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PREFAC E

A
s the nucleus of the theory of abstract measures and integrals

is a generalization of the Lebesgue results, this theory mus t
naturally he of rather new date, and actually the whol e
development has taken place in the present century . Funda-
mental works by RADON and FRLCHET 1) had shown the pos-
sibility of transferring the Lebesgue integral to the abstract
space, and had shown the fact that this new notion thereb y
acquired the greater part of the properties of the Lebesgue inte -
gral ; although it was, of course, impossible to prove for this ne w
notion the properties intimately connected with the metrical struc-
ture of the Euclidean space . After these works the theory
developed rapidly, and out of the great number of paper s
whose results have been of the greatest importance for th e

rounding off of and the high stage reached by the theory to-day ,
we shall mention only those of BOCINER, DANIELL, NIKODVn7 ,

and SAKS . In 1933 appeared a monography by STANISLAW SAK S

about the theory of integrals in the Euclidean space, as wel l
as in the abstract space 2) . Later on B . JESSEN has given a con-
centrated description of the theory in a series of articles i n
"Matematisk Tidsskrift" 3).

It is the purpose of the present paper to investigate som e
problems of existence in the abstract space or-to say it more
precisely--to study more closely the set of values of certai n
functions of a set whose defining region is a collection of subset s
of the abstract space .

The paper is divided into four parts . Owing to the fact that
the theory of measure and integral in an abstract space is o f

1) RADON [11 ; FBICHET [11.
2) SAKS [.11, [21.
3) JESSEN [1}-[51 .
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relatively recent date, and further because the terminology used .
is not quite fixed, we have considered it natural as well a s
necessary to give a rather detailed account of those parts of th e
theory underlying the further description. This account consti-
tutes the first part of the paper. The special types of classe s
of sets, which will be treated in the following, will be in-

troduced, and the special functions of a set, contents an d

measures as well as the most important theorems on these ,
will be mentioned . In the same section we shall, furthermore ,
briefly treat the important theorem on extension, stating how a
content must be constituted in order to be extensible to a
measure . After this will follow a description of the definite

integral of non-negative functions. The two notions, an absolutel y
continuous and a singular function of a set, will then be intro-

duced, and the important theorem on the unique decompositio n

of a function of a set in an absolutely continuous and a sin -

gular part (the Lebesgue decomposition) will be proved for a
special case . As a help in the proof we shall make use of the theo-
rem on representation of a function of a set as a difference be-

tween two measures (the Jordan decomposition) . Finally we

introduce in the last section of that part the indefinite integral ;
and the theorem of Radon-Nikodym on the necessary and sufficien t
condition of the possibility of writing a function' of a set as a n
indefinite integral, is quoted ; whereas the proof is given onl y
for a special case essential for the following problems .

The first section of the second part contains an accoun t

of already well-known results regarding monotone functions l) .
The notions, the variation Vf (x 1 , x 2 ) and the total discontinuit y
Df (x i , x2 ) of a monotone function f(x) in an interval (x1, x2 )

are introduced ; and the proof is given for the theorem o n
decomposition of a monotone function f(x) into two addend s
g (x) and h (x), one of which is continuous, whereas the othe r

has in any interval a variation equal to its total discontinuit y
(which again is equal to the total discontinuity of the origina l
function on the interval considered) . In the next section we shall

deal with theorems on functions of a set defined in the Borel

class on the axis of the real numbers . It is well-known tha t
the Borel class is the smallest totally additive ring, containin g

1 ) A detailed treatment is given in CARATH1ODORY [1] .
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all half open intervals of the form [a x < b] . It will be discusse d
on what conditions the function of an interval can be extende d
to a measure defined in the Borel class . Finally we shall con-

clude the second part by giving in its last section some con -
siderations of the region of value of certain special types o f
functions of a set, whose defining region is the Borel class of
the interval (0,1) .

In the third part we first prove an auxiliary theorem on con-
vergent series with positive terms . It is proved that the set of
numbers, whose elements arc all finite or enumerable partia l
sums of such a series, is a closed set . By application of thi s
theorem, we can in the next section of the third part prov e
the set of numbers, whose elements are the values taken by a
bounded measure, defined in the Borelclass of the interval (0,1) ,
to he a closed set . In the third section of this part one of th e
main results of this paper will be obtained . It is' here show n
that a bounded measure, having , as defining region a class o f
sets consisting of subsets of ' the abstract space, and having th e
space itself as element, has the same property as the bounde d
measure of the Borel class, i . e . that the set of values is a close d
set . As our chief means to prove this we make a representatio n
from the class of sets in question in the abstract space on th e
Borel class of the interval . This representation can to som e
extent be regarded as a generalization ' of a well-known construc-
tion by PEANO 1 > . The fact that we work in this paper especially
with the Cantor set is of no consequence except its being th e
most fitted for our purpose . Many other methods of representa-
tion might have been used without essentially complicatin g
the proof.

In the fourth part we shall regard pairs of bounded measure s
(cy (A), p (A.)) instead of one hounded measure, thus extending the
theorem proved in the preceding part . Suppose both measures t o
take on the value 1 on the abstract space E, i . e . cy (E) = ?p (E) = 1 ,
and the point ((p (A), ip (A)) wilt for every A belong to the unity
square . It is proved that if the measures have the same definin g
region 'ÿ, then the set of points defined by (cy (A), zp (A)) will be a
closed set . The proof takes place in several stages. The theorem

1 ) Cf . HILBERT [L] ; JESSEN [6f ; LEBESGUE [1] ; F . HIEsz [1] ; DE LA VALI .PE -
POUSSIN W .
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will first be proved for p and yi as bounded measures defined i n

the Borel class of the interval (0,1) . By application of the theo-

rem on decomposition of monotone functions this case can be

retraced to two simple fundamental cases, which will then b e

dealt with separately . The first, which-rather unprecisely ex-

pressed-corresponds to the purely discontinuous elements o f

the monotone functions, is dealt with quite simply by appli-

cation of the theorem on the convergent series of positive terms .

The other, corresponding to the continuous elements of th e

monotone functions, is somewhat more complicate and require s

a certain chain of constructions . After having proved the theorem

for measures defined in the Borel class, we can then in th e

last section very easily transfer it to the abstract space by mean s

of the same method of coupling which we used in the third part .
The paper is concluded with some remarks on the questions

of the axiomatic theory of probabilities and the application s

thereof, which have suggested the problems of this paper t o

the author .

Concluding this paper, I wish to express my warmest thanks

to Professor BORGE JESSEN, and to Professor RICHARD PETERSEN ,

who have both taken interest in my work . I also thank Mis s

B . EHLERN-MOLLER, M. A., for the translation into English, an d

NIELS ARLEY, Ph. D ., for reading the proofs .



PART I .

On measure and integral in abstract space .
1 . Classes of sets .

Given a set E, containing at least one element . We shall t o

denote the elements of E use the letters x, q, z, -, and t o

denote subsets of E the letters A, B, C, • • • . As subset of E we

shall especially consider the empty set, which in the followin g
will be denoted by O . xsA will denote that the point x belongs

to the set A . Ac B denotes A to he a (not necessarily proper )

subset of B . Given a sequence of sets, be it finite A l , A 2 , • •, A k

or infinite A1, A 2 , • • •, A k , • •, then A1 -i-

	

. + A k , respectively ,

Al + A 2 + •

		

A k + - • • or C5 A n will denote the set of elements
n

belonging to at least one of the sets A n and will be called th e

sum of the sets A 1 , • • •, A k , respectively, A 1 , A 2 , • • , A k • - .When
we especially write 2 A n or Al + A 2 + • • • + A k , respectively ,

n
Al + A 2 + • • + A k + • , it is to be understood from th e

symbol that no two sets A n have a common elements . T̀ A n

(or HAn ) or A l

	

- A k , respectively, Al A 2 • • Al • • • will denot e
n

the set of elements belonging to all sets An , and will be
termed the product (the common part) of the sets A 1 , •, A k
respectively A 1 , A 2 , • , A k , • . The symbol A--B is only
to mean anything when Bc A, and is then to denote the se t
of elements belonging to A, but not to B . We shall cal l

E- A the complement of A .
In the remaining part of this section we shall deal wit h

classes of sets . A class of sets is a set whose elements ar e

subsets of E . To denote classes of sets we shall use German
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capital letters g, @3, • - . A E g will denote that the set A belong s
to the class of sets g . A class of sets g is called additive, re -
spectively multiplicative, if A l + A 1 , respectively A l A2 , belongs
to g, whenever A l and A 2 both belong to g . It is called subtractive ,
if A l -A2 belongs to g, whenever A l and A 2 both belong to g . I t
is termed totally additive, respectively multiplicative, if SA . , re-

spectively ZAn , belongs to g, any A. belonging. to g .
n

After these preliminary remarks it is now possible to set u p
the two following important definitions :

A class of sets g is called a ring, if it contains at least one se t
and is additive and subtractive .

A class of sets g' is called a Borel ring, if it contains at leas t
one sel and is totally additive and subtractive .

It is immediately evident that any Borel ring is a ring .
Suppose A = CAA., and it will be clear from the relation

n

An = A- (A-An),

	

( 1 , 1 )
n

	

n

which is valid whether the number of the sets is finite or
enumerable, that any ring is multiplicative, and that any Borel
ring is totally multiplicative . Finally we shall mention that th e
smallest possible extension of a given sel `t into a Borel rin g
is obtained as the product of all Borel rings, containing g . For
this product is easily seen to be a Bore] ring itself .

2. Functions of a set.

A function whose defining region is a class of sets g, and
whose values are real numbers (-oc and -H oo incl .), will be
called a function of a set . To denote the latter we shall in th e
following use Greek small letters . A function of a set p defined
in ` will be termed additive, if u (A 1 -]- - • - + A I-) = tL (A 1) + -

+u(At), when An E for n = 1 , 2, . --, k and A 1 + . + A h e ;~ .
In analogy tc will be called totally additive, if p ( . An) = >,u, (An) ,
when all An Es and SAn eg .

	

n

	

n
n

On functions of a set we now give the two following defini-
tions :

A function of a set ,t, defined in

	

will be called a content, if

n
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1)

	

is a ring .
2) 0u(A)<oc for every As Ej .

3) W is additive .
4) to any A£ there corresponds a set SSA,,, where all A n £3

and It (A n) < oc for all n, such that A c CSA 7i .
n

A function of a set p, defined in

	

is called a measure, if

1)

	

is a Borel ring .
2) 0p, (A) < oc f o r every A r .
3) tt is totally additive .
4) to any AE there corresponds a set CSA n , where all An £

n
and p,(A II )<oc for all n, such that AcC A

n

For a content p, defined in

	

the following theorems hold tru e

I) a (0) = 0 .
II) u (A) < It (B), when A c B and A e , B r .

III) p(B-A) = p, (B)-,a(A) when A , Bs and,u,(A)<oc .

IV) p(Ay4-A.,+ . . .

	

An)<p(A1)+N'(A2)+ .

	

+p,(A n )

when A i £ for i = 1, 2, • , n .
V) u ( . 4 )

	

lc (A n) when all A n--t and ~ A n
n

	

n

A measure being a content as well, the same theorems, I-V ,
hold true if lt, is a measure ; further we have in that case th e
following theorem s

VI) p (C.- A n ) < F1(An) when all An £a .
n

VII) tt (CS
An) =

lim p, (An) when Ai c A 2 c • • • and all A n £ .
n

	

n

VIII) a
(Z

A n ) = limp (A n) when Al D .4 2 D

	

, ( A i ) < oc
1

	

7t

and all An £ .

