dealt with quite simply by appli-
cation of the theorem on the convergent series of positive terms.
The other, corresponding to the continuous elements of the
monotone functions, is somewhat more complicate and requires
a cerlain chain of constructions. After having proved the theorem
for measures defined in the Borel class, we can then in the
last section very easily transfer it to the abstract space by means
of the same method of coupling which we used in the third part.

The paper is concluded with some remarks on the questions
of the axiomatic theory of probabilities and the applications
thereof, which have suggested the problems of this paper to
the author.

Concluding this paper, I wish to express my warmest thanks
to Professor BorGgeE JESSEN, and to Professor RicHARD PETERSEN,
who have both taken interest in my work. I also thank Miss
B. EHLERN-M@LLER, M. A., for the translation into English, and
NieLs ARLEY, Ph. D, for reading the proofs.




PART I. |
On measure and integral in abstract space.

1. Classes of sets.

Given a set F, containing at least one element. We shall to
denote thie elements of E use the letiers x, y, z, ---, and to
denote subsets of E the letters 4, B, C, - --. As subset of F we
shall especially consider the empty set, which in the following
will be denoted by 0. xeA will denote that the point x belongs
to the set A. ACB denotes A to be a (not necessarily proper)
subset of B. Given a sequence of sets, be it finite 4;, 4,5, -+, 4,
or infinite A;, A,, +-+, 4,, -, then A, 4 --- + A4,, respectively,
A +Ay+ - F A, L ---or @A will denote the set of elements

n
helonging to at least one of the sets A and will be called the
sum of the sets A, ---, 4, respectively, 4;, 45, -+, A, - --. When
we especially write IA4, or A, + A4,+ --- + 4,, respectively,
n

Ay +Ay+ -+ + 4,4+ ---, it is to be understood from the
symbol that no two sets A  have a common elements. D4
(or IIAn) or 4, --- A,, respectively, A; A, -+ 4, --- will denote

\ n
the set of elements belonging to all sets A, and will be

termed the product (the common part) of the sets A,,-:-, A,
respectively Ay, Ay, -+, 4,,-+-. The symbol A--B is only
to mean anything when Bc A, and is then to denote the set
of elemenis belonging to A4, but not to B. We shall call
E— A the complement of A.

In the remaining part of this section we shall deal with
classes of sets. A class of sets is a set whose elemenls are
subsets of E. To denote classes of sets we shall use German
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capital letters §, ®, -+ -. A¢F will denote that the set 4 belongs

to the class of sets . A class of sets § is called additive, re-

spectively multiplicative, if A, 1 A,, respectively A, A,, belongs

to ¥, whenever 4; and 4, both belong to %¥. It is called subtractive,

if A;— A, belongs to ¥, whenever 4; and 4, both belong to {. It

is termed totally additive, respectively multiplicative, if ©A,, re-
n

_spectively DA , belongs to §, any A4, belonging to .

After these preliminary remarks it is now possible to set up
the two following important definitions:

A class of sets §§ is called a ring, if it contains at least one sel
and is additive and subtractive.

A class of sets §§ is called a Borel ring, if it contains at least
one sel and is totally additive and subtractive.

It is immediately evident that any Borel ring is a ring.
Suppose 4 = @An, and it will be clear from the relation

n

DA, =A4-&(4—4), (1,1)

which is valid whether the number of the sets is finite or
enumerable, that any ring is multiplicative, and that any Borel
ring is totally multiplicative. Finally we shall mention that the
smallest possible extension of a given sel ¥ into a Borel ring
is obtained as the product of all Borel rings, containing %. For
this product is easily seen to be a Borel ring itself.

2. Functions of a set.

TA fllllCthl’l whose defining region is a class of sets §, and
whose values are real numbers (—oc and + oc incl.), will be
called a function.of a set. To denote the latter we shall in the
following use Greek small letters. A function of a set p defined
in & will be termed additive, if M(A1+ A = M(A1)+ e
+w(A), when A &f forn=1, 2, s kand A+ -0+ 4 ¥,
In analogy # will be called totally "lddlllve if g (4 A) = >u (A ),
when all A €% and ‘A RET-

On functions of a set we now give the two following defini-
tions:

A funclion of a set w. defined in § will be called a conlent, if
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1) § is a ring.
2) 0= pu(A)<oc for every A efF.
3) u is additive.

4) to any A€ there corresponds a sel ©A , where all A, €

and p(A,)<<oo for all n, such that Ac®A .
n

n?

A function of a set w, defined in § is called a measure, if
1) § is a Borel ring.
2) 0L p(4)<oc for every Acef.
3) p is totally additive.
4) to any A€l there corresponds a set ©A_, where all A ¢

and w(4,)<oc for all n, such that AC@AH.
n

For a content u defined in § the following theorems hold true
I) 1 (0) = 0.
I p(A)<u(B), when AcB and Ae§, Be{.
HID) w(B—A4) = u(B)—u(4) when AeF, BeF and u(4) < <.
V) p (A4 Aot FA)Zp(A) +u(A)+ -+ (4
when A eF for i =1,2, --- n.
V) w (IL:{n)>Ep(An) when all A &F and ZH’AHE%.

A measure being a content as well, the same theorems, [V,
hold true if @ is a measure; further we have in that case the
following theorems

VD) u (&1%‘-1”) < Zp(4,) when all Ane%.
VID w (@ An) = limp (4,) when 4,cA,c - - and all 4 €.
VIID (D4, ) = limu(4,) when 412455 -, pu(4)) <00

and all A &.

As the proofs of these theorems I—VI must be considered
evident, we shall in this account confine ourselves to prove
the theorems VII and VIII. From 4,cA4,c .. it follows that

CA, =+ (A A+ W—A) + -+ (A, =4, _ D+ -,

and hence
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N(%An) =p(A)+p(dy—AD+ - +4U/(An_'An_1)+ =
lim (:“’(Al) tu(As—AD+ - tp (An*An—l)> =
limw (A,),

and the proofl of VII is completed.
From A;24,24;> - follows A, —A4,c4;—A;c -+ . Since
p(4) <oc we get

Iz (Al — ?‘41»1) =pu(4) —p (?An>,

and, furthermore, since © (4, —4,) = A;— DA, it follows from
VII that " "

w (A1-—‘%An\’ = lilm w(A—A4) = pu(4) —‘li}llnlw(An).

Taking these equations together, we obtain

W (??An) = liI:n w(A,),

and the proof of VIII is completed.

As conclusion of this section we shall mention an important
theorem of extension, which tells how a content must be con-
stituted in order to be extensible to a measure. We must, however,
first specify the latter notion. Let u be a.content defined in 3,
and p* a measure defined in §*. We then call u* an extension
of w, if every A, belonging to &, also belongs to §*, and
w(A) = p* (4) for any AeF. It is obvious that u must satisfy
the condition of being totally additive, if it shall be possible to
extend w into a measure. This condition is, however, also suf-
ficient, the theorem being as follows:

Let w be a content defined in . This content can be extended to a
measure p* defined in §, when and only when p is lotally ad-
ditive. One of the possible extensions is the most restricted one,
i.e. any other extension is an extension of this.

Without entering into the proofs, we shall indicate how the
most restricted extension, mentioned in the theorem, arises. Let
%* be the smallest Borel ring containing . For every Aeg*
we put

1* (A) = lower bound Tpu(4,), (2,1)
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where the lower'bound is to be taken over all Su(4)), 4, €%
n
for all n and A c©A4_ . This function of a set defined in &*

will then be a measure.

For certain applications it is of interest to nole that a
content u defined in &, where p (4) < oo for any A&, is totally
additive, when and only when it is valid for any sequence
of sets 4,24, .-+, where all 4 eF and D4, =0 that
limp(4,) = 0. n

n

3. The definite integral of non-negative functions.

In the following we shall deal with functions in E, whose
value ‘region consists of real numbers, —oo and 4 co included.
By |f] we shall denote the defining region of f, i. e. the set of
xeE for which f is defined. The set of those xs[ﬂ, for which
f>a will be termed [f>a]. It is now evident what is to be
understood by the symbols [f>a], [f<al, [f<al, [f = a] ete.

Now suppose a Borel ring §§ to be given. The function fis said
to be a function on §, if the sets [f], [f=ad], [f>d], [f<Za],
and [f<<a] belong to § for any a. These conditions can be
considerably reduced. Thus for instance f will be a function
on 3, if the sets [f] and [f>r] belong to § for any rational r.

If f is a function on {, we see that [f= aleF, since
[f=al=[f=dif=a].

We shall further note that simple calculations with fanc-
tions on § will again lead to functions on .

By f, we shall denote the contraction of fto 4, i.e. the
function defined in A, for which f,(x) = f(x) for any xeA.
If fis a function on the Borel ring § and A&f, then also f,
will be a function on &, as we have e.g.

[fiza]l = AlfZzal.

After these preliminary observations we may now go over to
discuss the definite integral of non-negative functions.

Let ¢ be a measure defined in $, and let / be a function
on %, which is non-negative, and takes on a finite or at most
an enumerable number of values. v, denoting the values taken
by f, the set [f= v ] will belong to & for any n. We now
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put i, = v, u([f = v,]), when this product exists, and i, = 0, if

eitherv, = 0 andu ((f= v, ) = cvorv, = ocandu([f=p,]) = 0-

The definile integral of the function f wilh respect to the measure
w, I{f), will then be defined by

I(f) = xi,.

Next let f be a function on §§, which is non-negative. Together
with [ we shall consider all functions g on § where [g] = [f],
which are non-negative, and which take on a finite or at most
enumerable number of values, and for which g<f for every
xe(f]. The function g = 0 is an example of such a function.
We then put

I(f) = upper bound I(g).

Similarly we introduce
I(f) = lower hound I(k),

where h runs. through all functions on ¥ where [h] = [f], which
are non-negative, and which take a finile or at most an enumer-
able number of values, and for which h> [ for every xe[f].
The function h = o¢ is an example of such a fanction. It is
now easily seen that we have

() =1,
For if we choose a number a, 1< a<oc, and put
[ 0 for xelf = 1}
f.lx) =4 a® for zefa"<f<a" '], n=0,+1,+2, -
] 20 for xe[f = oc],

then the function f, (x) is a g-funclion in the above -sense,
and the function af,(x) is an h-function. Thus we have

I(f) =1

and furthermore (cf. theorem II page 13)

I(af) =al(f)=1(f).
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From these inequalities it follows that

1(H=<allf)

giving for a—1
L(H<I(f)

which in connection with the trivial relation
I =T

gives the result wanted.

Thus we have been led to the following definition:

The definile integral of the function f with respect lo the measure
w, I(f), is defined by the common value of I(f) and I(f)

IH =I1() = 1().

If I(f) <oo we shall call the function f w-integrablel. If £ is
such a function, and 4 is a subset of [f], belonging to &, we write
1) = { @) u(dB),

A

and call this quantity the integral over the set 4 of the function f
with respect to the measure u.