As the proofs of these theorems I-VI must be considere d
evident, we shall in this account confine ourselves to prov e
the theorems VII and VIII . From A l c A 2 c • • • it follows tha t

A n = A, + (A 2 - A l) + (A3 - A2) + . . . + (An- A n_1) +

	

,
77

and hence
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µ

		

An) = µ (A t ) -+ - µ (A2 -- A 1 ) + . . . -i- ,u (A n - A n t) + . . . =
\n

lim (w(A1)+µ(Az - At) + . . .
-1-F°(An- An

	

)1 )1 =

n

lim cL (An) ,
n

and the proof of VII is completed .
From A, DA,DA 1 D • • follows At --A2 cA 1 -A 3 c • • • . Since

µ(A i)<oe we ge t

i (Al--Z An) = µ(Ai)-,u ( T. A n )
I

	

} n

and, furthermore, since (A 1 - A n) = A 1 - `bJAn , it follows fro m
n

	

nVII tha t

µ(A 1 -~An l = lim,n(A 1 -Art ) =,1c(A 1 )-~lim t(A n) .
n

	

,

	

n

Taking these equations together, we obtain

µ f ZA = lim,u (A) ,
n

	

n

and the proof of VIII is completed .
As conclusion of this section we shall mention an importan t

theorem of extension, which tells how a content must be con-
stituted in order to be extensible to a measure . We must, however ,
first specify the latter notion . Let p be a . content defined in g ,
and µ* a measure defined in g* . We then call II,* an extensio n
of µ, if every A, belonging to g, also belongs to g*, an d
µ (A) = µ* (A) for any A ER . It is obvious that µ must satisfy
the condition of being totally additive, if it shall be possible t o
extend p, into a measure . This condition is, however, also suf-
ficient, the theorem being as follows :

Let p, be a content defined in g . This content can be extended to a
measure µ* defined in tg, when and only when µ is totally ad-
ditive . One of the possible extensions is the most restricted one ,
i. e . any other extension is an extension of this.

Without entering into the proofs, we shall indicate how the
most restricted extension, mentioned in the theorem, arises . Let
g* be the smallest Borel ring containing g . For every A E *

we put
lt* (A) = lower hound

	

a (A n ),

	

(2,1)
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where the lower' bound is to be taken over all 2/t (An ) , An E

n

for all n and A cCSAn . This function of a set defined in
n

will then be a measure.

For certain applications it is of interest to note that a

contentµ defined in , where µ (A) < oo for any A E , is totally

additive, when and only when it is valid for any sequence

of sets A,_ A 2, D • • • , where all An Ea and ZAn = 0 that
lim µ (An) = O .

3. The definite integral of non-negative functions .

In the following we shall deal with functions in E, whos e

value 'region consists of real numbers, -cc and +oc included .

By [f] we shall denote the defining region of f, i . e . the set of

xeE for which f is defined . The set of those xe[f], for which

f> a will be termed [f> a] . It is now evident what is to b e
understood by the symbols [f> a] , [[<a] ., [[<a], [f = a] etc .

Now suppose a Borel ring to be given. The function f is said

to be a function on

	

, if the sets [f], [f>a], [f> a], [f< a] ,

and [f<a] belong to

	

for any a . These conditions can b e
considerably reduced . Thus for instance f will be a functio n

on , if the sets [f] and [f>r] belong to

	

for any rational r .
If f is a function on

	

, we see that [f = a] E, since

[f = a ] = [f< a] [f >a] .

We shall further note that simple calculations with func-
tions on

	

will again lead to functions on

By fa we shall denote the contraction of f to A, i . e . the

function defined in A, for which fA (x) = f(x) for any xeA .

If f is a function on the Borel ring and 'leg, then also fA

will be a function on , as we have e . g .

[f. ► > a] = A[f>a] .

After these preliminary observations we may now go over t o
discuss the definite integral of non-negative functions .

Let p be a measure defined in , and let f be a function

on , which is non-negative, and takes on a finite or at most

an enumerable number of values . vn denoting the values take n

by f, the set [f = vn ] will belong to

	

for any n . We now
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put in = un ,U.([f = v n l), when this product exists, and in = 0, i f
either vn = 0 andµ ([f = vn l) = o0 or vn = oc and It ([f = vn]) = 0

The definite integral of the function f with respect to the measur e
µ, I (f), will then he defined by

I (f) = -1i,.

Next let f be a function on , which is non-negative . Together
with f we shall consider all functions g on where [g] = [f] ,
which are non-negative, and which take on a finite or at mos t
enumerable number of values, and for which g < f for every
xe[f] . The function g = 0 is an example of such a function .
We then put

I(f) = upper bound I(g) .

Similarly we introduce

I (f) = lower hound I(h) ,

where h runs through all functions on where [h] = [f], which
are non-negative, and which take a finite or at most an enumer-

able number of values, and for which h> f for every ,xa[ f] .
The function h = cc is an example of such a function . It is
now easily seen that we have

I (f)=1(f) .

For if we choose a number a, 1 < a< oc, and put

0 for xs [f = (1 ]

fa (x) _ an for xe[an < f<a" +i ], n = 0+- 1, LT: 2 , .

oc for xs [f = oc ]

then the function fa (x) is a g-function in the above sense ,
and the function afa (x) is an h-function . Thus we have

I (fa) I(f)

and furthermore (cf. theorem II page 13 )

I(a fa) = al (fn) > I (f)
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From these inequalities it follows tha t

I (f) < a I(f)

giving for a - 1

I (f) < I (f)

which in connection with the trivial relation

I(f)

	

(f )

gives the result wanted .

Thus we have been led to the following definition :
The definite integral of the function f with respect to the measur e

u. , I(f), is defined by the common value of I(f) and I(f)

I(f)=I(f)=I(f) .

If I(f) < oo we shall call the function f ,u-integrable)) . If f is
such a function, and A is a subset of [f] , belonging to , we writ e

I(fi) = f(x),u(dE) ,
A

and call this quantity the integral over the set A of the function f
with respect to the measur e

For the definite integral introduced above a number of theo-

rems are valid, of which we shall mention the following ones :

I) I(f)>O, and the sign of equality holds true when
and only when [f> 0] = O .

II) I(cf) = cl(f) for every c> 0 .

III) If [f] = 2 A n , where all An e , we have

I(f)=2I(f4 ) .
IV) If [f] _ [g] then I(f+g) = I(f)+I(g) .

V) If [f] = [g] and f<g then I(f) <1(g), and the sign
of equality holds true when and only when we have
either I(f) = o0 or I(f) < oc and ,u ([f < g]) = O .

t> If a function f is u-integrable, we have u [f = oo] = 0 ; thus the func-
tion is finite, at most with the exception of a zero-set .
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VI) If [fi] = [f2] _ . . . and fl <f2 < •
. . then

I (lim fn) = lim 1(f) .
n

	

n

VII) If [fl ] =[f2 ] = • • • then I (lim inf fn ) < lim inf I (fn) .
n

4. Absolutely continuous and singular functions of a set .
Leta be a Borel ring for which Eea, and let p be a measur e

defined in a . We shall then introduce the following definitions :
A bounded totally additive function of a set p defined in a

is called ,ca-continuous, if p (M) = 0 for every set MeR, for which
p (M) = O .

A hounded totally additive function of a set p defined in a is
called It-singular, if there exists a set NE with p(M = 0, such
that p(A) = 0 for every set AE a, which is a subset of E-N .

If a function of a set p is both s-continuous and p-singula r
it must vanish identically . This is seen as follows . For every
AE we have

p (A) = p (AN -I- (A -AM) = p (AN) -F- T (A AN) .

From p (N) (N) = 0 it follows that p (AN) = 0 and hence furthe r
that p(AN) = 0 . Since A-AN cE-N it next follows tha t
p(A-AN) = O . We thus have p(A) = 0 for every A .

Further it is evident that if p is absolutely continuous (re-

spectively singular), then also cp (c constant) will be absolutel y
continuous (respectively singular), and if p l and p 2 are absolutel y
continuous (respectively singular), then also pl + p2 will be ab-
solutely continuous (respectively singular) .

The following important theorem on decomposition is true
for functions of a set :

A hounded totally additive function of a set p defined in a can
in one, and only one, way he written in the for m

p=pk + p s ,

where p1. and Ts are bounded totally additive functions of sets defined
in a, and pk is ,u-continuous, and p s is eu-singular .

This theorem being of particular interest for our later ap-

plications of the theory we shall give the proof of it in the
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special case, which we are to apply later on, namely, where p

is bounded, and

	

is non-negative .

The fact that the decomposition can at most be carried ou t

in one way is seen as follows . Suppose

p = pÂ.+ps = p k +ps ,

where pk and pz are absolutely continuous, and ps and cps are

singular. We then have for every AE T

p k pk = p s p s

	

p* •

According to previous remarks p* is itself absolutely continuous ,

being a difference between two absolutely continuous function s

of a set, and analogously it is obvious that p* is singular .
Hence p* is identically zero, which was to be proved .

We shall now first observe that if the decomposition is pos-

sible, the set N corresponding to Ts will have the following

property : From AEg, A cE-N, and p(A) = 0 it follows

that 99(A) = 0, because p (A) = 0 implies pk (A) = 0, and fro m

AcE-N it follows that ps (A) = 0 . Conversely, if it is possible
to find a set NETS' with p(N) = 0, such that AE.?, AcE-N ,
and p(A) = 0 implies that p(A) = 0, then decomposition wil l

be possible . This is seen as follows : For every Ae we have

p(A) = p(A-AN)+p(AN)

We can prove the function of a set p t (A) = p(A-AN) to be
p-continuous. Suppose Ae and p(A) = O . Hence A-ANcE- N
and p (A- AN) = O . Thus we get pl (A) = O . Next we can prove
rp2, (A) = p (AN) to be p-singular with N as corresponding set .
From AE and AcE-N follows that AN = 0 and hence

992 (A) = 99(0) = O . Now the theorem will have been proved, if

we can show the existence of a set N having the propertie s
mentioned t > .

It will be natural in the course of the proof to form tw o

auxiliary theorems .

1 .

	

being a class of sets, and being a bounded function o f

t > Hence we further see that y(A) 0 implies that TA, (A) 0 and 99 s (A)> 0

for every As .
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a set defined in , we introduce the functions of a set p and p

by the definitions

rp(A) = upper bound 1) (B)

(A) = lower bound (B) ,

where B runs through all subsets of A . We then have the fol -

lowing lemma :

A totally additive bounded function of a set p, whose definin g

region

	

is a Borel ring, may be written in the form

p = p+ p

where (p and

	

p are measures' ) .

We shall not in this place give the proof of this theorem ,

as it does not imply much new, but let it suffice to remark

that with the conditions stated in the theorem it will be tru e

for every AE, since 99(0) = 0, that

9) ( A ) <_ O < (A) •

2. The other lemma is as follows :

Let be a Borel ring, containing E, and let p be a bounded

totally additive function of a set defined in . E may then be de-

composed into the form

E = E+ +E ,

where E l and E both belong to , and such that

99(E+ ) = 0 and (E-) = 0 ,

i . e . p (A)? 0 for every AE, which is a subset of E+ and p (A) <, 0

for every AE, which is a subset of E-. 2)

As a consequence of the meaning of p (E) we may for every

n (n = 1, 2, 3, • • •) choose a set An e, such tha t

p(An)< (E) +~ .

1) and (p are both bounded .

2) This decomposition is usually not unique .

(4,1)
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Let An E-A,1 , and we have

9, (An)+(An) = (E) = (E)+ (E) > (E)+9, (A n )- -1_

	

n ,

and hence

9) (An) > Ip (E) - In .

- P being a measure, we next hav e

fP(A
n)

= fP(E) -cp (An) ,

which together with (4,1) give s

99 (An)>-2
n

In analogy we get

fy(An )< 2n .

Next we put

Bn = ! An+p and Bfl = E-Bn = C~ An+p '
p=1

	

p

Thus we have for any p

- 99
~(

Bn) <-fP(An+p)<
Z̀
n + P

B+ rA +n + p '
i . e .

- fp(Bn) =0 .

By means of theorem VI, page 9, it is derived tha t

P(Bn) <

	

9 (An +P ) < G,12n +P = 2n .

If we now introduce

P = 1

E+ = C~ B
n

and E= E- E+ =`~ Bn

since

co

	

1

	

1
(4 , 2 )

we get
n

	

n

E .= E+ + E, '
D. Kgl . Danske Videnyk. Selskab, Mat.-fys . Medd. SRI, 9 . 2
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a decomposition of E having the properties mentioned in the
theorem . For we have, again by means of theorem VI page 9 ,

-~(E+) ~- (B,+~) = 0
- n

and consequently
y (E+) = O .

Since E c Bn and applying (4,2) we see that

(E )

	

(Bn)<
2 n

is true for any n, and consequentl y

p(E)=0 .

After these preparations we can easily establish the proo f
of our . main theorem. For every n (n = 1, 2, 3, . - • )

yln = - n du

is a bounded totally additive function of a set defined in g .
According to our second lemma E may be written in the form

E = Er -}- En

where En and En both belong to g, and such tha t

in (En) = tp,, (En)

	

0 .

For every A e g, where Ac En+, we now hav e

on (A) ? 0 i. e.

	

(A) - n u (A),

	

(4,3 )

and for every A e , where Ac ER ,

yi n (A) < 0 i. e . cp (A) < n p, (A) .

	

(4,4)

Applying (4,3) on En we get, due to En c E ,

(E) > y(En ) > n(En) .

Since y (E) < ao

we get limp(En) = O .

	

(4,5)
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If now

N = AEn , E-N = E-En = CSET, ,

	

(4 , 6)
n

	

n

N'En holds true for any r., from which it follows that

0 p (N) < p (En) ,

which relation together with (4,5) gives

p, (N) = O .

	

(4,7)

Now let AE be a set having the properties 4cE- N
(i . e . according to (4,6) A c CSAEn

)
andµ (A) = O . Consequentl y

1

	

n

	

I
we can show that y (A) = 0, because due to theorem VI, page 9 ,

	

P (A) = P (e AE,T)

	

P (AEn ) ,
n

	

1

	

n

and since AEn c E n (4,4) gives

99 (A) <

	

n p(AEn) ;
n

since µ(A) = 0 we know, however, that p,(AEn) = 0 for any n, i .e .

p (A) = 0 ,
q . e . d .

5. Indefinite integral .

zg being a Borel ring, containing E, p being a measure de -
fined in 3 and f being a function t.-integrable on tg with (f] = E ,
we now introduce the indefinite integral by the following de -
finition :

The function of a se t

p(A) = I (fA) = f(x)µ(dE)
A

is called the indefinite integral of the function f with respect to the
measure p .

In the special case f > 0, we get for any Asg

0 < 99 (A) < p(E),
2*
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since 94E) = I (f) < oo, and by means of the theorems I an d
III, page 13. The theorem III, page 13, further shows that p
is totally additive . From p (A) = 0 it follows that p [fA > 0] = 0 ,
and hence, further, that p (A) = 0 . Consequently we see that the
function

	

is p-continuous .
On the exact connection between functions of a set an d

indefinite integrals we have the following theorem :
A function of a set p , whose defining region R is a Borel ring,

is the indefinite integral with respect to the measure p of a function
f with [f] = E, which is p-integrable on when and only when
it is bounded, totally additive and p-continuous .

We have seen above that f > 0 implies that p is bounded,
totally additive and p-continuous . As we shall in the following
chiefly consider non-negative functions of a set, we shall in thi s
account confine ourselves to mention how the function f may
be defined in the following special case :

For a function of a set p, which is non-negative, bounded,
totally additive and p-continuous, and whose defining region is
a Bore! ring, and a bounded measure p, may be defined a functio n
f on , which is non-negative and p-integrable, and where [f] = E ,

such that for every AE

p (A) = f(x) (dE) .
A

For any å, 0 < a < Do, we can determine a decomposition of E

E = Ea +Ea ,

where Ea and Ea both belong to , such that the functio n
Y a = p- a p has the properties

ip a (Ea) = 0 and Ÿ'a(Ea) = 0

p (A) a p (A) for Ae and Ac Eå

p (A) < a p (A) for A E and A E n

(cf. the lemma page 16), and this decomposition may be carrie d
out in such a way that the following conditions are als o
satisfied :

i . e .

l

1
(5 , 1 )
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1) Eå = E

2) En D E z+ for b> a

2 1

3) Ea = `, Ea for a = upper bound {al , a 2 ,• • •}
n

4) ~̀En=O .

(As to proof, see JESSEN [3] . )

For every xEE we shall now find the values of a for which
x belongs to Ea+ . These values will constitute a bounded close d
interval . The fact that it is an interval is a consequence of 2) ,
the fact that it is bounded is a consequence of 4), and th e
fact that it is closed is a consequence of 1) and 3) . The functio n
f (x) is now introduced by the following definitio n

f(x) = max {a ; ;xE% al ,

or expressed in another way

xsEå for 0<a< f(x) .

The function f for which [f] = E is finite and non-negative ; we
further see that [f > a] = Ea+, from which follows That f is a
function defined in . Thus, for any A E I (fA ) exists . Finally
we shall show that

p (A) = I (1.A)

For this,purpose it will suffice to show that the inequalitie s

I (g) < (A) < I (h)

	

( 5 , 2 )
hold true, when g and h are functions on ,where [g] = [h] = A ,
which takes on only a finite or enumerable number of values, an d
for which g < fA and h > f1 for any xEA .

being totally additive, it will suffice to show the inequal-
ities (5,2) in the case of the functions g and h being con-
stant . Thus let g (x) = cl and h (x) = c2 for every xEA . From
g (x) = c l

	

fA for every xEA it follows that Ac [f > e 1 ] = ET,
and hence further by means of (5,1) tha t

P (A ) > et ,a (A) = I (g) •
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From h (x) = c 2 > fA for every xEA it follows that Ac [f < c] = E T,

for any c< c 2 , and hence by means of (5,1) tha t

w (A) < c 11,0) .

This inequality being valid for any c> c 2, we get

y(A) < c2 (A) = I(h)

and the proof is completed .



PART II .

On monotone functions . Functions of a set

on Bore! classes .

6. A theorem on decomposition .

The purpose of this section is to give an account of a theore m

valid for monotone functions, a theorem which we shall appl y

in the following'>. We shall confine ourselves to nondecreas-

ing functions, but this is of no significance, as analogou s
theorems are immediately seen to he valid also for non-increas-

ing functions. The non-decreasing functions are fixed by th e

following definition :

A function f(x) defined in a < x< b is called non-decreasing ,

if f(x2) > f(x1)for x 2 > x 1 .
Together with the function f(x) we shall consider two other

functions, f(x) and f (x), determined by the following definitions :

f (x) = upper bound. f(O

	

(6,1)
a<< x

Hence the following inequalities are immediately seen to be true

f(x) < f(x) < f(x)

	

(6,3)

1(Xi) < f (x 2) for x1 '< x 2

	

(6 ,4 )

f (x i ) < f (x2 ) for x 1 < x 2 .

	

(6,5)

Cf . CAßATHÉODOIiI' [I] :

= lower bound f (t) .

	

' (6,2 )
ï<s< b

1)
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From (6,3), (6,4) and (6,5) the two functions f(x) and f (x) are

seen to be non-decreasing .
We shall now show that f(x) has in every point x a limit

value from the left, f(x - 0), as well as a limit value from the

right, f(x + 0), and that

f(x - 0) = f(x) (6,6 )

f (x -F- 0) = f (x) . (6,7)

In order to prove the first of these relations we must, consequently ,

prove that we can to an arbitrary r> 0 determine a d> 0 such
that

f(x)<f' ( O <f(x)+ E

	

(6 , 8 )

x- d<<x .

From (6,4) it is obvious that the right side of (6,8) will be
true for every E <x . From (6,1) it follows that we can fin d

a point É i , a< Fi < x, such that

f(4t)> f(x)-s .

If d = x- the left hand side of (6,8) will, because of th e
monotony of f(x), be true for every E of the interval x-d<t <x .
In exactly the same way (6,7) is proved .

For every x we shall introduce the quantity S (x) by the

definition

S ( .x) = f(x+0)- f(x -0) = f(x)-f(x),

	

(6,9 )

and call it the status of the function in the point x .
f(x) is continuous in the point x (cf. (6,3)) if S (x) = 0

for this value of x, whereas the function is discontinuous i n

the point x if S (x) > O .

In the remaining part of this section we shall assume th e
function f(x) to he bounded in the interval a< x< b, i . e .

f(a + 0) > - x and f(b - 0) < x .

	

(6,10 )

We shall denote by A„ the set of the points x, a< x< b ,

in which S (x) > I (n positive, integer) . Of this set of points i s
n

for
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true that it is either empty or consists of a finite number o f
points. Thus let xi, x 2 , • • •, xp be p points of the interval

a < x i < x 2 <

	

< xp < h, in which S (x) > 1 . We then have
n

f(b- 0) f(a+0) > (f( b 0) -f(xp+0))+

	

(f(x i -f-O)-f(xi-0) )
i= 1

+(f(xi-- 0) -f(a-}-0))>p•7 ,

	

(6,11 )

and hence
p <n{f(b -0)- f(a-f-0) } .

This being so, it is easily seen that the set, A, of points of dis -
continuity of the function g x) of the interval a < x < b is at mos t
enumerable, because

A = Ai+A2 . . . .

	

A. + . . .

For any choice of the two points x i and x2, of the interval
a < x < b, x i < x2 , we introduce the quantity Vf(x i , x 2) by the
definition

	

Vf(x 1 x2) = f(x2) - f (xi),

	

(6 , 12)

and call it the variation of f(x) in the interval considered )) .
Furthermore we introduce the quantity D 1 .(x i , x2 ) by the de-
finition

Df(x i, x2) = (f (x i•+ 0) - f (x i)) +S S (~) + (f (x 2) f (x2 - 0)) , (6 . 13)

where the summation is extended over the (at most enumerabl y
many) points of discontinuity of f(x) contained in the interva l
x i < x < x . . This latter quantity, Df.(x i x 2), will be called the
total discontinuity of f(x) in the interval considered 2> .

By a transcription analogous to (6,11) it is clear that the
following inequality holds true for every p concerne d

p
S(~t) < f(x2 -0) - f(x1 +0) ,

t= t

1) It is immediately evident that V1 (xi , x 2)

	

O .

2) For any choice of xi and x2 (x i <x 2 ) is valid that Df.(x l ,x 2)>O .
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and hence
S G' i) < f(x2-0)-f(x1+ 0) .

	

(6,14 )

Inserting (6,14) in (6,13) we obtai n

Df(xi,x2)

	

(f(xi+0)-f (xi))+( f ( x2, --0) -f(xi+0))+(f(x2) - f(x2 -0))

f(x2)-f(xl) = Vf (xl , x 2) .

	

(6,15)

Thus we see that the total discontinuity of an interval neve r

exceeds the variation of the function .
From the definition (6,13) it is immediately obvious tha t

Df (xi > x 3 ) = Df (xl , x 2) -I-- Df(x2 , x 3 )

	

(6,16)

for x 1 < x 2 < x3 .

After these preliminary remarks we can go over to the proo f
of the important theorem of decomposition :

Let f(x) be a bounded non-decreasing function defined i n

a< x< b . This function may then be written a s

f (x) = g (x) + h (x),

	

(6,17)

where both g (x) and h (x) are non-decreasing /Unctions, and where ,

furthermore, g (x) is continuous, whereas for h (x )

V1, (xi , x 2 ) = Dh (xi , ,x,) = Df (xi , x 2)

	

(6,18 )

for any choice of x 1 and x2 , a < xi < .x2 < b .

We choose a fixed point xo of the interval a < x < b and

introduce a function h (x) by the definitio n

-Df (x, xo) for a<x<xo

h (x)

	

0

	

forx= .x~

D f (xo, x) for xo<x<b .

We shall now prove the function thus defined to have th e

properties expressed in the relations (6,18) .
By means of (6,16) it is immediately seen that for two arbitrar y

numbers xi and x2 , xi < x2 , we have

(6,19)
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Vh,(x 1 , x2) = h(x2)-h(xi) = D f (xi, xø),

	

( 6 , 20 )

from which it particularly follows that h (x) is a non-decreasin g

function . (6,20) in connection with (6,13) gives

h (x2) -- h (x1) < f(xi + 0) - f (xi) (6,21)

h(x2)-h(xi) < f(x2)-f(x2-0), (6,22)

and (6,20) in connection with (6,15 )

h (x 2) - h (xi) < f(x,) - f (x1) • (6 , 23)

(6,21) being true for every x1 < x 2 , we can deduce the followin g
inequality

h (x 1 + 0) - h (xi) > f(x1 + 0) - (xi) . 1 )

	

(6,24)

Similarly we deduce from (6,23) tha t

h (x 1 + 0) - h (x1) < f(x i + 0) - f (x i) •

	

(6 , 25)

From (6,24) and (6,25) it follows for every x, a < x< b, that

h(x+0)-h(x) = f(x+0)-f(x) .

	

(6,26)

After the analogy of (6,26) we can deduce

h(x)-h(x-0) = f(x)- f(x-0) ,

which in connection with (6,26) give s

h(x+0)-h(x-0) = f(x+0)- f(x-0) .