For the definite integral introduced above a number of theo-
rems are valid, of which we shall mention the following ones:

I) I(f)>0, and the sign of equality holds true when
and only when g [f> 0] = 0.

ID I(cf) = cI(f) for every ¢>0.

[n If [f] = %’An,
1) = 31(1,,).

IV) If [f] = [g] then I(f+g) = I(f)+ I(g).

V) If [f] =[g] and f<g then I(f)<I(g), and the sign
of equality holds true when and only when we have
either I(f) = oo or I(f) < oo and p([f<g]) = 0.

where all 4 e, we have

1 It a function fis u-integrable, we have u[f= o0]=0; thus the func-
tion is finite, at most with the exception of a zero-set.
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VD If [fl=1[fil="-and f<f,<.-- then
I(limf) = im I(f).
VID If [f] ={f,] = -+ then [(liminf£,) <liminfI (/).

4. Absolutely continuous and singular functions of a set.

Let § be a Borel ring for which E$, and let u be a measure
defined in . We shall then introduce the following definitions:

A bounded totally additive function of a set ¢ defined in
is called p-continuous, if ¢ (M) = 0 for every set Me$, for which
pw(M) = 0. ‘

A bounded lotally additive function of a set ¢ defined in § is
called p-singular, if there exists a set Ne§ with w(N) = 0, such
that ¢ (A) = 0 for every set Ae®, which is a subsel of E—N.

If a function of a set ¢ is both w-continuous and w-singular
it must vanish identically. This is seen as follows. For every
AeE we have

0 (4) = ¢ (AN+ (A — AN)) = ¢ (AN) -+ ¢ (A—AN).

From p(N) = 0 it follows that 4w (AN) = 0 and hence further
that ¢ (AN) = 0. Since A— AN cE—N it next follows that
¢ (A—AN) = 0. We thus have ¢(4) = 0 for every Ac%.

Further it is evident that if ¢ is absolutely continuous (re-
spectively singular), then also cg (¢ constant) will be absolutely
continuous (respectively singular), and if ¢, and g, are absolutely
continuous (respectively singular), then also ¢; + ¢, will be ab-
solutely continuous (respectively singular).

The following important theorem on decomposition is true
for functions of a set:

A bounded tolally additive function of a set ¢ defined in § can
in one, and only one, way be written in the form

lp = ‘f'1<+503’

where ¢, and ¢ are bounded lotally additive functions of sels defined
in §§, and ¢, is p-conlinuous, and ¢, is u-singular.

This theorem being of particular inierest for our later ap-
plications of the theory we shall give the proof of it in the
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special case, which we ‘are to apply later on, namely, where u
is bounded, and ¢ is non-negative.

The fact that the decomposition can at most be carried out
in one way is seen as follows. Suppose

9 = 9.+, = ¢} T o,

r " . ’ ”
where ¢, and ¢} are absolutely continuous, and ¢, and g, are
singular. We then have for every A&F

' no__ [
P~ P = P P T 9

According to previous remarks ¢* is itself absolulely continuous,
being a difference between two absolutely continuous functions
of a set, and analogously it is obvious that ¢* is singular.
Hence ¢* is identically zero, which was to be proved.

We shall now first observe that if the decomposition is pos-
sible, the set N corresponding to . g, will have the following
property: From Aeff, AcE—N, and p(4) = 0 it follows
that ¢ (4) = 0, because p(4) = 0 implies g, (4) = 0, and from
Ac E—N it follows that ¢ (4) = 0. Conversely, if it is possible
to find a set Ne§¥ with p(N) = 0, such that Aef, AcE—N,
and p(A) = 0 implies that ¢ (4) = 0, then decomposition will
be possible. This is seen as follows: For every A3 we have

9 (4) = ¢ (4 —AN) + g (AN)

We can prove the fuuction of a set ¢; (A) = ¢(4—AN) to be
w-continuous. Suppose Aef and p(4) = 0. Hence A— ANCE—N
and p(A—AN) = 0. Thus we get ¢, (4) = 0. Next we can prove
p5 (A) = ¢ (AN) 10 be u-singular with N as corresponding set.
From 4e¢{ and AcE—N follows that AN =0 and hence
95 (4) = 9 (0) = 0. Now the {heorem will have been proved, if
we can show the existence of a set N having the properties
menlioned?,

It will be natural in the course of the proof to form two
auxiliary theorems. ,

1. ¥ being a class of sets, and ¢ being a bounded function of

1) Hence we further see that ¢ (4) = 0 implies that 9, (4)20and p, (4)=0
for every Aef.
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a set defined in &, we introduce the functions of a set ¢ and ¢
by the definitions B

¥ (4) = upper bound ¢ (B)
[ (4) = lower bound ¢ (B),

where B runs through all subsets of 4. We then have the fol-
lowing lemma:

A fotally additive bounded function of a set ¢, whose defining
region % is a Borel ring, may be written in the form

=9ty

where § and — ¢ are measures.

We shall not in this place give the proof of this theorem,
as it does not imply much new, but let it suffice to remark
that with the conditions staled in the theorem it will be true
for every Ae%, since ¢(0) = 0, that

§ ()07 (4).

2. The other lemma is as follows:

Let & be a Borel ring, containing E, and let ¢ be a bounded
fotally additive funclion of a set defined in §. E may then be de-
composed inlo the form

E=E+E,
where E* and E~ both belong to ¥, and such that

g(EY) =0 and 5(E7) =0,

i.e. p(A)=0 for every Ae$y, which is a subset of E" and ¢ (4)<0
for every Ae%, which is a subset of E~.?
As a consequence of the meaning of ¢ (£) we may for every

n(n=1,2,8,---) choose a set A_ 7§, such that

W(A;)<2(E)+§1ﬁ. (4.1)

1) g and ¢ are both bounded.
2) This decomposition is usually not uunique.
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Let A: = E—A,, and we have

(A~ = (B~ = 1
9 (A4)+¢(4) = 9(BE) = 5(E) + ¢ (E) > 5 (E) + ¢ (4] — 5
and hence
— 1
g (A7) > 50(1:)~;;.
—¢ being a measure, we next have
(40 = 9 (E)—¢ (4)),
which together with (4,1) gives
1
+
In analogy we get
—_ - 1
¢(An)<§
Next we put
+ Proo+ — —
Bl = 7[1An+pand B, =E—B! = %‘AHP.
p=
Thus we have for any p
1
—9 (B = —Z(An++p)<27+—p
since
+ +
Bn cAn+p ?
i.e.
- ?Z(B:F =
By means of theorem VI, page 9, it is derived that .
o e @, 1 1 ‘
W(Bn)é Z(P(A +p)< Z n+p:—;1' (4’2)
p=1 p=12 2

If we now introduce

E" = @B} and E- = E—E*" = DB
n n
we get ‘
E=E"+FE,

D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXI, 9. 2
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a decomposition of E having the properties mentioned in the
theorem. For we have, again by means of theorem VI page 9,

—9ED < X —9B) =0
and consequently '
P (E) = 0.

Since £ < B, and applying (4,2) we see that

G(ED) < 3B < -21—

is true for any n, and consequenltly

p(E) =0.
After these preparations we can easily establish the proof
of our. main theorem. For every n (n =1,2,3, --.)
Y, = ¢ —nu

is a bounded totally additive function of a set defined in %.
According to our second lemma E may be written in the form

E=E +E,
where E: and. E_ both belong to $§, and such that
¥, (Ex) =, (En) = 0.

For every Ae3, where ACE:, we now have

U, () =20 e ¢(4) = nu(4), (4,3)
and for every Ae®, where ACE ,

P, (A) <0 ie ¢(4) < np(d). 4.4
Applying (4,3) on E' we get, due to EfCE,

| 9(E) = ¢ (ED) = np(ED).

Since ¢ (E) < 0o we get
limp (ED) =0. (4,5)
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If now I _-

‘ N=9®DE', E-N=E—DE =8BE_, (4,6)

n n n.o. .
NCE;L holds true for any r, from which it fol_lowé that
0= u) < p(ED),
which relation ‘together with (4,5) gives
w(N) = 0. N (4.7)

Now let At be a set having the properties. AcE—N
(i. e. according to (4,6) Ac @AE:) and w (4) = 0. Consequently
n

we can show thal ¢ (4) = 0, because due to theorem VI, page 9,
v () = g (BAE;) = Sy (E),
n n

and since AE, c E,_ (4,4) gives
p(4) < D' np(AE));

since ;#(4) = 0 we know, however, that w(AE ) = 0 for any n, i.e.

p(4) =0,
q. e. d.

5. Indefinite integral.

& being a Borel ring, containing E, p being a measure de-
fined in § and f being a function g-integrable on § with [f] = E,
we now introduce the indefinite integral by the following de-
finition:

The function of a set

(4) = I[(F) = § (@) u(dE) *

4

is called the indefinite izltegral of the function f with respect to the
measure w.

In the special case f > 0, we get for any Ae§

0 =<9 = g(E),
2*
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since ¢ (E) = I(f) <oo, and by means of the theorems I and
III, page 13. The theorem III, page 13, further shows that ¢
is totally additive. From u (4) = 0 it follows that x [f, > 0] = 0,
and hence, further, that ¢ (4) = 0. Consequently we see that the
function ¢ is p-continuous.

On the exact connection between functions of a set and
indefinite integrals we have the following theorem:

A fuanction of a set ¢, whose defining region ¥ is a Borel ring,
is the indefinife inlegral with respect to the measure p of a fanclion
f with [f] = E, which is u-integrable on § when and only when
it is boanded, totally additive and w-continuous.

We have seen above that f> 0 implies that ¢ is bounded,
totally additive and p-continuous. As we shall in the following
chiefly consider non-negative functions of a set, we shall in this
account confine ourselves to mention how the function f may
be defined in the following special case:

For a fanction of a set ¢, which is non-negative, bounded,
totally additive and wp-continuous, and whose defining region § is
a Borel ring, and a bounded measure u, may be defined a function
fon &, which is non-negative and p-integrable, and where [f] = E,
such that for every A%

g () = { f(@) p (dE).

A

For any a,0 < a<{20, we can determine a decomposition of E
E=E +E_,

where E:-and E_ both belong to {, such that the function
¥, = ¢—au has the properties ,

Y (ED) =0 and 9, (E)) =0

9 (4) = au(4) for AeF and AcE] 1
(5.1)
¢ (4) < ap(4) for AeF and AcE, [

(cf. the lemma page 16), and this decomposition may be carried
out in such a way that the following conditions are also
satisfied:
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D Ef=E
2) E:DE; for b>a

3) ET = DE; for a = upper bound {a,, a,,- -}
n n

4) DET = 0.

(As to proof, see JEsseEn [3].)

For every xeE we shall now find the values of a for which
a« belongs to E: These values will constitute a bounded closed
interval. The fact that it is an interval is a consequence of 2),
the fact that it is bounded is a consequence of 4), and the
fact that it is closed is a consequence of 1) and 3). The function
f(x) is now introduced by the following definition

f(x) = mjx {a; xEE:},

or expressed in another way
+ .
xeE for 0 < a < f(x).