By application of (6,20), (6,26), (6,27) and (6,28) the definitio n

(6,13) gives

Dh (x i , x2) = Df (x 1 , xo) _ Vh (x l , x2) •

Thus we see that the function h (x) has the properties expressed

in the relations (6,18) .
The proof will be complete, if we can prove the function

1) The existence of h (x 1 + 0) is a consequence of h (x) being a non-decreasin g

function .

(6,27)

(6 , 28)
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g(x) = f(x)-h(x)

	

(6,29 )

to be non-decreasing and continuous . From (6,29) we obtain

g (x2)-9(x1) = (f(x2)-f(xi))-(h(x2)-h(xi)) ,

which for x i < x2 by application of (6,23) give s

g (x2 ) > g (xi)
Thus we get

g (x + 0)- g (x- 0) = (f(x+0)-f(x 0))-(h(x+0)-h(x-0)) ,

which by application of (6,28) give s

g(x+0) = g(x-O) .

Since we, furthermore, (cf. (6,3), (6,6) and (6,7)) have the in-
equalities

g (x - 0) < g (x) < g (x + 0)

the proof of the continuity of g (x) is completed .
We shall conclude this section with some remarks on th e

connection between the various decompositions of f(x) . In case

f (x) = g (x) + h (x )

is a decomposition with the properties mentioned in the theorem ,

it will be true (for every c) tha t

f (x) = (g (x) + c) + (h (x) c )

will also be so, and thus all decompositions will be comprised .

Let for instance
f (x) = g i (x) + h 1 (x)

be a decomposition having the properties mentioned in th e

theorem . Then we can prove that h i (x) = h (x) c (and hence

gi(x) = g(x)+c) .
From (6,18) it follows tha t

Vh (x1 , x2) = Vh (x1 , x,) (= i)f. (xi , x 2) )

for x 1 < x2 which, if we substitute x for x 2 , gives



N r . 9

	

2 9

h(x)-h(x 1) = h 1 (x)-h i (xi ) for x>xi

or, if we substitute x for x 1 and xi for x,

h (xi) -- h (x) = h 1 (x 1 ) - hi (x) for x < x 1 .

Thus we have for every x, a< x< b ,

h (x) = hi (x) - (h1(x1) - h (xi)) = h 1 (x) c ,

which was to be proved .

7 . Functions of a set having the Borel class as defining region.

The set of points lying on the axis of the real number s
constitutes a set of points, which in this section will be called E .
When we in this section speak of a set, it will be understoo d
to be a subset of E . By an interval I will in the following b e
understood a set of points having the form [a < x< b], where
a and b are finite. All the intervals form a class of sets . The
smallest extension of iÿ to a ring we shall denote by Csi . It i s
clear that this ring consists of the empty set together with al l
finite sums of intervals. The smallest extension of to a Borel
ring will he called . This class of sets we shall call the
Boret class mi the axis of the real numbers, and every set E,13
Will be called a Boret set .

A function of a set p defined in will be called a func-
tion of an interval . A function of an interval p will be calle d
continuous from the inside, if for every interval I = [u < x < b ]
and for every sequence of intervals 1 1 , I,, • • •, In , • • •, where
In = [a < x<bn], b i <b,< •• • <b and lim b h = b, we have
that p (I) = limp (In) .

	

n

n
On the connection between functions of an interval an d

measures the following theorem can be proved :
A finite, additive function of an interval rp can then and onl y

then be extended to a measure p 1 defined in , when it is non -
negative and continuous from the inside .

We shall first prove the conditions to be necessary . From p* > 0
for every A.e .8 it follows that p > 0 for every A e ` , i .e . p is non -
negative . From a < b 1 < b9 < • • < b and lim b it = b it follows that
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Z [bn --<x<b] = 0 ,
n

and hence further (see theorem VIII, page 9 )

hm ([bn < x < b] ) = O .

	

(7 .2)

Since
cp ([a < x< b]) = p ([a < x < b n ]) + y~ ([b n < .x <b] )

for every n, (7,2) implies tha t

lirncp([a<x<b n ]) =cp([a<x<b]) ,

i . e . y' is continuous from the inside .

Next we shall prove the conditions to be sufficient . The ex -
tension can be performed in such a manner that we first exten d
tit to a content tp defined in CAS, and then prove that this conten t

can be extended to a measure (defined in Q3) .
For every set AO) we put

(A) = 0 when A = 0

n

tp (A) = ~cp(Ii) when A = I1 +I2 + • • • + In, l )
i= 1

The function of a set tfi thus derived, is at once seen to be an
extension of cp to a content. If 4 is totally additive, this conten t
can be extended to a measure defined in l3 (cf . the theorem o n
extension page 10) .

So our problem is to show that if A l , A2 . • • , A n , • . •

is a sequence of sets, all belonging to 0, and for which
A 1 DA,D •- DAn D - and t',(A n)> k>0 for all n, then

the set 5̀ A n is empty (see page 11) .

Since An e( it can be written in the form

(7,1 )

p
anp < x < bnp ] ,

whereL'' is to denote that the number of the addends is finite .

yp being continuous from the inside, we can for every n deter -

mine a set 13n c An

1) It can easily be proved that this definition determines the functio n
ip(A) uniquely .
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BR =

	

[anP < < cn

	

np cnA
<

bn p
)

p
such that

V (An-Bn) <
2n

If we put
C It =B1 B 2 . . BR

we have Cnc BR and G 1 D C 2 D • • • . Further we get

A n - Cr., c (A, - B l ) ~-- . . .

	

(A R -Bn ) ,

and hence, by means of (7,3) ,

2 p (An - C n) <
2

+ . +< k

Since Ili (An) > k, we see that Cn is non-empty for every valu e
of n . In every Cr, we may thus choose a point xn , and by that
get the sequence x1 , x2 , • - , xn , • . Since C r, c An c Al for every
n, we see that this sequence is bounded . Thus it is possibl e
to choose a convergent subsequence from it. Its limit point i s
called x . Due to BRDCnDCn+1 D - . all the points xn, x

n+1' . .
will belong to Bn , which will further imply that

(7,3)

xfi .Z* [any
p

x

	

c tip]cAn .

Thus we have
xEZA n ,

n

i . e . the set ZAn is non-empty, which was to be proved .

If the function of an interval in question for every interval
[a < x< b] has the value b - a, we shall call the measure ,
obtained by the extension and having as defining region,
the Borel measure on the axis of the real numbers, and therefore

will also be called the class of Borel measurable sets on the
axis of the real numbers .

If f (x) is a finite function defined in E, it is possible from
this to form a finite additive function of an interval by the
following definition

([a < x< b]) = f(b)-f(a) .

	

( 7 ,4)
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Conversely it is possible to find to a finite, additive functio n

of an interval y a function f(x) defined in E, so that (7,4 )
is satisfied for every interval, and it is clear that the dif-

ference between two such possible functions f is constant .

The function of an interval y is then and only then non-

negative, when it is valid for any pair of numbers (a, b) where
a< b that f (a) < f (b), i . e . when f (.x) is non-decreasing . We see
furthermore that y is then and only then continuous from th e

inside, when f (x) is continuous from the left for every x .
Applying the theorem page 29 we now have :

To a finite function f (x) defined in E we have then and only
then a corresponding measure y defined in 93, so tha t

m([a <x<b]) = f(b)-f(a)

for every interval [a < x < b], when f(x) is non-decreasing an d
continuous from the left . This measure y will be uniquely defined .

If F(x) is a function in 93 and AE 9i, we denote the inte-

gral of F(x) over A with respect to the measure y by

~F(x)df(x )

or, if especially A = [a < x< b] ,

v
F(x) d f (x) .

a

This integral is called the Lebesgue-Stieltjes-integral with respec t

to f(x)

8. Functions of a set having Q3 1 as defining region .

The set of points x, belonging to the interval 0 < x< 1 ,
forms a set of points, which we in this section shall denote b y

El , and speaking in this section of a set, we shall always mea n

a subset of E 1 . The set of intervals [a x < b] , 0 a< b < 1 ,
forms a class of sets 1 . The smallest extension of z i to a ring

we shall denote by 0 3,, and the smallest extension of to a

Borol ring we shall call n3 1 . This class of sets 93 1 we shall cal l

the Borel class of the interval (0,1) . It is evident that the theorems
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formulated in the preceding section will still hold true, eve n
if we confine ourselves to the interval (0,1) .

Now suppose given a finite function f (x) defined in 0 < x < 1 ,
which is non-decreasing and continuous from the left in ever y
point. We may then (cf. the theorem page 32) uniquely deter -
mine a measure

	

defined in 9 3,, such tha t

T* ([a < x < b]) = AO- f(a)

	

(8,1 )

for every choice of a and b, 0 < a <b < 1 .
In the following we shall put f (O) = 0, which does no t

limit the generality of our investigation .

According to the theorem on decomposition (page 26) f(x)
may be written in the form

f(x) = g (x) + h (x) ,

	

(8,2)

where g (x) and h (x) are non-decreasing functions, g (x) being
furthermore continuous, whereas for h (x)

of (a, b) = D1, (a, b) = D f(a , b)

	

(8 , 3 )

for every choice of a and b, 0 < a < b < 1 . This decomposition
can, furthermore, be performed in such a way that g (O) = 0
(and hence h (0) = 0), and is in that case uniquely defined .
Since f (x) was given to be continuous from the left and g (x)
is continuous, it follows that h (x) is continuous from the left
in any point .

We can now uniquely determine two measures cy1 and p ~.

defined in 93 1 , such tha t

Pi ([a < x <b]) = g(b)-g(a)

	

(8,4 )
and

cp ( [a < x < b]) = h (b) - h (a)

	

(8,5)

for every choice of a and b .
Regarding the connection between

	

and

	

we can
prove the relation

p'" = T1 (~) + 94(A)

	

(8 , 6 )
for every set As3 1 .

D . Kgl . Danske Vidensk. Selskab, Mat .•Iys. Merid, XXI,9 .
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We only remark that the function of a se t

Tt(A)+T (A)

is a measure defined in

	

and that, if A is an interva l
[a < x< b] , it will take on the valu e

92([a

	

x<b])-{-rp2([a < x<b]) = g(b)-g(a)+h(b)-h(a) ,

which by application of (8,2) can be changed t o

([a < x<b])+~P2([a

	

x< b]) = f(b)-f(a) .

If we compare this result with (8,1), we shall see that the tw o
measures (A) and y (A) + (A) coincide in every interval .
Consequently they are both an extension of the same functio n
of an interval, and will naturally coincide for the whole of rU l .

We shall conclude this section with an investigation of what
values the two functions of a set y and Pz can take on in 0 1 .

From 0 c Ac E l for every A e i1 it follows tha t

0 < Ti (A) < y9 i' (El) = g ( 1) ,

and since g (x) is continuous, it will take on any value go between
0 and g(1) for at least one value of x, x = xo . If we choose
A = [0

	

< xo] we get Pi (A) = go . Thus we see that the value s
of

	

constitute a closed interval .
The points of discontinuity of the function h (x) (or, wha t

is the same, of the function f(x)) form an at most enumerabl e

set of points N = On) situated in the interval 0 < x < 1 . 1 > By
th,e saltus at a point x we understood (cf . (6,9)) the quantit y

S(x) = h (x+0)-h (x-0) .

For the special case x = 0 we writ e

S(x) = h(x+0)-h(x) .

1 ) The fact that the eventual points of discontinuity are situated in thi s
half-open interval is a consequence of f(x) being continuous from the left .
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9, 2 (A) =

	

` (8,7)
Y E A

where the summation is extended over the-at most enumerably
many-points of discontinuity for h (x), belonging to the set A .

We first note that the function of a set

(8,8)
t l E A

is a measure defined in

	

If, especially, A is an interval
[a

	

x < b], we have

S (~i) = h (b) - h (a) .
E A

Applying (6,12), (6,13), and (8,3) we ge t

h(b)-h(a) = h(a-{-0)-h(a)

	

S(~)-I-h(b)-h(b-0) ,

where the summation is extended over the points of discontinuit y
situated in the interval a< x < b . Since h (x) is continuous fro m
the left (h (a) = h (a-0) and h (b) = h (b - 0)) , this may be
written

h (b) - h (a) = ~ S (F Z ) ,
i E A

S (~i)

(8 , 9 )

and the proof of (8,9)

If we compare (8,9)
is completed .

with (8,5), we see that the two measure s
(A) and IS (0i) agree in

ti E A

are both an extension of the
thus they must coincide in

every interval . Consequently they

same function of an interval, an d
the whole of 0 1 , and we have

proved (8,7) . The formula (8,7) may also be

44 (A) = 7 S (F i) •

	

(8,10 )
F i EA N

If the set A consists of only one point a, we get the special cas e

çå (A) = S (a) .