The function f for which [f] = E is finite and non-negative; we
further see that [f > a] = E:, from which follows that fis a
function defined in §. Thus, for any Ae§ I(f,) exists. Finally
we shall show that

For this,purpose it will suffice to show that the inequalities
I(g) = 9(4) = 1) (5,2)

hold true, when g and h are functions on §§, where [g] = [h] = 4,
which takes on only a finite or enumerable number of values, and
for which g < f, and h > f, for any xeA4.

¢ being totally additive, it will suffice to show the inequal-
ities (5,2) in the case of the functions g and h being con-
stant. Thus let g (x) = ¢, and h(x) = ¢, for every xed. From
g (x) = ¢; < f, for every xed it follows that Ac[f > ¢] = EZ,
and hence further by means of (5,1) that

p(4) = o p(4) = I(g).
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From h(x) = ¢, > f, for every xeA it follows that AC [f<¢] = E(_
for any ¢<C¢,, and hence by means of (5,1) thal

¢ (4) < cu(4).
This inequality being valid for any ¢> cywe get
9(A) < cop(d) = I(h)

and the proof is completed.



PART II.
On monotone functions. Functions of a set
on Borel classes.
6. A theorem on decomposition.

The purpose of this section is to give an account of a theorem
valid for monotone funections, a theorem which we shall apply
in the following®. We shall confine ourselves to nondecreas-
ing functions, but this is of no significance, as analogous
theorems are immediately seen to he valid also for non-increas-
ing functions. The non-decreasing functions are fixed by the
following definition:

A function f(x) defined in a<<ax<Cb is called non-decreasing,
if flxs) = flxy) for x> 4.

Together. with the function f(x) we shall consider two other
functions, f(x) and f(x), determined by the following definitions:

- {(x) = upper bound f(¥) (6,1)
- a<i<wm .
) ) . f(:L)= lower bound f(¥). ' - (6,2)
_ . Cm<E<h :

Hence the following inequalitiés are immediately seen to be true

[@ = @) = f@) 63)
flxy) = _f(xz) for x; <, ‘ (6,4)
flx) < flay) for x; < &,. (6,5)

1) Cf. CaraTHEODORY [1].°
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From (6,3), (6,4) and (6,5) the two functions f(x) and f(x) are
seen to be non-decreasing. - '

We shall now show that f(x) has in every point x a limit
value from the left, f(x—0), as well as a limit value from the
right, f(x+0), and that

fle—0) = f() (6,6)
fx+0) = f(x). (6,7)

In order to prove the first ol these relations we must, consequently,
prove that we can to an arbitrary e> 0 determine a d> 0 such
that .
fx)—e<f(E)<[(x)+e (6,8)
for - B

x—0<<&<x.

From (6,4) it is obvious that the right side of (6,8) will be

true for every &< x. From (6,1) it follows that we can find
a point &, a<<§& <z, such that

[(E) > flw) —e.

If §d = ax—§,, the left hand side of (6,8) will, because of the
monotony of f(x), be true for every & of the interval x—d << < .
In exactly the same way (6,7) is proved.

For every x we shall introduce the quantity S(x) by the
definition :

S(x) = [(x+0)—[(x—0) = f(x)— [(x), (6,9)

and call it the salfus of the function in the point x.

f(x) is continuous in the point = (cf. (6,3)) if S(x) =0
for this value of x, whereas the function is discontinuous in
the point a if S(x)>0.

In the remaining part of this section we shall assume the
function. f(x) to he bounded in the interval a<<a < b, i.e.

fla+0)>—oc and f(b—0)< oo, (6,10)

We shall denote by A, the set of the points x, a<<x<C ),

in which S(a:)>,17 (n positive, integer). Of this set of points is
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true that it is either empty or consists of a finite number of

points. Thus let x;, =, :--, x, be p points of the interval

. . 1
a<wx;<xy< - <x,<b, in which S(Jﬁ)>;. We then have

fO—0)—fla+0) = (f(b—0)—f(x,+0))+ S (f G+ 0) — flx,— 0))
i=1
+{f@—0O—f@t+0)>p (6,11)

and hence

p<11{f(b—0)—f(a+0)}.

This being so, it is easily seen that the set, A, of points of dis-
continuity of the function f(x) of the interval a <x <b is at most
enumerable, because

A :A1+A2~i—"" +4,+

For any choice of the two points x; and a, of the interval
a<x<b,x;<x,, we introduce the quantity V(x;, x;) by the
definition

Vf(l'ia xy) = f(xs) — f(xy), (6,12)

and call it the variation of f(x) in the interval considered?.
Furthermore we introduce the quantity D (z,, x,) by lhe de-
finition

Dp(xy, 25) = (f(xy+0) — f(ax,)) +ZS(§i)+ (f(xy) — f(x—0)), (6,13)

where the summation is extended over the (at most enumerably
many) points of discontinuity of f(x) contained in the interval
x; <a<x,. This latter quantity, D,(x; x;), will be called the
total discontinuity of f(x) in the 1nte1val considered 2,

By a transcription analogous to (6,11) it is clear that the
following inequality holds true for every p concerned

SSE) < flwy—0)— w0,

i=1

1) 1t is immediately evident that V (xy, 22) = 0.
2) For any choice of =, and =, (r1<.),2) is valld that D (:r1 a4) 2 0.
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and hence

2, 8(E) < flay—0) —flay +0). (6,14)
Inserting (6,14) in (6,13) we obtain

Df(xl W) = (f(xl +0)—f () + (f(lz - 0)—}0(331“*“0)) + (/(mz)“f(xz 40))
= flay) —flxy) = V/'(xl’ X) . (6,15)

Thus we see that the lotal discoutinuity of an interval never
exceeds the variation of the fanction.
From the definition (6,13) it is immediately obvious that

Df(xl’ x3) = D, (g, x3) +Df(l'2, xy) (6,16)

for x; <ax, <axy.

After these preliminary remarks we can go over to the proof
of the important theorem of decomposition:

Let f(x) be a bounded non-decreasing function defined in
a<<x<b. This function may then be wrilten as

f(x) = g(x)+h(x), (6,17)

where both g (x) and h(x) are non-decreasing functions, and where,
furthermore, g (x) is continuous, whereas for h{x)

v, (xy, 25) = D, (21, za) = Df(xi’ x,) (6,18)

for ang choice of a, and x,, a <<x; <<axy<bh.
We choose a fixed point x; of the interval a <z <b and
introduce a function A (x) by the definition

[ — D (x, ) for a<x<x,

hix) =10 for x = a, (6,19)

lDf(xo,oc) for xy < ax < b.

We shall now prove the function thus defined to have the
properties expressed in the relations (6,18).

By means of (6,16) it is immediately seen that for two arbitrary
numbers x; and a,, x; <x,, we have
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Vh (-731, xz) = h (mz)— h (331) - Df(xp 332)’ (6,20)

from which it particularly follows that I (x) is a non-decreasing
function. (6,20) in connection with (6,13) gives

h(xy) —h(xy) = [ +0)—f(ay) (6,21)
h(xg) —h(xy) < flas) — [, —0), (6,22)

and (6,20) in connection with (6,15)
R — I (@) < fla)—f (@) (6,23)

(6,21) being true for every x; < x,, we can deduce the following
inequality

h(x,+0)—h(x) = fla+0)— /(@)Y (6,24)

Similarly we deduce from (6,23) that
he, +0)—h(x) = flay+0)—[ (). (6,25)
From (6,24) and (6,25) it follows for every x, a <a < b, that
hA(x+0)—h(x) = @+ 0)—f (). (6,26)

After the analogy of (6,26) we can deduce

B@) k(@ 0) = [@)—[@—0), (6.27)

which in connection with (6,26) gives
h{x+0)—h(x—0) = f(x+0)—f(x—0). (6,28)

By application of (6,20), (6,26), (6,27) and (6,28) the definition
(6,13) gives :

D, (), @) = Df(xh xs) = Vi, (@, x0).

Thus we see that the function i (x) has the properties expressed
in the relations (6,18).
The proof will be complete, if we can prove the function

1) The existence of h(x;+ 0)is a consequence of h(x) being a non-decreasing
function.
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g(x) = f(@)—h(x) (8,29)
to be non-decreasing and continuous. From (6,29) we obtain
g (@) —g (@) = () — (@)~ (h () —h(x)),
which for xy < xy by application of (6,23) gives

g (o) > g ().
Thus we get

glx+0)—g(x—0) = (f(a:—l— O)—f(x—0)>—(h(cc—{—())~h(x—0)),
which by application of (6,28) gives .
glx+0) = g(x—0).

Since we, furthermore, (cf. (6,3), (6,6) and (6,7)) have the in-
equalities .
gle—0) < g(@) < gx+0)

the proof of the continuity of g (x) is completed.
We shall conclude this section with some remarks on the
connection between the various decompositions of f(x). In case

f(x) = g(x)+ h‘(x)

is a decomposition with the properties mentioned in the theorem,
it will be true (for every c) that

f(x) = (g (@) +c)+ (h(x) —c)

will also be so, and thus all decompositions will be comprised.
Let for instance

[(x) = g, (@) + 1y ()

be a decomposition having the properties mentioned in the
theorem. Then we can prove that h; (x) = h(x) —c¢ (and hence

g (x) = g(@+0o).
From (6,18) it follows that

Vh (xl ’ x?) = V]h(xl’ xz) (: D/- (Jfl, 3«”2))

for a; < x, which, if we substitute x for x,, gives
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h(x)—h(xy) = b (x) —h (x)) for x> x,
or, if we substitute x for x; and x; for x,
h(xy)—h(x) = hy(x)) —hy(x) for x < x,.
Thus we have for every «, a<<a < b,
h(@) = By @) — (b (@) —h () = hy (@) —c,

which was to be proved.

7. Functions of a set having the Borel class as defining region.

The set of points lying on the axis of the real numbers
constitutes a set of points, which in this section will be called E.
When we in this section speak of a set, it will be understood
to be a subset of E. By an interval I will in the following be
understood a set of points having the form [a < x < b], where
a and b are finite. All the intervals form a class of sets . The
smallest extension of § to a ring we shall denote by &. It is
clear that this ring consists of the empty set together with all
finite sums of intervals. The smallest extension of & to a Borel
ring will be called B. This class of sets B we shall call the
Borel class on the axis of the real numbers, and every set AeB
will be called a Borel set.

A function of a set ¢ defined in §F will be called a funec-
tion of an inferval. A function of an interval ¢ will be called

continwous from the inside, if for every inlerval [ = [u < x < )]
and for every sequence of intervals I, [,, ---, I, -, where
Li=laZax<b ], by<by<--- <b and limb, = b, we have
that ¢ (1) = lim ¢ (I). n

n

On the connection between functions of an interval aad
measures the following theorem can be proved:

A finite, additive fanction of an interval ¢ can then and only
then be extended fo a measure ¢* defined in B, when it is non-
negative and continuous from the inside.

We shall first prove the conditions to be necessary. From ¢* > 0
for every Ae® it follows that ¢ > 0 for every A&, i.e. ¢ is non-
negative. From a <b; <b,<C--- </ b and limb,_ = b it follows that

n
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Db, <x<b]=0, (7,1)

and hence further (see theorem VIII, page 9)

limg([b, < x<bd])=0. (7.2)
Since !
9 (la < x<Dd]) = g_}([a S a<b])+g(lb, < x<b])

for every n, (7,2) implies that
limg (o S w<b]) = g (la << b),

i.e. ¢ 1s continuous from the inside.

Next we shall prove the conditions to be sufficieni. The ex-
tension can be performed in such a manner that we first extend
¢ to a content y defined in &, and then prove that this content
can be extended to a measure (defined in 9).

For every set Ae® we put

w(4) = 0 when 4 =0

n
p(d) = D) when A = L+ L+ -+ 1.9
=1
The function of a set v thus derived, is at once seen to be an
extension of ¢ to a content. If ¥ is totally additive, this content .
can be extended to a measure defined in B (cf. the theorem on
extension page 10).

So our problem is to show that if A4, A, ---, A ,---
is a sequence of sets, all belonging to &, and for which
4,04,0 - 24,0+ and yw(4,) = k>0 for all n, then
the set DA is empty (see page 11).

Since A ¢® it can be written in the form

A, = D, Lax<b,],

e}

P

where 3™ is to denote that the number of the addends is finite.
¢ being continuous from the inside, we can for every n deter-
mine a set B, CA

DIt éan easily be proved that this definition determines the function
¥ (4) uniquely.
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B, = Z*[anp Lx< cnp] , (anp <€y < bnp)
> ‘

such that

k '
Y(4,—B) < pex (7,3)
If we put
anBlBQ"'Bn,
we have C,c B and C;>(C,>---. Further we get

An—ch(A1_B1)+ T +(AH_BH),

and hence, by means of (7,3),

+ - +£<k.

n

pd,—C) =

RS

Since yw(4,) > k, we see that (, is non-empty for every value
of n. In every €, we may thus choose a point x,_, and by that
get the sequence @y, @y, - -+, x,, - - +. Since €, C 4, C A4, for every
n, we see that this sequence is bounded. Thus it is possible
to choose a convergent subsequence from it. Its limit point is
called x. Due to ancn:)cn—!-lD -- - all the points x,_, XTpgett
will belong to B,, which will further imply that

n

“Z*[“np Srs Cnp]CA )
p

Thus we have
xe@An,
n

i.e. the set DA is non-empty, which was to be proved.

n

If the function of an interval in question for every interval
[a < x<b] has the value b—a, we shall call the measure,
obtained by the extension and having B as defining region,
the Borel measure on the axis of the real numbers, and therefore
B will also be called the class of Borel measurable sets on the
axis of the real numbers.

If f(x) is a finite function defined in E, it is possible from
this to form a finite additive function of an interval by the
following definition

g ((a = x<d]) = f(b) —f(a). (7,4)
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Conversely it is possible to find to a finite, additive function
of an interval ¢ a function f(x) defined in E, so that (7,4)
1s salisfied for every interval, and it is clear that the dif-
ference between two such possible fuunctions f is constant.

The function of an interval ¢ is then and only then non-
negative, when it is valid for any pair of numbers (a, ) where
a< b that f(a) < f(b), i.e. when f(x) is non-decreasing. We see
furthermore that ¢ is then and only then continuous from the
inside, when f(x) is continuous from the left for every x,

Applying the theorem page 29 we now have:

To a finite function f(x) defined in E we have then and only
then « corresponding measure ¢ defined in B, so that

p(la < x<bl) = f(b)—f(a)

for every inferval [a =< x << b], when f(x) is non-decreasing and
continuous from the left. This measnure ¢ will be uniquely defined.
If F(x) is a function in B and Ae¥B, we denote the inte-

gral of F(x) over A with respect to the measure ¢ by

(F(z)df()

A

or, if espedially 4 = [a < x << b],

b

SF(x)df(:c).

a

This integral is called the Lebesgue-Stieltjes-integral with respect
to f(x).

8. Functions of a set having ¥, as defining region.

The set of points x, belonging to the interval 0 < x <1,
forms a set of points, which we in this section shall denote by
E,, and speaking in this section of a set, we shall always mean
a subset of E,. The set of intervals [a S x<b], 0L a<<b £ 1,
forms a class of sets §%;. The smallest extension of §; to a ring
we shall denote by &, and the smallest extension of {; to a
Borel ring we shall call ;. This class of sets B, we shall call
the Borel class of the inlerval (0,1). It is evident that the theorems
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formulated in the preceding section will still hold true, even
if we confine ourselves to the interval (0,1).

Now suppose given a finite function f(z) defined in 0 < <1,
which is non-decreasing and continuous from the left in every
point. We may then (cf. the theorem page 32) uniquely deter-
mine a measure ¢* defined in B,, such that

p* ([a <2< b)) = f(b) —f(a) (8,1)

for every choice of a and b, 0 < a<<d < 1.,
In the following we shall put f(0) = 0, which does not
limit the generalily of our investigation. '
According to the theorem on decomposition (page 26) f(x)
may be written in the form

f(x) = g (@) +h(2), (8,2)

where g (x) and h(x) are non-decreasing functions, g (x) being
furthermore continuous, whereas for h (x)

V,(a, b) = D, (a, b) = D,(a, b) (8,3)

for every choice of @ and b, 0 < a<<b <X 1. This decomposition
can, furthermore, be performed in such a way that g(0) = 0
(and hence h(0) = 0), and is in that case uniquely defined.
Since f(x) was given to be continuous from the left and g ()
is continuous, it follows that i (x) is continuons from the left
in any point.

We can now uniquely determine two measures ¢ and ¢
defined in 8B,, such that

of (l[a S x<b]) = g(b)—g(a) (8.4)
and

¢35 ([a Sx<b])=h()—h(a) (8,5)

for every choice of a and b.
Regarding the connection between ¢*, ¢¥ and ¢ we can
prove the relation
p* = gf (4)+ 9§ (4) (8.6
for every set Ae®;.

0. Kgl. Danske Videnshk. Selskab, Mat.-fys. Medd, XX1,9. 3
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We only remark that the function of a set

91 (4) + 95 (4)

is a measure defined in B;, and that, if A is an interval
la £ &< b], it will take on the value

g7 (la = 2 <b])+g3(la < x<b]) = g(B)—g () + h(B)—h(a),
which by application of (8,2) can be changed to
97 (la = x <b]) +9f(la < x<b]) = f(b) —f(a).

If we compare this result with (8,1), we shall see that the two

measures ¢* (4) and ¢ (4) + ¢¥(4) coincide in every interval.

Consequently they are both an extension of the same function

of an interval, and will naturally coincide for the whole of %B,.
We shall conclude this section with an investigation of what

values the two functions of a set ¢; and ¢ can take on in B;.
From 0c Ac E, for every A&, it follows that

0 < ¢F(4) = ¢f(E) =g (1),

and since g (x) is continuous, it will take on any value gy, between
0 and g¢(1) for at least one value of =, x = x,. If we choose
A=[0<x<x,] we get 97 (A) = y,. Thus we see that the values
of @i constitute a closed interval.

" The points of discontinuity of the function h (x) (or, what
is the same, of the function f(x)) form an at most enumerable
set of points N = {&} situated in the interval 0 < x< 1. By
the saltus at a point x we understood (cf. (6,9)) the quantity

S(x) = h(x+0)—h(x—0).
For the special case x = 0 we write

S(x) = h(x+0)—h(x).

1) The fact that the eventual points of discontinuity are situated in this
half-open interval is a consequence of f(x) being continuous from the left.
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'We shall now prove that we have for every set AeB,

95(d) = SS(E), (8,7)
fea
where the summation is extended over the—at most enumerably
many—points of discontinuity for & (x), belonging to the set 4.
We first note that the function of a set

>/ 8@ (8.8)

g4

1s a measure defined in B,. If, especially, 4 is an interval
[a < x< b], we have

EieA
Applying (6,12), (6,13), and (8,3) we get

h(b)—h(a) = h(a+0)—h(a) —l—ZS(E,-)—I—h(b‘)——h(b—O),

where the summation is extended over the points of discontinnity
situated in the interval a << x < b. Since h (x) is continuous from
the left (h(a) = h(a—0) and h(d) = h(b—0)), this may be

written
h(b)—h(a) = D8,
£54

and the proof of (8,9) is completed.
If we compare (8,9) with (8,5), we see that the two measures
93 (4) and >'S(§) agree in every interval. Consequently they
fea
are both an extension of the same function of an interval, and
thus they must coincide in the whole of B,, and we have
proved (8,7). The formula (8,7) may also be written

g3 (4) =D'S(E). (8,10)

§€AN
If the set A consists of only one point a, we get the special case

95 (4) = S(a). (8,11)
3.
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Thus we have realized what values the function ¢; can take on.
If the number of points of discontinuity of the function f(x)
is finite: §,, &, ', §,, respectively enumerable & ,5,---, &,
the values of g5 will be all numbers of the form

e S(E) +eaSE)+ - +e, S, (8,12)
respectively

315(51)““328(52)‘{‘“‘+€,IS(§H)+"', (8,13)

where the e's independently of each other take on the values 0 or 1.




PART IIL

A theorem on bounded measures in
abstract space.
9. A theorem on series of positive terms.

Given a convergent series of positive terms

a=Sa =aqtat-tafo (a,>0.  (9,1)
n=1

Together with this series we shall consider all series having
the form

o
Dlea, = eaytegay e a+ oo, (9,2)

n=1

where the e's independently of each other take on the values
0 or 1. Each of these series (9,2) is convergent, and its sum-
satisfies the relation

o0

0<Zea < a. (9,3)

add n n
n=1

We shall new prove that the set of numbers, whose elements
are the sums of the series (9,2), is closed. Let

8§y = a11+a12+...+a]n+...
SZ:a21+a22+---+02n+...

............................. (9,4)
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be a sequence of series of the form (9,2), i.e. a,,, has for every m
one of the values 0 or @, and let furthermore the sequence

$1,89, """, S

m’

be convergent to the limit value s. We shall now prove that
among the series (9,2) at least one has the sum s. In the se-
quence of numbers

all’ a21’ RN anll’.“

at least one of the numbers 0 or a; will appear an infinite
number of times. Let af denote one of these two numbers
satisfying this condition. In the sequence of pairs of numbers

(@11, @12)s (Aoq5 @29), < -+, (@4, U)o

there will, consequently, be an infinite number having af in the
first place. Let a5 be a number which in the corresponding
subsequence appears an ‘infinite number of times in the second
place. In the sequence of set of numbers

(all’ A0, 013), (a21’ Qg a23)’ T (anil’ anzZ’ a1n3)’ e

there will thus be an infinite number having (a%, af) in the
two first places. Let ay be a number which in the corresponding
subsequence appears an infinite number of times in the third
‘place. By continuing this process the number a; is defined for
every n. The series '

af +ai - Fait e (9,5)

is, being a subseries of (9,1), convergent, and we shall now
prove that it has the sum s. Suppose we for the present term
the sum of it s*. The convergence of (9,1) implies that to a
given ¢> 0 we may determine N, such that

oo

P .

i an<:§.
n=N+1 -

Moreover we may, among the series (9,1), determine one having
aj, ay,---, ay in the N first places
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s =aitayt o taita v e, (96)

£

and such that s—s; <§.