	

(8,11)

written

3 *
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Thus we have realized what values the function p2 can take on .
If the number of points of discontinuity of the function f (x)

is finite : $1, E2,' respectively enumerable i;,, . ., . . ,

the values of p2 will be all numbers of the form

e 1 S (tl ) + e2S ( y ) + . . + en S ( n ) ,

	

( 8 ,12)
respectively

e 1 S( ;.; 1)+ e.,S(~2)-}- . . . +enS($n)-I . . .

	

(81 3)

where the e's independently Of each other take on the values 0 or 1 .



PART III .

A theorem on bounded measures i n
abstract space.

9. A theorem on series of positive terms.

Given a convergent series of positive term s

a = S an = al - ;- a, -f- . . . + an,* .

	

(a n > 0) .

	

(9,1 )
n= 1

Together with this series we shall consider all series having
the form

en an = e i a l -I--e 2 a 2 -I- . . . +en an +

	

(92)
n =

where the e's independently of each other take on the value s
0 or 1 . Each of these series (9,2) is convergent, and its sum .
satisfies the relation

en an

	

a .
n= 1

We shall now prove that the set of numbers, whose element s
are the sums of the series (9,2), is closed . Let

s l = all +a 12 + . . . + a l + . . .

S2
= a21 + a22 + . . . + a, n + . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	

(9,4 )

Sm- aml+ am2 + . . +amn+ . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(9,3)
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be a sequence of series of the form (9,2), i . e . an,n has for every ni

one of the values 0 or a n , and let furthermore the sequence

sl s 2

	

,
s177 ,

. . .

be convergent to the limit value s . We shall now prove tha t
among the series (9,2) at least one has the sum s . In the se-
quence of numbers

all, 0 21 . . . , an71' . . .

at least one of the numbers 0 or a l will appear an infinit e
number of times. Let a denote one of these two number s
satisfying this condition . In the sequence of pairs of number s

there will, consequently, be an infinite number having aŸ in th e
first place . Let a2' be a number which in the corresponding
subsequence appears an infinite number of times in the secon d
place . In the sequence of set of numbers

(all' a12, ai3), (a21, a22, a23), . . •, (am

	

amt' an,3),
. . .

there will thus be an infinite number having (a, a2) in the
two first places. Let 4 be a number which in the corresponding
subsequence appears an infinite number of times in the thir d
'place . By continuing this process the number a7 is defined fo r
every rt . The series

ai -{- a2 -}-

	

+. a n + . . .

	

(9,5 )

is, being a subseries of (9,1), convergent, and we shall no w
prove that it has the sum s . Suppose we for the present temi

the sum of it s* . The convergence of (9,1) implies that to a
given e > 0 we may determine N, such tha t

E
an < 3 .

n=N+ 1

Moreover we may, among the series (9,1), determine one havin g
a , (4' ,

	

, a in the N first places
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s1 - ai .+a2+ . . .+an+ai,h-l+ai N +,+ . . .,

	

(9,6 )

and such that s - s i
E<, .

Accordingly we hav e

s~: -s = (s* (ai + . .
.+ a;,;)) - (si(a + . . .+a M1)) +(si s) I

< Is* -(ai + . . . .+ aN) I+Isi-(ai + . . . +ak) I +I s i -s l

<3+~+3 =E .

Hence we obtain
s* = s

and the proof is completed .

10. Bounded measures having

	

as defining region .

In II, 3 we have already mentioned the class of sets 1 ,. th e
so-called Borel class, defined in the interval (0,1) . The interval
[0 < x< I] was termed El . Now let y be a bounded measur e
defined in 0 1 , i . e . cy (E 1 ) < a . On such a measure we shall
in this section prove the following theorem :

The set of numbers whose elements are the values of a bounde d
measure P defined in SYi is closed.

Together with the measure P we shall consider the functio n
f(x) defined in 0 < x < 1 determined b y

y ([0 < x<a]) = f(a)

f(0) = O .

	

(10,1 )

The non-decreasing function f(x) may then be decompose d
to the form

f(x) = 9 (x) + h (x )

(cf. (8,2)), and this decomposition givesr ise to a decomposition
of P to the form

g, (A) = 991 (A) + GPs (A )

	

(10,2 )

for every AEl1 (cf.(8,6)) . The set of points of discontinuity o f
the function f(x) is at most an enumerable set N = {``) W e
have previously shown that the set of numbers X11 1 , whose
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elements are the values of pt (A), is closed. We have further -
more (cf. (8,10)) proved tha t

p2 (A) =

	

(10,3 )
',i .e A N

for every A e O1 . The set of numbers M,, whose elements ar e
the values of p2 (A), has (cf. (8,12) and (8,13)) either the for m

el S (c l ) -F-e, S (r~)+ . . . -i- en S (F n )

	

(10,4 )
or

er S(E 1)+e2 S( 2)+ (10,5)

If the set of numbers is of the form (10,4), it is obvious tha t
it is closed, as' it is finite . If it is of the form (10,5), we ma y
from the result obtained in the previous section conclude that
it is closed .

The set of numbers M, whose elements are the values o f
p (A), is according to (10,2) produced by adding elements o f
M2 to elements of Mt . If we can prove that the sum of a n
arbitrary element a of M1 and an arbitrary element ,8 of M 2

gives an element of M, our proof will be completed . Let, there -
fore, p 1 (A) = a and p 2 (B) ,8, AEO 1 , Be 31 . Our task i s
now to show the existence of a set A"e O t , such that

p (A') = a + F3 .

	

(10,6 )
If we put

A* = (A-AN) + RN,

	

(10,7 )

we have A"e31 . It now follows, on account of (10,2), tha t

p (A") = p (A -AN) + (BN) =

pl (A - AN) + p2 (A - AN) +- p l (BN) + p2 (BN) .

AN being at most an enumerable set, it follows tha t

p l (AN) = O .

	

(10,9 )

From A - ANc L 1 - N follows

o<p0(A-AN)_<_p 2 (Ft N)=o .

	

(10,10)
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After the analogy of (10,9) we hav e

(p 1 (BN) = 0 .
Finally we derive

9'2 (BN) =

	

S (_) = 9)2(B) = ,B .

	

(10,12 )
,EB N

Comprising (10,8)-(10,12) we get

P(A*) = a+0+0+,ß = a+ /s .

Hence the set A' has the property expressed by (10,6), an d
the proof is completed .

11 . Bounded measures in abstract space .

In this section will be shown that the theorem on measure s
defined in 3 1 , formulated and proved in III, 10, is valid in th e
abstract space too .

Let E be an arbitrary set, and let tg he a class of sets
containing E . Further let tp be a bounded measure defined i n
g, i . e . (E) < Do . Without loss of generality we may assum e
that 2p (E) = 1 . On such a measure we shall in this sectio n
prove the following theorem :

The set of numbers whose elements are the values of a bounde d
measure c1i defined in zg is closed .

To prove the theorem we shall make use of a representatio n
from the class of sets g to the class of sets X3 1 , whereby th e
theorem is retraced to the theorem proved in the previous section .

Let
A 2 , . . . An ,- . .

	

(11,1 )

be a sequence of sets all belonging to g, and for which th e
corresponding sequence of number s

`f' (A 1)n 'q) (A2), . . .,

	

(An), . . (11,2)

is convergent to the limit value g . We now prove the existence
of a set Ae, for which

2b (A) = g .

	

(11,3)
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Without loss of generality we may assume that A 2 = E-A 1 .
The importance of this special choice of the set A, will be
evident later on .

The coupling mentioned above will now be carried out b y
two stages :

O. To E is coupled the interval (0,1) . To the sets C 1 = Ai ,
Co = 0 and C 2 = E- A 1 , all belonging to 5', are, in the order
given, coupled the intervals (0, ), 0, i) and (a, 1) . The sets

0 11 = A3A,, Clo = 0 and C l , = A l (E-A9), which are all sub -
sets of C 1 and have the sum C 1 , all belong to . To these ar e
coupled, in the order given, the intervals (0, ), G, a) and (a, -,1s) .
The sets C, 1 = (E-A 1 ) A 2 , C,o = 0 and C 2 ) = (E-A1) (E-A2 ) ,
which are all subsets of C 2 and have the sum C 2 , likewis e
belong to `3' . To these are coupled the intervals (a, ),

	

,'a)
and (G, 1) . The sets Cm = A 1 A 2 A 3, Cllo = 0 , Cl~1 = A 1 A 2, (E-A O ) ,
0 1 , 1 = Al (E A 2 ) A 3 , C 1 20 = 0 and 0122 = A l (E - A 2 ) (E - A 3)
all belong to Zÿ . To these are coupled the intervals (0, 7), (' 2,) ,
(2~

2
, jr), (a, -), S7) and (-A, D . Thus we go on infinitely .

Each of the produced C-sets will belong to . It is a product
of as many factors as the number of indices . A number 0 i n
the last place of the series of indices means that the set i s
empty. A number i in the n'th place of the series of indice s
means that An appears as a factor, whereas a number 2 in the
n'th place means that E - A 1, appears as a factor. Thus we giv e
as an example

01121,121 = A 1 A 2 (E--A 1 ) A,A 6 (E-A6) A 7

C2121120 - 0 .

As an illustration we have in fig . 1 (cf. the end of the paper )
given an outline of this decomposition and the correspondin g
intervals .

II) . To each number of the form

(n positive integer, k = 1, 2 , . , 3n -1 )
3

is now coupled a set C A . If the number k- is in the interior of_

	

3 n

an interval, to which we have above coupled the empty set,
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C k is put equal to the empty set 0 . Concerning an end point o f
3 "

one of the intervals shown in fig . 1 we shall, however, procee d
as follows. We select all the sets in our outline of which on e

end point of the corresponding interval is the number -3tt and

whose series of indices does not comprise the number 0, an d
C 1, equal to the product of these sets . a being a Borel ring, and
3<

all the sets in fig . 1 belonging to a, the same will be true fo r
any set C1 . . By this method we ge t

3"

C8 - C1 C12 C122 "

C 3 = CIA C 112 C 1122 • . .

C§ = C12 C 121 C'1211 - . .

and so on .

The decomposition (fig . 1) carried out in I) is now modified
as follows . To the set E is coupled the interval 0 < x < 1 . To
the sets C 1 - Ci. , C A , 0, C3 and C 3

	

C4 , in the order given, are
coupled the interval 0

	

x<

	

the point x = 4, the interva l

4 < x < 3 , the point x = 4 and the interval 3 < x < 1 . To th e
sets C 11 - C , Ci , 0, C 1 , C 12 - C 2 - C A (which, as we know, hav e
the sum C1 - CA) are coupled, in the order given, the interva l
0 < x< , the point x = ?s, the interval < x < s , the poin t
x = - and the interval 6 < x < s , and so on. This new decom-
position of E and the corresponding intervals are outlined in fig . 2 .

It must be emphasized that any of the sets appearing in th e
outline fig . 2 belongs to a, as well as the fact that each of th e
sets appearing in the sequence (11,1) are obtained by summa-

tion from the sets in the figure . For instance we thus have

A 1 = (Cl - Cg) -I- . C3

and

A 2 = (C11-C7)+C~-}-(C21 - C~ - Ci)+C~-f-Cÿ .

Now we shall introduce a function f(x) defined in 0 < x < 1 ,
which is done by the following definitions :

(11,4)
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1) f (O) = O .

2) Let x be a number of the for m
k = 1, 2, - •, 3n ) . We then put

f(x` ) = p(C"),

	

(11,5 )

where C" is the set coupled to the interval 0 x< x As an
example we thus get f (l) = 2U (E) = 1, f (3) = 2p (G 1 - CA ) ,

f (i) = p (C 1 ), f0-) = p (C 1 + C21 C 1 ) . Especially we observ e
that f(x) has, for every x* > ÿ , the value 1, because the set C, 2

(on account of the special assumption that A 2 = E-A l) is empty .