Accordingly we have
JS:%:_SI = |(s‘5‘f(a{“+ N +a:{§))— (Si*(af—l— ... —}—af,))—k (Si*S)'
= |s*—(af+ -+ a)|+]s—(af + - +a) | +]s—s|

g &, €
Hence we obtain

st =3
and the proof is completed.

10. Bounded measures having B, as defining region.

In II,3 we have already mentioned the class of sets B, the
so-called Borel class, defined in the interval (0,1). The interval
[0 <ax<1] was termed E,;. Now let ¢ be a bounded measure
defined in B, i. e. ¢(E;)<oc., On such a measure we shall
in this section prove the following theorem:

The set of numbers whose elements are the values of o bounded
measure ¢ defined in B, is closed.

Together wilth the measure ¢ we shall consider the function
f(x) defined in 0 < x =< 1 determined hy

9 (10 = z<al) = f(a)

f(0) =0. ‘ (10,1)

The non-decreasing function f(x) may then be decomposed
to the form

[(x) = g(x)+ h(x)

(cf. (8,2)), and this decomposition givesr ise to a decomposition
of ¢ to the form _
g (4) = ¢, (4) + ¢, (4) (10,2)

for every As®B; (cf.(8,6)). The set of points of discontinuily of
the function f(x) is at most an enumerable sel N = {Sn} We
have previously shown that the set of numbers M;, whose
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elements are the values of ¢,(4), is closed. We have further-
more (cf. (8,10)) proved that
gy (4) = D'S(&), (10,3)

EieAN

for every Ae®B;. The set of numbers M,, whose elements are
the values of ¢, (4), has (cf. (8,12) and (8,13)) either the form

e S (&) +e S(E)+ - +enS(§n) (10,4)
or :

913(51)4“328(52)4""'+enS(§,l)+"'- (10,5)

If the set of numbers is of the form (10,4), it is obvious that
it is closed, as' it is finite. If it is of the form (10,5), we may
from the result obtained in the previous section conclude that
it is closed.

The set of numbers M, whose elements are the values of
¢ (4), is according to (10,2) produced by adding elements of
M, to elements of M;. If we can prove that the sum of an
arbitrary element « of M, and an arbitrary element g8 of M,
gives an element of M, our proof will be completed. Let, there-
fore, ¢, (A) = « and ¢, (B) = 8, AeB,, Be¥B,. Our task is
now to show the existence of a set A*e®,, such that

p(A%) =« + 8. (10,6)
If we put »
A* = (A—AN)+ BN, (10,7)
we have A%*eB;. It now follows, on account of (10,2), that

9 (4%) = ¢ (A—AN) + ¢ (BN) =

(10,8)
91 (A—AN) + ¢, (A — AN) + ¢, (BN) + s (BN).
AN being at most an enumerable set, it follows that
9, (AN) = 0. (10,9)

From A—ANcE, —N follows

0 < g (A—AN) < ¢, (E,—N) = 0. (10,10)
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After the analogy of (10,9) we have

1 (BN) = 0. (10,11)
Finally we derive
g2 (BN) = >'S(E) = ¢, (B) = 8. (10,12)
§,eBN

Comprising (10,8)—(10,12) we get
p(A*) = a+0+04+8=0a+4.

Hence the set A* has the property expressed by (10,6), and
the proof is completed. "

11. Bounded measures in abstract space.

In this section will be shown that the theorem on measures
defined in 3B,, formulated and proved in III, 10, is valid in the
abstract space too.

Let E be an arbitrary set, and let §§ be a class of sets
containing E. Further lel v be a bounded measure defined in
&, 1.e. W (E) <oco. Without loss of generality we may assume
that w(E) = 1. On such a measure we shall in this section
. prove the following theorem:

The set of numbers whose elements are the values of a bounded
measure v defined in § is closed.

To prove the theorem we shall make use of a representation
from the class of sets § to the class of sets B, whereby the
theorem is retraced to the theorem proved in the previous section.

Let

n

A413A23."1A s T (11,1)

be a sequence of sets all belonging to &, and for which the
corresponding sequence of numbers

l//(A1), w(A2)5"" UJ(AH), (11:2)

is convergent to the limit value ¢g. We now prove the existence
of a set Ae¥, for which

w(4) = g. (11,3)
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Without loss of generality we may assume that 4, = E—A4,.
The importance of this special choice of the set 4, will be
evident later on.

The coupling mentioned above will now be carried out by
two stages:

[). To £ is coupled the interval (0,1). To the sets C, = 4,
C, =0 and Cy = F—4,, all belonging to §§, are, in the order
given, coupled the intervals (0, 1), (3, %) and (%, 1). The sels
Ciy = Ajd,, €y = 0 and Cp,, = A, (E— A4,), which are all sub-
sets of C; and have the sum C,, all belong to §. To these are
coupled, in the order given, the intervals (0, 3), (§,3) and (3,3).
The sets Cyy = (E—A) 4,, Cop = 0 and Gy, = (E—A4) (E—A4,),
which are all subsets of €, and have the sum C,, likewise
belong to F. To these are coupled the intervals (%, 1), (%, &)
and (§,1). Thesets C;y; = 4, 4345, Cp g =0, Cjp, = 4,4, (E—A4,),
Ciop = 41 (E—45) 43, Cpop = 0 and Cyyy = 4, (E—4,5) (E— 45)
all belong to . To these are coupled the intervals (0, &), G4 &),
Gr §), (G, 99, G5 2 and (&, 3). Thus we go on infinitely.
Each of the produced C-sets will belong to §. It is a product
of as many factors as the number of indices. A number 0 in
the last place of the series of indices means that the set is
empty. A number 1 in the n’th place of the series of indices
means that A appears as a factor, whereas a number 2 in the
n’th place means that £E—A appears as a factor. Thus we give
as an example

C1121121 = d; Ay (E— Ay A 4; (E— 44) A;

C2121120 = 0.

As an illustralion we have in fig. 1 (¢f. the end of the paper)
given an outline of this decomposition and the corresponding
intervals.

II). To each number of the form
k .. - It
? (n positive integer, k. =1, 2,-++, 3 —1)
is now coupled a sel C, . If the numberg—cn 18 in the interior of

3
an interval, to which we have above coupled the empty set,
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C, is put equal to the empty set 0. Concerning an end point of
3" ’
one of the intervals shown in fig. 1 we shall, however, proceed

as follows. We select all the sets in our outline of which one

end point of the corresponding interval is the number —, and

whose series of indices does not comprise the number 0, and
C, equal to the product of these sets. §§ being a Borel ring, and

n

. :
all the sets in fig. 1 belonging to &, the same will be true for

any set G, . By this method we get

o

3
C,‘, = Gy Gy Cigs - -
Cg = Cg Cyy Cyyq -+

11,4
C: = Ci1 Cie 61122 e ( )

Cz: = Cyp Gy Ciz11 -+~

and so on.

The decomposition (fig. 1) carried out in I} is now modified
as follows. To the set E is coupled the interval 0 < x<<1. To
the sets €;—Cy, €y, 0, €z and G, — €z, in the order given, are
coupled tihe interval 0 < x<(}, the point x = %, the interval
4 <<a<<§, the point x = % and the interval ¥ <ax<1. To the
sets €y, — €y, Gy, 0, €z, €1 — €3 — C; (which, as we know, have
the sum Cl—C%) are coupled, in the order given, the interval
0 £ x<C§, the point x = §, the interval }<x < %, the point
x = % and the interval { <<x <1, and so on. This new decom-
position of E and the corresponding intervals are outlined in fig. 2.

It must be emphasized that any of the sets appearing in the
outline fig. 2 belongs lo §§, as well as the fact that each of the
sets appearing in the sequence (11,1) are obtained by summa-
tion from the sets in the figure. For instance we thus have

A, = (C,— Cé) +-C§
and

Ay = (Cu— € + €y + (Coy — €3 — C) + C3 + .

Now we shall introduce a function f(x) defined in 0 =z =1,
which is done by the following definitions:
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1) £(0) = 0.

2) Let «* be a number of the form in (n positive, integer,
k=1,2 ---, 3. We then put 3

fx®) = (€, (11,5)

where C* is the set coupled to the interval 0 < x < x* As an
example we thus get f(1) =w(E) =1, fG) =y (C,—Cy),
f& =vw (), ) =y (C + Cy— C;p). Especially we observe
that f(x) has, for every x¥ > §, the value 1, because the set C.,
(on account of the special assumption that 4, = E—A4,) is empty.

If y and x, (> ;) both are of the form k

oh?
o

fla) —fla) = w (D) = 0, (11,6)

where D is the set coupled to the interval x; < x <<x,.
By this definition of f(a) the function acquires the following

property: if x*(<<1) as well as x;, @, -+, x,, -~

we get

- are numbers
k .

of the form —» for ‘which ) <<axy <. <<a <.+ <a* and
3 .

limx, = x* then the equation
n

lim f(x,) = f(x*)
holds true. '

This is understood in the following way. Denote by D_ the
set corresponding to the interval 0 < x <« , for any n, and
denote by C* the sel corresponding to the inlerval 0 < x < x¥,
It now remains to be proved that

limy (D) = y(C¥).
For any n we have D < (C* Consequently we obtain

lim (1// (C*)—yw (D)) = limy (C*—D,).

From C*—D;2C* —Dy>-+--DC*—D, >+ we may next con-
clude (see VIII page 9) that

limy (C*—D,) = VIEGET W) - (11,7)
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From our construction it is, however, easy to see that
Tl «*—Db) =0, .
n
together with which (11,7) gives
lim y (C*—D,) = w(0) = 0,

which was to be proved.
The function has the same property also for x* = 1, because
f(x) has, as above remarked, the value 1, when x is of the {orm

7
and greater than 9

3) Supposing further that xz, is a number which is not of the

31’[

. k : .
form —. Corresponding to this we choose a sequence of numbers
3

xl’xis( o 'sxn’

- which all have the form %, and for which

Ty <Xy <Lz, << <xy and limax, = x;. We shall again
n
denote by D, the set corresponding to the interval 0 < x<<x, .

The set © D, is at once seen to be independent of the sequence

n
chosen and dependent only on x;. We now let the set &D,
correspond to the interval 0 < ax <ax, and write "

fxy) =y (1@ Dn), (11,8)

by which the function f(z) is defined for each x in the interval
0<ax=<1. From DijcDyc---cD c--- follows (see VII page 9)

W (@ Dn> = limy (D)
n n
and hence

faxy) = limy (D). (11,9)

About the function introduced by these definitions it now
remains to be proved that it is non-deereasing and continuous
from the left in any point.

We shall first prove that f(x) is non-decreasing. Let x; <wz,.

k .
If x; and x, are both of the form ?, the assertion is a con-
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' k
sequence of (11,6). We next assume x, to be of the form pet

x;, however, not having this property. For each x of the form

3% and less than x; we have f(x) < f(x,), according to

which (11,9) gives f(x;) < f(x,). The remaining cases are now

dealt with immediately by insertion of a number of the form Jf—n

between x; and . .
Hence it is obvious that f(x) is continuous from the left in

every point x, it being possible to find for any ¢ <0 a nurmber

x'<<x of the form —3]-; for which

[(x)—f(x) <e.

f(x) being non-decreasing and continuous from the left, we
may, according to 1L, 8, to f(m) determine a measure ¢ defined
in B, such that

p(la = x<b]) = f(b) —f(w) (11,10

for any choice of @ and b, 0 < a<b < 1.

Together with this Borel ring B, we shall consider the
smallest Borel ring in E, containing all the sets of the sequence
(11,1) A, 4,, -+, A,, ---. This we shall call . The defining
region of v being the Borel ring §, any set belonging to $,,
will belong to ¥ as well. We know that the set of values of
the function of a set ¢ is closed (see preceding section). If we
can now prove that any value assumed by o at &, is assumed
also by ¢ at B, and conversely, the proof of our theorem will
be completed.

[t is obvious that 3§, must contain each of the sets shown
in the decomposition, fig. 2, and as any A, may be produced
by summation from these sets, §§; may also be defined as
the smallest Borel ring containing all the sets appearing in
fig. 2 _

The class of sets consisting of all finite sums of the sets
given in fig. 2 is a ring, and according to the preceding con-
siderations the slightest extension of this ring to a Borel ring
is just the class of sets &;.
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We now first observe that if € is a set in fig. 2, to which

is coupled a point x,,

W (C) = ¢ (x;) (11.11)

holds true. v
As g (x) = f(xy+0) — f(x,), we have consequently to prove
that
Y (C) = f(xo+0)—fx). (11,12)

We choose a sequence of numbers ay, x,, - - -, x,_, -, for which
Xy >ay> e >ay> o >ay and limax, = x, and for every n
n

we denote by D, the set coupled to the interval x, < r<<x,.
Hence we get D;DD,>---2D >---, and, owing to the special

procedure of the decomposition, ﬂDn = (. Hence

(@ =y (TID,) = timy (D) = lim (F(e,) — f@0)) = fo+0)—/ ().

which was to be proved.
If D is a set in fig.2 to which is coupled an interval
xy<x<_x;, we have analogously

w(D) = ¢ (wy<x<a]). (11,13)
Since

plmy<ax<x]) = ([, £ x<xy])) — 9 (xy) =

}(11,14)
() —fg) — (flwo+0) — f(x)) = f(a)) — [, -+ 0),

we have consequently to prove that
Y (D) = flx)—[(x,+0).
C denoting the set coupled to. the point x,, we get
WD) = p D+ ) —w(C)
which, if we apply (11,12), will give
9 (D) = (F@)—Fao)) — (Gt O —F () = f(xr)—[Can +0),

which together with (11,14) gives (11,13).
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Finally, suppose A to be an arbitrary set of the class of
sels $§,. We can then to this set determine a sequence of sets
K,K, - K

ne 0 in which each K, is a finite or enumerable

sum of the sets appearing in fig. 2, and such that
1) ;oKD 2K D
2) Ac K, for every n,

3) w(4) = lower bound y(K,) = 11111 w(K,

(see page 10). To each set K in &, we have a conespondlng
sel I in B, and according to the remarks above on the special
cases they satisfly

D g(L) =w (&)
and
2) [D[,> -2 D,

Since the set ﬂ[ﬂ betongs to B, and
n

@ <f/’1'17: 11‘) - “1:1] 4 (In) = lim 'lP (I{n) = 'tlb (A)’

QT I, is a set in B, having the property wanted. In nearly the

same way the other half of the prool may he carried out.

Each of the numbers appearing in the sequence (11,2) are
thus taken on by ¢ al B,. Consequently also the value g is
taken on by ¢ at B, but according to the preceding this value
is then also taken on by # at §; and thus by v at §; aund
our proof is completed.



PART IV.
Bounded measures in abstract space.

12. A theorem on two bounded measures having B, as
defining region.

In this section we shall establish a theorem on bounded
measures defined in B, comprising as special case the theorem
proved in III, 10. B, will as usual denote the Borel class on
the interval (0,1), where the interval [0 < x<<1] is denoted
by E,. Now let ¢ and y be two bounded measures defined in
%B,. Without reducing the generality of our research, we may
assume that ¢ (E,) = ¢ (E;) = 1. Now let 4 be an arbitrarily
chosen set belonging to B;. The point (¢ (4), ¥ (4)) will then
belong to the unity-square 0 < ax < 1,0 =<y < 1. About the
set of points of the unity-square, obtained when A runs
throughout B,, we shall prove the following theorem:

The set of points which 'is determined by (g)(A), lp(A)),
where ¢ and Y are bounded measures defined on B, is a closed set.

Together with the measures ¢ and 1y we shall consider the
functions f; (x) and f,(x) defined on 0 < & < 1 and determi-

ned by
0 fora=10

9 ([0 < x<d]) for a>0,

fi{a) ={

and
0 for a =20

2 (@) =
A ([0 < x<a)) for a>0.
The non-decreasing functions f; (x) and f, () may be written

in the form
D. Kgl. Danske Vidensk. Selskab, Mat,-fys, Medd. XX1,9 4



50 , Nr. 9
fi(®) = g1 (@) + Iy ()
fo (@) = g2 (@) + hy ()

and

(cf. page 26), and correspondingly will arise a decomposition of
p and W
9 (4) = 9, (4) + ¢, (4)
and (12,1)
Y (A) = ¢, (4) +y, (D)
for any Ae®B,.

From (12,1) follows
(9 (), @ (4)) = (91 (D), Y (A)) + (32 (4), s (4)).

We shall first show that if Ml'aud M, are seis, both belonging
to B;, and for which

(91 (My), y (M) = (a, B)

(932 (M=_>)’ Yo .(MQ)) = (y,0),

then we may determine a sel Me8,, for which

(9D, w (D) = (a+7, B+ ).

Let the set of points of discontinuity of the function [} (x) be
the, at most enumerable, set Ny = {& }. Similarly let N, = {5}
denote the, at most enumerable, set of points of discontinuity
of the function f, (x). The sum of N; and N, is termed N, i.e.
N = N, 4 N,. As the set Me8, we may now use the set

and

M = (M,— M, N)+ M, N.
From (12,1) follows

g (M) = ¢ (M;— M, N)+ o9 (M, N) = l

(12,2)
gy (My— My N) + 9 (My— My N) + 91 (My N) + 9 (Mo N) l

M; N and M, N both being at most enumerable sets, we have
g1 (M, N) = ¢, (M, N) = 0. (12,3)

From M, — M, Nc E,— N, follows
¢s (M, —M; N) = 0. (12,4)
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Finally we derive

go (1, N) = D18, (8) = D8, (8) = 0. (1) =7 (12)

EEM.N S EMN,
Thus it follows from (12,2)-—(12,5) thal
g(M) = a+04+0-+7.
In analogy it is scen that
(M) = g+,

and we have proved our assertion.
Hence we can, as in section 111,10, conclude that if the sets
of points

((]11 (A)’ 1/’1 (A))
(% (4), vy, (A))

are bhoth closed, the set of points

(v (4), ¥ (4))

and

is also a closed set.
In the two following sections we shall deal with these
special cases.

13. First special case.

Let ¢ and ¥ be bouhded measures defined in B, and let
the two non-decreasing [unctions f; (=) and f, (x) be defined by

J 0 for a =0
fl(a)=
l p ([0 < x<al) for a>0
and
J 0 for a =0
fo (@) =
l w0 < x<a]) for a>0

and satisfy
Df1 (2, @) = Vf: (2, )

and
» D/é (xl > 'TQ) = Vf:_, (ml’ 7'_’)

for any choice of a; and x,, 0 < x; <xy, < 1.
4*
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The set of points of discontinuity of f, (x) is the, at most
enumerahle, set N, = {é_:‘n}, and the set of points of discontinuily
of f,(x) is the, at most enumerable, set N, = {n,y> The sum of
Ny and N, then again is at mosl an enumerahle set, termed

N = {{,}. For any Ae®, we now have

Gred
and (13,1)
W) = X8, () [
Cied

(cf. page 35). In the following the set N is assumed to he
enumerable, and we put

Sy €)= a,(=0)
and (13.2)
sz (gn) = bn (>, O) '
Hence we obtain

(9D, w @) = Se,a, Se, bn), (13,3)
n=1 n=1

where e, has the value 1, if , belongs to 4, and otherwise
the value 0.

We shall now show that the set™ (g (4), w(4)) is closed.
Suppose Ay, Ay, -+, 4., +++ to be a sequence of sets, all be-
longing to ¥B;, and for which the sequence of points (p(4,),
l/D(An)) is convergent lo the limit point (s, ¢). We shall now
prove the existence of a set 4&98,, for which

(¢ (), w () = (s, ).

In section IIL,9, where a method how lo determine A% (re-
spectively 4*¥) as a subset of N has been given, we have
already proved the existence of a set A*, for which ¢ (4%) = s,
and a set A*% for which w(4%*) = (. A closer analysis of the
process of choice will immediately show the possibility of
determining a subset of N, for which both ¢(4) = s and
 (A) = {. More precisely, if only 4 is determined in the
way shown, such that ¢(4) = s, it will be an immediate
consequence that w(4) = f.
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14. Second special case.

Let ¢ and w be bounded measures defined on B;. We shall
in this section assume Lhal the non-decreasing functions fi (a)
and /[, (2), corresponding lo ¢ and w, given by the definitions

0 for a=20
fi (@) =
p ([0 £ x<al) for a0
and
[ 0 for a=20
/o (a) = ] :
([0 v <al) for a> 0

are both continuous in the interval 0 < » < 1, and we shall
show that the set of poinls

(p(4), w(4)), AeDB, (14,1)
is closed. Without loss of generalily, we may assume that

o (E) = w(kE) = 1.

In order to simplify the wriling, we shall further in this section
use the letter E instead of E; to denote the interval 0 < x <1,

According to the theorem on decomposition, page 14, ¢ may
be written in the form

g = (pk—}—_rps, (14,2)

where ¢, is i-continuous, and ¢, is 1-singular. Thus ¢, (4)
will have the value 0 for each A4¢8,, for which y(4) =0,
and there exists a set Ne®B; where ¢(N) = 0, such'that ¢ (4) =0
for each Ae®B, which is a subset of E—N.