If xi and x 2 (> x 1) both are of the form - 71 , we ge t

f(x2)-f(x1) = 2U (D) > 0,

	

(11,6 )

where D is the set coupled to the interval x 1

	

,x < x, .
By this definition of f (x) the function acquires the followin g

property : if x' (< 1) as well as x1 , x_,, • • • , ~t• n , - - are numbers

of the form 3 , for which xi <x 2 < • • • < x n <

	

< x' and

lim xn = x', then the equatio n
n

lim f (xn) = f (x .)
n

holds true .

This is understood in the following way . Denote by Dn the
set corresponding to the interval 0 < x < xr, , for any n, and
denote by C," the set corresponding to the interval 0 < x < x" .
It now remains to be proved that

lim (De ) = 2p (C :) .

For any n we have D11 C . Consequently we obtai n

hm (lp (C*) -2fß On)) = lim (C* -Dd .

From C : D 1 D C* - D 2 D • • • DC* - D11 D • we may next con-
clude (see VIII page 9) that

(n positive, integer ,
k

3n

l
tt
m 2p(C '~- Dn) = ~(~(C-:-Dn)) .

	

(11,7)
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From our construction it is, however, easy to see tha t

(C'̀'` - Dn) = 0, .

together with which (11,7) give s

lim tp (C'' - Dn) = tp (0) = 0 ,
n

which was to be proved .
The function has the same property also for x" = 1, becaus e

f(x) has, as above remarked, the value 1, when x is of the form
k

and greater than 9 .
3
3) Supposing further that xo is a number which is not of th e

form Irt - . Corresponding to this we choose a sequence of number s
3

x 1 , x:,,

	

, xn , • • which all have the form k
, and for which

3
x l < x 2 <

	

< x li <

	

< xo and lim xn = xo . We shall agai n
n

denote by Dn the set corresponding to the interval 0 < x<x n .
The set

	

D,1 is at once seen to be independent of the sequence

chosen and dependent only on xo . We now let the set C5 Dn
correspond to the interval 0

	

x < xo and write

	

n

f (xo)

	

tl)

	

(11 , 8)
n

by which the function f(x) is defined for each x in the interva l
0 < x < 1 . From D l c D., c • • • c D n c • • • follows (see VII page 9)

2fi (C5
Dn)

= lim tp (D r)
n

	

n

and hence
f(xo) = lim tp (Dn) .

	

(11,9)
n

About the function introduced by these definitions it no w
remains to be proved that it is non-decreasing and continuous
from the left in any point .

We shall first prove that f(x) is non-decreasing. Let x i <X2 .

If xi and x2 are both of the form rt , the assertion is a con -
3
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sequence of (11,6) . We next assume x, to be of the form
k

,
3

x1 , however, not having this property . For each x of the form
k
3n and less than x 1 we have f(x)

	

f(x0), according to

which (11,9) gives f (x 1 )

	

f (x2 ) . The remaining cases are now

dealt with immediately by insertion of a number of the form
k

between xi and x2 .

	

3

Hence it is obvious that f (x) is continuous from the left i n
every point x, it being possible to find for any E < 0 a numbe r

x '< x of the form 311, for which

f (x)- f(x ' ) < E .

f (x) being non-decreasing and continuous from the left, w e
may, according to II, 8, to f(x) determine a measure p defined
in 1 such that

g) ([a < x < b])

	

f(b) --f(a)

	

(11,10)

for any choice of a and b, 0

	

a< h < 1 .
Together with this Borel ring l we , shall consider th e

smallest Borel ring in E, containing all the sets of the sequenc e
(11,1) A„ A 2 , . • , An , • • • . This we shall call g 1 . The defining
region of •tp being the Borel ring g, any set belonging to gi ,
will belong to g as well . We know that the set of values of
the function of a set g) is closed (see preceding section) . If we
can now prove that any value assumed by at g1 is assumed
also by g, at 3 1 , and conversely, the proof of our theorem wil l
be completed .

It is obvious that TJ1 must contain each of the sets shown
in the decomposition, fig. 2, and as any An may be produced
by summation from these sets, gi may also be defined a s
the smallest Borel ring containing all the sets appearing i n
fig . 2 .

The class of sets consisting of all finite sums of the sets
given in fig. 2 is a ring, and according to the preceding con -
siderations the slightest extension of this ring to a Borel ring
is just the class of sets g1 .
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We now first observe that if C is a set in fig . 2, to which
is coupled a point x o ,

2P (C) = cp (xo)

	

(11,11)
holds true .

As 9) (xo) = f (xo + 0) - f (xo) , we have consequently to prov e
that

(C)= f(xo+0)-f(xo) .

	

(11,12)

We choose a sequence of numbers x 1 , x2 , • •, xn , • , for which
xi > x2 >

	

> xn > • • > xo and lim xn = xo, and for every n
n

we denote by D n the set coupled to the interval x0 < x<xn .
Hence we get DI DD 2 D • • • D D n D • • , and, owing to the specia l
procedure of the decomposition, (it D 1 = C . Henc e

n

(C)

	

lp ((I G
Dn)

= lim 2jJ (Dn) = lim (f (xn) - f (xo)) = f(x o + 0) -f (xo) ,

which was to he proved .

If D is a set in fig.2 to which is coupled an interva l
xo<x<xi , we have analogously

'00) = P(Lxo<x<x,]) .

	

(11,13 )

cp([xo<x<xi]) = P([x0 x < xi])- (xo) =

f(xi)-f(xo)-(f(xo+0)-f(x0)) = f(xi)-f(xo-I-O) ,

we have consequently to prove tha t

p(D) = f(xi)-f(xo+0) .

C denoting the set coupled to . the point xo , we ge t

(D) = (D + C)-v(c)

which, if we apply (11,12), will giv e

(D) = (f(xi)-f(xo))-(f(xo+0)-f(xo)) = f(xi)-f(xo+0) ,

which together with (11,14) gives (11,13) .

Since

1(11,14)
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Finally, suppose A to be an arbitrary set of the class o f

sets

	

. We can then to this set determine a sequence of set s
K1 ,

	

• . , Kn , • •, in which each Kn is a finite or enumerable

sum of the sets appearing in fig. 2, and such that

1) K1 DK9 D . . . DKn D .

2) A c K n for every n ,

3) cp (A) - lower bound p (Kn) = limp (Rn) ,
I1

(see page 10) . To each set Kn in
c~

U1 we have a côrresponding

set In in 01, and according to the remarks above on the specia l
cases they satisfy

1) p (Ili ) = .(P (Kit)
and

2) I1DI9

	

. .DIn E . . .

Since the set 1 t In belongs to -3 1 , and

`p (T1 In) = lim (I7,) = lim tp (Kn) = 'tp (A) ,
Il

a set in 1 having the property wanted . In nearly th e

saine way the other half of the proof may be carried out .

Each of the numbers appearing in the sequence (11,2) ar e

thus taken on by cp at J 1 . Consequently also the value g i s

taken on by p at ç„13 1 , but according to the preceding this valu e

is then also taken on by Ip at ail and thus by at g ; an d

our proof is completed .

J V I,i i s
Ii



PART IV .

Bounded measures in abstract space .

12. A theorem on two bounded measures having 0 1 a s
defining region .

In this section we shall establish a theorem on bounded

measures defined in 01 , comprising as special case the theore m
proved in III, 10 . 01 will as usual denote the Borel class on

the interval (0,1), where the interval [0 < x < 1] is denoted

by E1 . Now let p and ip be two bounded measures defined i n

0 1 . Without reducing the generality of our research, we may

assume that p (El ) = 2p (E l) = 1 . Now let A be an arbitrarily
chosen set belonging to 0 1 . The point (p (A), ,ip (A)) will then

belong to the unity-square 0 < x < 1, 0 < it _< 1 . About the

set of points of the unity-square, obtained when A run s

throughout X , , we shall prove the following theorem :
The set of points which is determined by (p (A), i/i (A)) ,

where p and 'tb are bounded measures defined on 0 1 , is a closed set.
Together with the measures p and 'tlt we shall consider the

functions f1 (x) and f2, (x) defined on 0 < x < 1 and determi-

ned by
0 for a= 0

fi (a)

	

p([0

	

x<a]) for a>0 ,

f2 (a)
_ Ofora = 0

tp([O < x< a]) for a> 0 .

The non-decreasing functions fl (x) and f2 (x) may be written

in the form
D . Kgl . Danske Vidensk . Selskab, Mat .-fys. Medd . XXI, 9

	

4

and
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f1 (x) = g1 (x) + h i (x)
and

t2 (x) = g2 (x) + h2 (x)

(cf. page 26), and correspondingly will arise a decomposition o f
p and p

p (A) = p1 (A) + p2 (A)
and

	

(12,1)
ip (A) = IN (A) + 2 (A)

( p (A), .~ (A)) = ((p i (A), 1(A)) + ( p 2 (fi), IP2 (A)) .

We shall first show that if M1 and M2 are sets, both belonging
to R3 1 , and for which

(p1 (M1), ?Pi (M,)) = (a , fi)
and

(p2 (M2), 02'(M2))

	

(Y, 0 ,

then we may determine a set 1Y1e3i, for which

(p cm), (M)) = (a + Y , ,6 -I- a) .

Let the set of points of discontinuity of the function f (x) be
the, at most enumerable, set Ni = {gn} . Similarly let N, = { ri„ }
denote the, at most enumerable, set of points of discontinuity

of the function T2 (x) . The sum of Ni and N2 is termed N, i . e .
N = N1 -i- N 2 . As the set M03 1 we may now use the set

M = (M1 -M1 N)+M2 N .

From (12,1) follows

p (M) = rp (Mr- M1 N) + pp (M 2 N) =
(12,2 )

p1(Mi - M1 N) + p2 (M1 - M1 N ) + P1(M2 N) H- p 2 (M 2 N) . J

M1 N and M2 N both being at most enumerable sets, we hav e

(p1(M1 N) = p1(M2 N)

	

O .

	

(12,3)

From M1 M1 Nc E 1 - Ni follows

p 2 (P21 -M, N) = o .

	

(12,4)

for any A 1 .

From (12,1) follows
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Finally we deriv e

y,2 (M, N)

	

=

4: iEDI2 \'

Thus it follows from (12,2)-(12,5) tha t

y,(M) = cz+±± ' .

In analogy it is seen that

(M) = +d,

and we have proved our assertion .

Hence we can, as in section I11,10, conclude that if the set s

of points
(y> 1 (A), zPl (A))

and

(ß'2
(A), 11)2 (A) )

are both closed, the set of point s

( q (A),

	

(A))
is also a closed set .

In the two following sections we shall deal with thes e

special cases .

13. First special case .

Let (f and p be bounded measures defined in

	

and let

the two non-decreasing functions f1 (x) and f2 (x) be defined by

( 0 for a = 0

f1 (a)

	

t rp ([0

	

x < a]) for a> 0
and

ll( 0 for a= 0
T2 (a)

	

l

	

([0 < x < a]) for a> 0
and satisfy

x 1 , x 2 ) = t'r (x 1 , x2 )

and
(x1 , x2) = I1 (x1 , x , )

for any choice of x, and x,, 0

	

x, <x„ < 1 .

5 1

S A (t i ) = q,, (M 2 ) = y .

	

(12,5 )

4*
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The set of points of discontinuity of fl (x) is the, al mos t
enumerable, set iV1 = {.<f,}, and the set of points of discontinuity
of f2 (x) is the, at most enumerable, set Nz = , The sum of
N 1 and N. then again is at most an enumerable set, termed
N = l-,J . For any A E 01 we now hav e

p (A) = >' S 1 (s`,)
4- i E A

and

	

(13,1)
c (A) = y St, (S i)

E A

(cf. page 35) . In the following the set N is assumed to h e
enumerable, and we put

5f, (Z !2 ) = an (> 0)

St, (sn) = b n (> 0) .
and (13,2)

Hence we obtain

r p (A) , 't/r (A)

	

an ,

	

e b

	

(13,3 )
n -i

	

n =1

	

/

where e n has the value 1, if 4n belongs to A, and otherwis e
the value O .

We shall now show that the set' (p (A), zp (A)) is closed .
Suppose A 1 , A 2 , • • •, A n , • • • to be a sequence of sets, all be-
longing toand for which the sequence of points (p (An) ,
2p (An )) is convergent to the limit point (s, t) . We shall now
prove the existence of a set As O,, for which

p (A), 'o (A)) = (s , t) .