¢, being -continuous, there will exist a function > 0
defined in E, such that

¢ (A) = glfw(dE) : (14,3)

for each Ae®; (see page 20).
It follows from A— AN cCE—N that

9. (4) = ¢ (4N). (14,4)
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and from ¥ (AN) = 0 that

9, (AN) = 0, (14,5)

according to which (14,2)—(14,5) give

¢ (4) = ¢ (AN +S £y (dE) (14,6)
A

for each Ae®,.

Our first problem is to find out what values ¢ can take on,
when ¥ is fixed. Suppose y to be a fixed number of the inter-
val 0 < x < 1. We shall now consider all sets 4¢38,, for which
w(4) = y. The existence of such sets is evident on account
ol the continuity of the function f;(x). Let A, and A, be lwo
such sets. We thus have

Ww(A;) =y (4,) = 5. (14,7)

Suppose, furthermore, the numbers « and g to be defined by

¢(4,N) = ¢ and S/'a,ll (dE) = 8. (14,8)

LW

We can then prove the existence of a set Ae®B,, where v (4) = ,
for which
@ (4) = e+ 3.

As a set A we may use
A = AN+ (4,—4A,;N),
for from ¥ (N) = 0 follows
P(4) = ¥ (4 =y,
and by means of (14,6) we get

§ () = ¢ LN+ 9 (A= AN) = et p (4 — AN N) + o ()
Vly— A N
= -+ A

since (4y— 4,N)N = 0 and Sf'1p (dE) = 0.

AN



Nr. 9 55

From the above follows that if, only, we can prove that cach
of the addends in (14,6) runs throughout a closed set, when 4
runs throughout the sets belonging to 8B,, for which W(d) =y,
we have also proved that the set of values of ¢(4) is closed.

The set of values of g (AN) we shall prove to be a closed
interpal, which is moreover independen! of y.

Let A be a set belonging to B,, and for which v (4) = 5.
Thus we immediately derive

0 < 9(AN) < ¢(N). (14,9)
Since W (N) = 0 we have for the set 4% = 4 — AN that

Y (4%) = y(4) = 5
g (4*N) = ¢ ((A—AN) N) = 0.

and that

For the set 4** = A | V= A+ (N—AN) we have
P =y ) =

9 (A% N) = g (44 N N) = ¢ (V)

and

Consequenily we have sels for which the signs of equality in
(14,9) hold true. We have now to prove for each number be-
tween 0 and ¢ (N), the existence of a set with ¢ having this value.
Let A, denote the set [0 < x<({], and let B, denote the set N4,
belonging to B, for any {. We now put

B = A* B,
and have for every 1

'(/U (E') == w (A:-::) 4+ 'l/) (B{) ey

since W (N) = 0.
The function g (#) is introduced by the definition

g =g (BN) = ¢ ((A*+B)N) = ¢(B,N) = ¢(B).

It is obvious that ¢ () is non-decreasing. We shall further prove
the fact that it is continuous. If h denoles a positive number,
we see that
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q (f+h)_g(f) - q)(B/_{,.h)“— (ﬁ(Bt) = ?(B[.I_hm—Bf) =
P (IIV(A[.Fh_At)) < (f)(AH.]l—A[) - fl (l+11)—_f1(f)

holds true. ,

fi (x) being assumed continuous, we see that g ({) is contin-
uous from the right. Similarly we see that ¢ (¢) is conlinuous
from the left. Thus the function g (¢) takes on any value between
g(0) =0 and g(1) = ¢(N), and the proof that the values of
9 (AN) make ont a closed set is completed. Now remains an in-
vestigation of the set of values of

SAfw (dE),

Ae®B, running throughout the sets for which (4) = ;. We
shall again show that the values make oul a closed interval.
In our proof we shall apply the following lemma:
For any number ¥ of the interval 0 < §<C1 we can delermine
a set Age®B; for which vy (4g) = &, and a corresponding number
ag such that -
[f<agd] cde clf < agl, {14,10)

and this determination may be carried ouf in such a way that
Ag CAg  for & <&, (14,11)
To prove this .We shall define two funclions
Fla) = g ([ < a) (14,12)
Gla) = v ({f = al) (14,13)

and

having a = 0 as defining region.

F(a) £ G(a), (14,14)
and similarly we see that
F(a,) £ F(ay) for a,<<a,

and (14,15)
G(a)) < G(ay) for ay<a,.
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Our next problem is to prove that the funclion F(a) is con-
tinuous from the lefl, and that the function G {a) is conlinuous
from the right in every point. Let
A <<y <o - <@, << and liman = a,
n

it then follows that

Fla)—Fla) = ¢ (f<a)—y(r<a,) = w(a, = f<a)).
~ Since
it next follows that

lim (F(a) — F(a,)) = lim ((a, < f<a) =0,

i.e. F(a) is continuous from the left. Now letl

G >ay> - >q >0 >a and lima, = a,
n

we then analogously obtain
Gla) —G(@) = p(f < a)—p(f < a) =yla<f=al.

On account of

ﬂ[a<fé a,] =0

we oblain n

lim (G (a,) —G(a) = lmy(la<f < al)=0,

l.e. G(a) is continuous from the right.

For a fixed value of & in the interval 0 << £ <1 we now have
lo determine the upper hound of the values of a for which
F(a) < & We shall term the latter a;, and we have qz<<oc.V?
F(a) being continuous from the left, we get F(ay) < &, and G (a)
being continuous from the right, (14,14) implies the fact that
G (az) < &. Hence we obtain

p(/<a) = 2w {f £ a). (14,16)

1} 1t is easy to see that & <{p implies ag, < ¢g,.

2) 1t follows namely from I"(a) = ¥ (f<a]) < & for every a that v {fZ a) =
1—&>0 for every a, and hence further that w{{f= o0])>0, in nonconformity
to @ being finite.
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Concluding after the analogy of the proof page 55 it is obvious
that in the set [f = ag there is a subset £¢8; having any -
measure between 0 and v ([f = ag)).
Accordingly we can determine a set A;eB; where y (4p = &,
such that
[f< at] CA;: C[fé a-g] .

Furthermore it is immediately obvious that this process of determ-
ination may be carried out in such a way that

A’_El Lo Atz for ‘_fl < ._52 ,

and the proof of our lemma is completed.
We shall now again consider

#, (A) = waE)
A

for the sets AeB;, for which ¥ (4) = y. As to the special values
of y, y =0 and y = 1, the case is evident. Thus if Ae®B, is a
set for which (4) = 0, we obviously have ¢, (4) = 0, and if
Ae®B,; is a set for which w(4) = 1, we have ¢, (4) = ¢, (E)—
9, (E—A4) = ¢, (E), since @ (E—A4) = 0. Suppose next y to be
a number of the interval 0 <<y <1, and let A}, be the set determ-
ined by our lemma. We can then prove the inequality

\'fw (dE) = wa (dF) (14,17)
vy A

¥

for any Ae®B, for which ¥ (4) = .
First we notice that

S [ () = \ [y (dE) + (/'w (dI) l

A—dd, daa

and ! (14,18)
gl‘ Y (dE) == S fw (dE) + Sf’qj (dE) J
"4, PA i, v,

where

W(A—Ad) = w4 —44).
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By means of (14,10) we next see that f > a,, for the set 4 — 44,
and that /=< @, for the set A,—A4,. Hence we obtain

\rv @B = {ry@r)
dA—dd,, Ay —dd,,

according to which (14,18) will give

S‘(’""’ (dE) = \flw (dE),

7

which was to he proved.
Analogous to (14,17) we can show that for each A=%,, for
which ¢ (4) = y, the following inequality holds true

Si‘w @B <\ fy () (14,19)

J—y

where 4, is the set determined by our lemma.The set £ —4,_,,
I
we shall denole 4%, and we then have

YWED = w)— ) =1—1—p) =y

Similar to (14,18) we have

S Fo @) = o+ ry an ‘

LA v — A A%

and (14,20)
V1w = \rw e+ {ry am
vir ¢AF— | F Ad*

where

WA —AdF) = (A% — AAY), |
From (14,10) follows
V<f11~—ﬂ C“11_J,;,
from which it is obvious that f = a,;_, for lhe sel A% —AA*,

Similarly we derive from (14,10) thatl/‘ = a;_, for the set
A— AA*. This being so, we obtain
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wa (dE) < wa ()

A —AA* A —AA*

according to which (14,20) will give

SAfw (@E) = \fv(ar),

E—Ay,

which was to be proved.
If we comprise (14,17) and (14,19) we get for each A%,
having y (4) = 5,

\rvwp) = wa(d@ < wa (dE), (14,21)
YA A

¥ E——Al_y
and we shall now show that \.fl/J(dE) takes on any value in lhe
DEER

closed interval from Sf'l/) (dE) to S['(p (dE).
4

E—4,

For that purpose we form the function

H(E) = wa (E), 0<E&<1—y (14,22)

{&_ + j/-—AS

where A; and 4, . are the sets we have determined by means
s s/

of our lemma, yet especially fixing 4, = 0 and 4, = E. For
any & we then have

Y (AE‘FJ"—A‘:) =Y (AE+)/)_()D (AE) = (§+9/)—§ =7 (14523)

Further we derive

HO) = | = (o an
!

a4y
and (14,24)
H(l—y) = S/'w(dlﬂ) - %/‘w (dE).
=iy, CE—A,
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It now only remains to be proved that the function H(¥) is a
continuous function in the interval 0 < § < 1—y.

We shall first show that the function H (&) is non-decreasing
in the interval 0 < § < 1—y. For that purpose we shall, for
& <&, consider

H(E) —H(E) = ﬂ/‘w dE)—\ f v (E).

Mgy Ag, YA Ay
For brevity we put
A52+}’_A§2 = ( and A$1+V_“AE = D,

and we thus have

H(E)—H &) = \ro@n—{rpue = {ry @ —rypan 129
Y0 . [l

Jn C—Ch nN—CD
where

Ww(C—CD) = w(D—CD).
From (14,10) we derive

f(x) = max{ag,. az .} for xeC—CD
and
f(x) < min{ag, as,,} for 2eD—CD,

which inserted into (14,25) gives

H (5)—H (§) = ¢ (C—CD) - [max {az,, agppy—mindag,, a4,y =0,

which was to be proved.

In order to show that H (&) is continuous from the right
in any point of the interval 0 < §<<1--, we shall now for h
positive and sufficiently small consider

HE+D—HE) =\ fy(dE)— sz/J(dE) = wa(dE)—wa(dE), (14,26)
‘4E+II+Y—AE+[1 AE’F?/Y_AS F_FG G FG .
in which we have put

Agppyy —Agn = F and Ag ) — A4y = G.

ST
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For h <y we have
F'—FG = A;:._’_h‘]_};_A;C_F}/,

and thus we derive by means of (14,10)

qup (dE) = \'fw(dE) <h-ag, .,

JE—FG YAt gy —dein

since zp(AHhﬂ,—AHy) = h. Hence we get

gfw(dE)»o for h—0. (14,27)
YE—FG

In analogy we find

\rw(dE) = \rv @ < h-acy,
JG—FG dgyp—de
hence ‘ ) )
gfz,b (dE)— 0 for h—0. (14,28)
YG—FG

From (14,26), (14,27) and (14,28) it thus follows that H (¥) is
continuous from the right. To show next that H () is con-
tinuous from the left in any point of the interval 0 <§ < 1—y,
we consider for h positive and sufficiently small

HE—H@E—R) = gfw (dE) — S'fw((u;) - ngb(dE)~— wa (dE), (14,29)

Agp,—dg Vg —dg g VK—KL L—KL

in which we have put
Az, —A; =K and Ag pyy—dAdg—n = L.
For h <<y we have
K—KL = Ag, ), — Az 41,

and hence we get by means of (14,10)

{fo ) = rpe < b ag,

K—KL Mgy A niy
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since Ae . ~Ac ,.,) = h. Hence we obtain
St —h+;

Sf w(dE) >0 for h—0.D (14,30
K—KIL

In analogy we obtain

S/‘w (dE) = S f (dE) < h- ag

L—KI

A ey

since ¥ (A —A:_,) = h. Hence we get

gfl/J(dE)—>0 for 7> 0. (14,31)

L—KL

According to (14,29), (14,30) and (14,31) we see that H(§) is
continuous from the left. And now we have proved that the
values of

1) The number a. y being not introduced for &= 1—y, a special investiga-
to

tion of the canditions for §=1—¢ is required. In this case we have

Sfl}; (dF) = \fw (dE)= g (E—A4;_p).
E—KIL  YE—4y,

If hy>hg> - >h,> >0 and limh,=0, we get

"

E—dy P E—dy > 2 E—d; ;2

According to (14,10)
----- 1~71.,]
for every n.
We shall now perform the proof indirectly, assuming

P (E—Ay )= £>0 for all values of n.

If the set of numbers {at}, determined by our lemma, is not upward hounded,
we accordingly get )
i (f= oD 21

in nonconformity to v ([f=o0]) = 0. Is on the contrary the set of numbers {at}
&

upward bounded, there will exist a number «* such that w([f;a*])?o.
Hence we have

Sfl/J (dE) = Sf‘gb(dE) Zh, -a*<e for n>N
E—Al_h_” (E'—Al_b")-[f<u*]

whiclh was to be proved.
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0@ = {Fu @) W=

makes out a closed interval.

Comprising (14,9) and (14,21) we next find that the region
of values of ¢ (4), A¢B, running throughout the sets for which
W(A) =y, 0 <y <1, is determined by

wa E) < ¢(4) = wadz«:) S (V) (14,32)
'A, N

E*Al_y

and that any value in this closed interval appears as a value
of the function ¢ (4).

Thus our proof that the set of points (¢ (A), w(4)) is a
closed set is completed if we can prove that the end points of
the closed interval (14,32) vary continuously will respect to .

For this purpose we shall first consider

\ F (dE) .
YA
y
If 0 <y<1 and h(<hy) is positlive and sufficiently small,
we have

wa (dE)——S{"zp (dE) = § [ (@dE) < h-a,,,, (1433)

. [}

Ayn 7 An Yy

since lp(AHh—A},) =h and 4, ,c f < ay+bo]'
It 0<y <1 and h is positive and sufficiently small, we
similarly get

A A=,

\rw@E) = rw ey = {fo @) < ko (1430
A“ XY ;

since ¥ (A;,—A?,_h) =.h and 4, < < aJ,] (as to the case y = 1
¢f. the footnote page 63). From (14,33) and (14,34) it is evident
that the left end point of the interval varies continuously with
respect to y. By a quite similar consideration we clearly see
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that the right end point of the interval, which with the exception
of a constant is equal to

\‘/"4) (dE).

-4,

;

varies. continuonsly with respect to y.

15. A theorem on two bounded measures in abstract space.

In this section we shall see that the theorem proved and
formulated in the preceding seclion of this part, on two bounded
measures having B, as defining region, holds true in the ab-
stract space too.

Let £ be an arbitvary set, and let § be a class of sets, which
is a Borel ring and contains E. Let further ¢ and ¥ be two
bounded measures defined in .

The following theorem will then hold true:

The set of points defined by

(w (). w ),

where ¢ and Y are bounded measures defined in §, is a closed set.
Accordingly our problem is to prove that if

Al Ao,y AL

n

is a sequence of sets, all belonging to ., and for which the
corresponding sequence of points

(v (A0, w(4D), (9 (4:), w(dp)), -5 (9 (4D, w(4)), -

is convergent to the limit point (¢, s), then there will exist a
set A=y, for which

(9 (4), w () = (& 9).

In proving this we apply exactly the same representation
from the smallest Borel ring &,, containing all the sets A , to
the Borel class B;, as applied in III, 11. Cdrrespondihg to ¢
and 1 there will exist bounded measures ¢, and y, defined in
B, and it is easily seen that to each set in F, there will be

a corresponding set in B;, such that
D. Kgi. Danske Vidensk, Selskab, Mat.-fys. Medd. XXI,9. 5
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(¢, ¥) = (91, Y1)

for these sets, and conversely.

The theorem being valid for (¢, ;) we see that there is a
set Aef; (or weaker Ae%) having the property wanted. Thus
the assertion of the theorem is proved.

Putting ¢ = v it will be seen that the above theorem con-
tains the theorem of III, 11 as a special case.

16. Final remarks.

The appearance in 1933 ol KoLMOGOROFF's book “Grundbegriffe
der Wahrscheinlichkeitsrechnung™? made it at once clear to
many mathematicians that with this book the theory of pro-
bability had won its natural place among the theories of
mathematics. It is KOLMOGOROFF's merit to have shown how
simply the theory can be axiomatized, and how it is possible
from the axioms to prove the theorems of the theory of pro-
bability. The number of the possible axiomatizations was im-
mense, but the system used by KoLMoGOROFF seems natural and
for the applications most simple. Here the space of single occur-
rences is abstract, moreover a class of sets consisting of subsets
of this abstract space is supposed to be given. This class is
assumed to be a ring and to contain as an element the space
itself. In this ring is supposed defined a non-negative, additive
function of a set, such that its value for the abstract space is 1.
The value of the function of a set for a set of the ring will
then be the probability of the realization of one of the single
occurrences contained in this set. It is proved that it is possible
to confine oneself to regarding Borel fields of probability, (in
a Borel field of probability the defining region of the function
of a set is a Borel ring), introducing an axiom of continuity
equivalent with the claim of complete additivity of the function
of a set in its defining region.

The book mentioned above roused the author’'s interest in
the theory of probability and its applications. This interest was
strengthened by several visits to the Stockholm University
Institate of Insurance Mathematics and Mathemalical Stati-

1) KoLvmoororr [1].
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sticsV. Here was also roused the author’s interest in the theory
of testing statistical hypotheses?, formed by NEvMaN and PEAR-
soN. It was clear to everybody that the theory in the form it
had obtained by then suffered from certain shortcomings, and as
it was rather evident what amendments might be wanted, and
what results were likely to be obtained, the problem must be
to change the foundation in such a direction that this was made
possible. ’

Unfortunately my investigations into this problem were on
the whole without any result, as I did not succeed in giving
them a form which satisfied me in the sense of being mathe-
matically unimpeachable, and at the same time having the
connection with experience and practice which must reasonably
be claimed. By my study of various questions in this connection
I was led on to certain problems of existence, which must
necessarily be treated first. Here too I met with difficullies,
now of this and now of that kind. Thus it was natural first
to try to answer these problems in the abstract space, i.e. when
the theory was unimpeded by everything superfluous.

These investigations gave birth to this paper.

Fundamental for the present formulation and treatment of
the problem of the testing of statistical hypotheses is the above
mentioned paper by NEvymaN and PEarson, 1933. In this work
is given a detailed account of the nature of the problem, and
a mathematical treatment in the main features of the problems
raised. The problem is by these two authors formulated as
follows: Let a stochastic variable be given. An assumption of the
structure of the distribution of this variable is called a statistical
hypothesis. A set of observations of the stochastic variable is
called a sample, and as a test of this statistical hypothesis a
function of the result of the sample is now computed. If this
sample has certain properties further stated, it will be discarded;
whereas it will be maintained, if the function has not got these
properties, This test is of course not absolute.in the sense of
giving us information whether the hypothesis laid down is
correct or false, but we endeavour to arrange it in such a way

1) The author wants to express his gratitude to the institute and its

director, Professor Hararp Cramir, Ph. D., for hospitality and interest.
2) See for instance NEvMaN-Peanrson [1].

h*
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“that it may in the long run give good results. To: be ‘more
precise, we arrange it in such a manner that the probability of -
discarding the hypothesis when it is true, does not exceed &
certain limit fixed beforehand, and correspondingly that the
probability of maintaining the hypothesis, even if it is false,
is kept under a reasonable limit. A number of calculated
examples prove the method to be available: in many cases
arising in practice. Yet several authors have objected to certain
special items of the theory. Thus FELLER has in an excellent
paper from 1938 shown the shortcomimg of the proposed '
procedure in a whole series of cases, which may easily crop
up in practice?.

It- was natural at the bheginning of this research to leave:
the categorical claim of dividing into two parts the sphere of,
samples, such that the hypothesis was maintained if the point of
the sample fell inside one of these parts, whereas it was discarded
if the point of the sample fell inside the other. It was natural
to eliminate the sharp limit that must arise between these two
parts by introducing a third set, a transition set ih which the
question whether the hypothesis is correct or false is left open.

In its simplest form this leads up to the following problems
‘in the abstract space. Suppose given two measures ¢ and 'y,
both defined in a Borel ring &, and about which. it is further
supposed that ¢ (E) = w(E) = 1. Now the problem is to prove
the existence of two sets having no elements in' common, A and
F in E, such that

1) @(F) =g
' 2) w(A) é €2
3) ¢(4)+w(F) as great as _possiblé. ‘

- The investigation of this question apparently requires know-
ledge of a certain class of" functions of a set in the abstract
space, which has not-yet been dealt with. This is seen in.the
following way. Let F be an arbitrary set of the space E, thus.
not necessarily subject to condition 1). Among the subsets of
E — F there must then, according to our earlier investigation, exist
a set Ap, such that (4, < &, while at the same time ¢ (4,)

1) FeLLEr [1]. .



Nr. 9 69

is as great as possible. Qur task is now to prove that the
function of a set

7 (F) = ¢ (F)+¢(4p) (16,1)

has a greatest value, when F runs through the sets for which
g (F) < ¢.

The function of a set 4 (F) is seen at once to satisfy the
relation

"](Fl»“}' F2) é "](F1)+"7(F2)- (16,2)

It is obvious that a thorough knowledge of the functions
of a set salisfying (16,2) would be of significance. As far as
known to the author, there exists only one investigation of
this type of functions of a' set, undertaken by Banacu, but
with BanachH another condition is required satisfied at the same
time. We can with certainty say that this condition in our pro-
blems is not accomplished.

1) BanacH [1].
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