In section 111,9, where a method how to determine A' (re-
spectively A ; ") as a subset of N has been given, we have
already proved the existence of a set A', for which p (A 1) = s ,
and a set A', for which ?p (A''9 = t . A closer analysis of th e
process of choice will immediately show the possibility of
determining a subset of N, for which both y )(A) = s an d
tp (A) = t . More precisely, if only A is determined in th e
way shown, such that TO) = s, it will be an immediat e
consequence that mp (A) = t .
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14. Second special case .

Let y, and

	

be bounded measures defined on

	

We shal l

in this section assume that the non-decreasing functions fl. (n )

and f, (x), corresponding to (J) and 1C, given by the definition s

~0 for a= 0

cp ([0

	

x a]) for a> 0
and

f0 for a= 0
A (a)

	

~. '0([O < x <al) for a> 0

are both continuous in the interval 0 < x < 1, and we shal l

show that the set of point s

(y (A), w(A)), Ae i

	

(14,1 )

is closed. Without loss of generality, we may assume that

TM) =

	

= 1 .

In order to simplify the writing, we shall further in this section
use the letter E instead of E 7 to denote the interval 0 < x <1 .

According to the theorem on decomposition, page 14, y may

be written in the form

= `Pr, +

	

(14,2 )

where y,l, is Z/J-continuous, and, yes is lp-singular. Thus `p k (A)

will have the value 0 for each Ac O i , for which ip (A) = 0 ,

and there exists a set Nrl3 1 where (I) (N) 0, such that Ts (A) = 0
for each A E (3 i which is a subset of E - N .

cpk being 't/)-continuous, there will exist a function f > 0
defined in E, such tha t

y'r; (A) = S f (d E) .

	

(14,3)

for each Ac l (see page 20) .

lt follows fron A -- AN c E - N tha t

(a ) =

Ts (A) = T s (AN),

	

(14,4)
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and from VON) = 0 that

(AN) = 0, (14,5 )

according to which (14,2)-(14,5) giv e

y (A) = y (AN) + S f 1i (dE) (14,6 )
A

for each Aa3 1 .

Our first problem is to find out what values cp can take on ,
when p is fixed. Suppose y to be a fixed number of the inter -
val 0 < 1 . We shall now consider all sets AsO 1 , for which
tp (A) = y . The existence of such sets is evident on accoun t
of the continuity of the function f, (x) . Let A l and A, be two
such sets . We thus hav e

'1P (A 1) = ~ (A 2 ) = y . (14,7)

Suppose, furthermore, the numbers a and fi to be defined by

y) (A 1 N) = ce

	

and

	

S f ip (dF) = ,3 .

	

(14,8)
i .,

We can then prove the existence of a sel AE 01 , where zp (A) = y ,
for which

y (A) = +/3 .

As a set A we may us e

A = AI N+(A2 -AD N) ,

for from zp (N) = 0 follow s

10 (A) = ( A O) = y ,

and by means of (14,6) we get

y (A) = (A 1 N) -{- 9) (A,-A 2 N) = a -f- ((A 2 -A2 N) N) -}- f lp (dF)

= cc -{- f3

since (A 2 - A,N)N = 0 and f ep (dE) = O .
f1 2 N
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From the above follows that if, only, we can prove that eac h
of the addends in (14,6) runs throughout a closed set, when A
runs throughout the sets belonging to 0 1 , for which p (A) = y ,
we have also proved that the set of values of p (A) is closed .

The set of values of p (AN) we shall prove to be a closed
interval, which is moreover independent of y .

Let A be a set belonging to 0 1 , and for which z1 (A) = y .
Thus we immediately deriv e

0 < p(AN) < p (N) .

	

(14,9 )

Since lb (N) = 0 we have for the set A"` = A - AN that

(A") = '1P(A ) =
and that

	

p (A :;:N) = p ((A-AN) N) = O .

For the set A'`"° = A + .V = A + (N- AN) we have

lp (A :,: :; :)
= 1p

(A) = y

and

	

p (A" : :,: N) = p ((A -i- N) N) = p (N) .

Consequently we have sets for which the signs of equality i n
(14,9) hold true . We have now to prove for each number be-
tween 0 and p (N), the existence of a set with p having this value .
Let A r denote the set [0 < x < t], and let B i denote the set NA }
belonging to 0 1 for any t. We now pu t

B = A l ` + Bi
and have for every t

(B) = (A') +( 13

) sincelp (N) = 0 .
The function g (t) is introduced by the definition

g (t) = p (BN) = p ((A"` + Bi) N) = (Bi N) = p ( He)

It is obvious that g (t) is non-decreasing . We shall further prove
the fact that it is continuous . If h denotes a positive number ,
we see that
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g ( t ~ h) - g (t) = (p \Bf + h) P (B)

	

9) (B t -I- h -Bt)

	

( N

	

A t)) C. ~P (A t +h -Ar) = ft ( t -} h ) - ft .( t)

holds true .

fi (x) being assumed continuous, we see that g (t) is contin -
uous from the right . Similarly we see that g (t) is continuou s
from the left . Thus the function g (t) takes on any value betwee n
g (O) = 0 and g (1) = 9)(N), and the proof that ` the values o f
9) (AN) make out a closed set is completed . Now remains an in-
vestigation of the set of values o f

f (dE) ,

Ae i running throughout the sets for which p (A) = r . We
shall again show that the values make out a closed interval .

In our proof we shall apply the following lemma :
For any number of the interval 0 < < 1 we can determine

a set Aye 1 for which fp (A4 ) = , and a corresponding numbe r
a 1 such that

[f< a,] c Al c [f < a1 ],

	

(14,10 )

and this determination may be carried out in such a way tha t

Ac A 1z for 1 < 2 .

	

(14,11 )

To prove this we shall define two function s

F(a) = ([f < a])

	

(14,12 )
and

G(a) = V([f < a])

	

(14,13 )

having a > 0 as defining region .
Since [f< a] c [f < a] we have

F (a) < G (a),

	

(14,14)

and similarly we see tha t

F (a l) < F (q2 ) for a l < a 2,
and

	

(14,15)
G (al) < G (a2) for a l < a2 .
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Our next problem is to prove that the function F (a) is con-

tinuous from the left, and that the function G (a) is continuou s

from the right in every point . Le t

a l < a 2 < . < an < • < a and lim a n = a ,
I t

it then follows tha t

h'(a)-F(an) = ([f<a])-(U<an]) = ~~1 G an < f <a]) .

n

	

n

i . e . F(a) is continuous from the left . Now let

aa,> . >an > • > a and liman =a ,
li

Since

it next follows that

lim (F(a) F(an)) = lim ([a n < f< a]) = 0 ,

A [an f < a] = 0
n

we then analogously obtai n

G (an) G (a) = p ([f

	

a,t]) --

On account of

([f < (1]) = tP ([a <f C- a,,]) .

Tr [a<f `
a1t]

= 0

we obtain n

Iim (G (a n) G (a)) = lim ([a < f ~_ a n ]) = 0 ,
tt

	

n.

i . e . G (a) is continuous from the right .

For a fixed value of in the interval 0 < << < 1 we now have

to determine the upper hound of the values of a for which

F (a) < . We shall term the latter a1 , and we have a t < x .1) 2)
F(a) being continuous from the left, we get F(a 1 ) < ;5,, and G(a)
being continuous from the right, (14,14) implies the fact that

G (a) < . Hence we obtain

ip ([f < a t ]) <

	

< 'Ip ([f

	

a ;]) .

	

(14,16 )

>> It is easy to see that 1i < 2 implies ccl i

	

a~ .

2) It follows namely from F(a) = tJ ([ f < a]) < i for every a that û ([f a] )

1-1>0 for every a, and hence further that it([f o0])>0, in nonconformit y
to

	

being finite.
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Concluding after the analogy of the proof page 55 it is obviou s
that in the set [f = ai ] there is a subset sO, having any 0 -
measure between 0 and ([f = aO .

Accordingly we can determine a set A .e 1 where tp (A) = g ,
such that

[f< a 't] cA i c [f <a t] •

Furthermore it is immediately obvious that this process of determ -
ination may be carried out in such a way that

A `1 c A~z for

	

< 'g2 ,

and the proof of our lemma is completed .
We shall now again conside r

Pl: ( A ) = f (dE)

for the sets AET- 1 , for which tp(A) = y . As to the special values
of y, y = 0 and y ; 1, the case is evident . Thus if Ae~3 1 is . a
set for which tp (A) = 0, we obviously have

qk (A) = 0, and i f
AE 1 is a set for which lp (A) = 1, we have (.1)1,0) = p k (E) -
T k (E - A) = 99 k (E), since ip (E -- A) = 0 . Suppose next y to be
a number of the interval 0 < y < 1, and let A y be the set determ -
ined by our lemma. We can then prove the inequalit y

. f (d1:) >
J

f~ (dE)

	

(14,17 )
l y

for any AE 23 1 for which zp(A) = y .
First we notice tha t

~ f (d1.)

	

Ç /~

	

d1:--~ ~ t' (dE)
q A

	

A-AA Y

	

., A .A )

~ fip (dls) =
S f (dE) -E-~ f 11~(dE)

t

	

A y-AA ),

	

:A p

and

where

lp (A -AA) = 0 (Ay -AA) .
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ßy means of (14,10) we next see that f > a„ for the set AAA,, ,

and that f < a„ for the set A„-AA,, . Hence we obtain

f (dE) > Ç f ip (dE)

according to which (14,18) will giv e

~ f (dE) ? tip (dE) ,
• :i

	

• :1

which was to be proved .

Analogous to (14,17) we can show that for each A03 1 , for
which ii (A) = , the following inequality holds tru e

f (dE) < f (dE)

	

(14,19 )
1 v

where A1„is the set determined by our lemma .The set E-A I _ ,
we shall denote A'', and we then hav e

ip (A ') = (E)- ( .1 1

	

= 1 - (1 - y) = ;' .

Similar to (14,18) we have

f V (dE) =

	

(dls) +

	

(dE)
A

	

-a :c

	

? :? •

~f(dE) - f ?P(dE)-}- fip (dE)

• .~'

	

• . i•-a :~•

	

a :? •
where

?p (A- AA°>) -- tP (:1'`°-AA'°) .

(14,10) follows

(f c al y] c •1 1-y ,

from which it is obvious that f > a1_i for the set A"-AA" .
Similarly we derive from (14,10) that f < a l _» for the se t
A -- AA* . This being so, we obtai n

and (14,20 )

From
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f~ (dE,) < f (dE)
:1 -AA*

	

A M -:IA "

according to which (14,20) will giv e

5 fp (dE) <f~(dE) ,
A

	

L :1 1_

which was to be proved .

If we comprise (14,17) and (14,19) we get for each A ET1 ,
having (A) = y,

(dE) < Sf(dE) <
S
f(dE),

	

(14,21)
. Ay

	

A

	

F A l_Y

show that fy) (dE) takes on
A

5 f (dE) to Ç f tA (dE) .
A

	

F e
Y 1-y

any value in theand we shall now

closed interval from

For that purpose we form the functio n

H (ç) =

	

tp

	

0 <

	

(14,22)5f(dE)

where J4 , and d +„ are the sets we have determined by mean s
of our lemma, yet especially fixing Ao = 0 and A l = E . For
any we then hav e

(-t +s•- A 4) = (A + ;,)-V (Ad = (F+y)- = y .

Further we derive

(14,23 )

H (0) = ~ f~ (dE) = Ç f.~ (dE)
• :1 ,,-A o

	

.1 , ,

H ( 1 -Y) = ~f(dE) = S Ft» (dl. ) .

and
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It now only remains to be proved that the function H(g) is a

continuous function in the interval 0 < < 1-r .

We shall first show that the function H (4) is non-decreasin g

in the interval 0 < < 1-r . For that purpose we shall, fo r

sl < tz, consider

H( t~) H (~~) = f zp (dE) - f tp (dE) .

• `r~a+y-~r-a

	

~~l - i' ~ ~~ l

For brevity we put

A 2+y-A 2 = C and

and we thus have

A `1 + y = D ,

H ( .2 ) - H ('4 1 ) = f~ (dE) - 5 fzp (dE) = ÇfP (dE) -
S
f (dE)

	

(14,25)
c-cD

	

•D-c. D

where
(C- CD) = ip(D-CD) .

From (14,10) we deriv e

f(x) > mav{ale , o l+y} for xEC-CD
and

f (x) < min {c%, a~ = } for xED-CD ,

which inserted into (14,25) give s

H(F 2)-H(F l ) > . (C-CD)• [max {a te , a

	

-rain
{aq 2 , a t1+y) ]

which was to be proved .

In order to show that HO is continuous from the righ t

in any point of the interval 0 < < 1 - y we shall now for h

positive and sufficiently small conside r

H(E-{- h) -H(É) = f ~ (dE)

	

f zp (dE) = f p dE) - f~ (dE), (14,26)SS F-FG

	

G-F G

in which we have put

A 4-~n +y A ÿ+h = F and Ag+y - Ag = G .
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For h < y we have
F-FG

and thus we derive by means of (14,10 )

~f zp (dE) = ~f tp (dE) < h a .E ++y ,
F- FG ' A +h -F y-A + h

since Ip (A +h+y - A +y) = h . Hence we get

f ep (dE) -> 0

	

for

	

h --~ 0 .

	

(14,27 )
• F-~.G

analogy we fin d

f tp (dE) _

	

(dj') < h a ~+ a
G-FG

hence

f tp (dE) -~ 0

	

for

	

h -± O .

	

(14,28 )
•G-FG

From (14,26), (14,27) and (14,28) it thus follows that H (g) i s
continuous from the right . To show next that H (a) is con-
tinuous from the left in any point of the interval 0 < 1-y ,
we consider for h positive and sufficiently smal l

H (~) - H a- h)
= S

f tp (dE) - f tp (dE) = f tp (dE)

	

(dE) , (14,29 )
A E-h+

	

K-KL

	

L -KL

in which we have put

K and AE-t:+yAE_1, = L .

For h < y we have

K-KL = AE+y-A~ +

and hence we get by means of (14,10)

fO (dE) = 5fp(dE) < h a .+y„
K-KL

	

A `+y `` ~-h.+y

In
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since yi (A+,, _-

	

h+) = h . Hence we obtai n

s f (dE) -+ 0

	

for

	

h -~ 0 .')

	

(14,30)
r-KL

In analogy we obtain

5 fP(dE) = 5fP(dE) < h .
L-KL

	

A~-Ae h

since zß (A-&.- A `_1,) = It . Hence we get

fzji(dE)->- 0

	

for

	

h-+0 .

	

(14,31 )
SL-AL

According to (14,29), (14,30) and (14,31) we see that HO) is

continuous from the left . And now we have proved that th e
values of

1 ) The number a~ +l being not introduced for

	

a special investiga -
tion of the conditions for =1-}' is required . In this case ive hav e

î (dE)

	

fz(dE) = ff 1; (E h) .
E-EL

	

E-A l- h

If h~>lm>•••>ha> ••>0 and limh a =0, we ge t
7 E

E-A1 h,~ E-Al-h»
. . . E-Al h, _ . . .

According to (14,10)
T- A i-1,,, c [f . a 1-1,for every n .

We shall now perform the proof indirectly, assumin g

pk (EA 1_h )> t>0 for all values of n .

If the set of numbers {cats, determined b y our lemma, is not upward bounded,
we accordingly get

Tk([f=°°l)_>_ t

in nonconformity to / ([f= co]) = O . Is on the contrary the set of numbers {a ti 1
upward bounded, there will exist a number a* such that ip({f > a*]) - O .
Hence we have

5 fi(dE)=5p1)(cOE)<ll .o*<e for n> N
E-A

l-11

	

(E- .41-h,)'1f«*]

which was to be proved .

Ct `
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p ,,. (A) = Ç f ?N (dE)

	

(P ( A ) =
A

makes out a closed interval .
Comprising (14,9) and (14,21) we nett find that the regio n

of values of p(A), As0 1 running throughout the sets for whic h
(A) = y, 0 < y

	

1, is determined by

f~ (dE) < p (A) <
f (dE) + p (N) ,

	

(14,32)
A ) ,

and that any value in this closed interval appears as a value

of the function p (A) .

Thus our proof that the set of points (p (A), ti (A)) is a

closed set is completed if we can prove that the end points o f

the closed interval (14,32) vary continuously with respect to y .
For this purpose we shall first consider

fep(dE) .
A ) ,

1f 0 < y < 1 and h (< hp) is positive and sufficiently small ,

we have

~ f2p (dE) - rip (dE) = f (dE) < h • a),+t~o, (14,33 )
A 1

" +h

	

l y

	

`1Y+h `l y

since 1p (Ay+h - A) = h and A y+1,

If 0<y < 1 and h is positive and sufficiently small, w e

similarly ge t

5 fp(dE)-ÇfP(dE)

	

(dE) < h • a,„

	

(14,34)
A

	

A

	

4„- A
,

since i (A,,-Ay 1i ) = . h and A ), c [f < a~,] (as to the case y = 1

cf. the footnote page 63). From (14,33) and (14,34) it is eviden t

that the left end point of the interval varies continuously wit h

respect to y . By a quite similar consideration we clearly see
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that the right end point of the interval, which with the exceptio n
of a constant is equal to

~ fit) (dE) ,
~ 1; -d

1- ; '

varies . continuously with respect to ÿ .

15. A theorern on two bounded measures in abstract space .

In this section we shall see that the theorem proved an d
formulated in the preceding section of this part, on two bounde d
measures having 01 as defining region, holds true in the ab-
stract space too .

Let E be an arbitrary set, and let R be a class of sets, whic h
is a Borel ring and contains E. Let further cp and be two
hounded measures defined in a .

The following theorem will then hold true :

The sel of points defined by

(y (A),

	

(A)) ,

where 9) and îp are bounded measures defined in R, is a closed set .
Accordingly our problem is to prove that i f

A l , A2, . .

	

A n .

is a sequence of sets, all belonging to a, and for which th e
corresponding sequence of points

('P (A1), V ( A 1)), (y ( A 2), I/ (A 2)), . . ., (y ( An),

	

(An)) , -

i s is convergent to the limit point (t, s), then there will exist a
set AER, for which

(y (A), V.) (A) ) = (t, s) .

In proving this we apply exactly the same representation
from the smallest Borel ring containing all the sets A n , to

the Borel class X3 1 , as applied in III, 11 . Corresponding to 9)

and ip there will exist bounded measures 9 1 and mp1 defined i n

s?3 1 , and it is easily seen that to each set in a1 there will be
a corresponding set in m 1 , such tha t

D . Kgl . Danske A'ideask . Selskab, Plat .-fys . Medd . SS I, J .
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(f,

	

(ß'1,'f1'1 )

for these sets, and conversely .

The theorem being valid for ((p i , ta i ) we see that there is a

set A (or weaker AE) having the property wanted . Thus

the assertion of the theorem is proved .

Putting 99 = zp it will he seen that the above theorem con-

tains the theorem of III, 11 as a special case .

16. Final remarks .

The appearance in 1933 of KOLMOGOROFF ' S book "Grundbegriffe

der Wahrscheinlichkeitsrechnung" 1) made it at once clear to

many mathematicians that with this book the theory of pro-

bability had won its natural place among the theories o f

mathematics . It is KOLMOGOROFF ' S merit to have shown ho w

simply the theory can be axiomatized, and how it is possibl e

from the axioms to prove the theorems of the theory of pro-

bability . The number of the possible axiomatizations was im -

mense, but the system used by KOLMOGOROFF seems natural an d

for the applications most simple . Here the space of single occur-

rences is abstract, moreover a class of sets consisting of subset s

of this abstract space is supposed to be given . This class i s

assumed to be a ring and to contain as an element the spac e

itself. In this ring is supposed defined a non-negative, additive

function of a set, such that its value for the abstract space is 1 .

The value of the function of a set for a set of the ring wil l

then be the probability of the realization of one of the singl e

occurrences contained in this set . It is proved that it is possibl e

to confine oneself to regarding Bore] fields of probability, (i n

a Borel field of probability the defining region of the functio n

of a set is a Borel ring), introducing an axiom of continuity

equivalent with the claim of complete additivity of the functio n

of a set in its defining region .
The book mentioned above roused the author's interest i n

the theory of probability and its applications . This interest wa s

strengthened by several visits to the Stockholm Universit y

Institute of Insurance Mathematics and Mathematical Stati -

1) {{.OL\IOGOHOr F W .
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stics' ) . Here was also roused the author's interest in the theor y

of testing statistical hypotheses2), formed by NEYMAN and PEAR -

SON . It was clear to everybody that the theory in the form i t

had obtained by then suffered from certain shortcomings, and a s

it was rather evident what amendments might be wanted, an d

what results were likely to be obtained, the problem must b e

to change the foundation in such a direction that this was mad e

possible .
Unfortunately my investigations into this problem were o n

the whole without any result, as I did not succeed in givin g

them a form which satisfied me in the sense of being mathe-

matically unimpeachable, and at the same time having th e

connection with experience and practice which must reasonabl y

be claimed . By my study of various questions in this connectio n

I was led on to certain problems of existence, which mus t

necessarily be treated first . Here too I met with difficulties ,

now of this and now of that kind. Thus it was natural firs t

to try to answer these problems in the abstract space, i . e . when

the theory was unimpeded by everything superfluous .

These investigations gave birth to this paper .

Fundamental for the present formulation and treatment o f

the problem of the testing of statistical hypotheses is the abov e

mentioned paper by NEYMAN and PEARSON, 1933 . In this work

is given a detailed account of the nature of the problem, an d

a mathematical treatment in the main features of the problem s

raised . The problem is by these two authors formulated as

follows : Let a stochastic variable be given . An assumption of the

structure of the distribution of this variable is called a statistica l

hypothesis . A set of observations of the stochastic variable is

called a sample, and as a test of this statistical hypothesis a

function of the result of the sample is now computed. If this

sample has certain properties further stated, it will be discarded ;

whereas it will be maintained, if the function has not got thes e

properties . This test is of course not absolute . in the sense o f

giving us information whether the hypothesis laid down i s

correct or false, but we endeavour to arrange it in such a way

1) The author wants to express his gratitude to the institute and it s
director, Professor HARALD CRAMRR, Ph . D ., for hospitality and interest .

2) See for instance NEYMAN-PEARSON W .
5*
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that it may in the long run give good results . To . be more

precise, we arrange it in such a manner that the probability of

discarding the hypothesis when it is true, does not exceed a
certain limit fixed beforehand, and correspondingly that th e
probability of maintaining the hypothesis, even if it is false ,

is kept under a reasonable limit . A number of calculated
examples prove thé method to be available in many cases
arising in practice. Yet several authors have objected . to certai n
special items of the theory. Thus FELLER has in an excellen t
paper from 1938 shown the shortcomimg of the proposed
procedure in a whole series of cases, which may easily cro p
up in practice».

It was natural at the beginning of this research to leave ,

the categorical claim of dividing into two parts the sphere of .

samples, such that the hypothesis was maintained if the point o f
the sample fell inside one of these parts, whereas it was' discarde d
if the point of the sample fell inside the other. Jt was natura l

to eliminate the sharp limit that must arise between these two

parts by introducing a third set, a transition set in which the
question whether the hypothesis is correct or false is left open .

In its simplest form this leads up to the following problems

in the abstract space. Suppose given two measures y and V ,

both defined in a Sorel ring a, and about which it is further

supposed that 99 (E) = (E)' ~ 1 . Now the problem is to prov e

the existence of two sets having no elements in common, A and

F in E, such that

1) 99 (F) < el

2) p (A) < e2

- 3) P (A) + (F) as great as possible .

The investigation of this question apparently requires know -

ledge of. a certain class of functions of a , set in the abstract

space, which has not yet been dealt with. This is seen in .the

following way. Let F be an arbitrary set of the space E, thu s

not necessarily subject to condition 1) . Among the subsets of

E -F there must then,. according to our earlier investigation, exist

a set A F , . such that (AF) < e 2 , while at the same time (AF)

1) FELLER [1l .
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is as great as possible . Our task is now to prove that th e
function of a set

~1(F) = 'tl~ (F) -f (AF)

	

(16,1)

has a greatest value, when F runs through the sets for whic h
ry (F) < F1 .

The function of a set 12 (F) is seen at once to satisfy the

relation
(F1-}-F2) <~l(F1)+N(F2) .

	

(16,2)

It is obvious that a thorough knowledge of the function s
of a set satisfying (16,2) would be of significance . As far as

known to the author, there exists only one investigation o f
this type of functions of a set, undertaken by BANACH I >, but
with BANACH another condition is required satisfied at the sam e
time. We can with certainty say that this condition in our pro-

blems is not accomplished .

1) BANACH [ll .
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