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It is shown that the calculation of the total cross section for Coulomb excita-
tion can be reduced to the calculation of radial matrix elements between eigenstates
in the Coulomb potential. With the method developed in the preceding paper, one
is able to give closed expressions, convenient series expansions, and recursion
formulae for these matrix elements. The case of vanishing energy loss and the
semi-classical limit are also discussed.

I. Introduction.

The exact evaluation of the Coulomb excitation cross section
 has hitherto only been performed in the dipole case i, 2 . The

radial matrix elements for the higher multipoles are more com-
plicated and have previously been treated only in the WBIK
approxmation 3 . With the method developed in the preceding
paper'', one is able, however, to give closed expressions and
suitable series developments of these matrix elements.

The closed expression given there contains a generalized
hypergeometric function of two variables. It is one of the main
points of this paper to give the analytical continuation of this
function into the domain where it is of physical interest and from
which the numerical evaluation can be performed. Once this is
derived it will be easy to discuss the different limiting cases. We
shall deal here especially with the limit of no energy loss and
the classical limit. Furthermore, we shall give a number of
recursion formulae which will considerably facilitate a numerical
evaluation.

II. Reduction of the Coulomb Cross Section
to Radial Matrix Elements.

The electromagnetic excitation of nuclear levels by means of
impinging charged particles is a phenomenon analogous to the
nuclear photoeffect, since specific nuclear properties enter only
through matrix elements identical with those encountered in radia-

l*
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tion theory. If one neglects the penetration of the projectile into
the nucleus, one finds easily in the non-relativistic limit the
following differential cross section for excitations by means of
the electric field :

da	 4 m2,4e 2 v 	  B(EA) 1 2
	 ^ 	

`	

, I <k;I r	 YAµ (0, yc)11,:f > I •	 (1)
d.Q	 t^	 v .	 (2 A + 1

 1µ

m 1 , Z1 , and v are the mass, the charge, and the velocity of
the projectile, respectively. The indices i and f refer to the initial

and final states. B(EA) is the square of the nuclear 2 A pole electric.
transition matrix element in the notation of Boxa and MoTTEL-

SON". The states 11-> are eigenstates in the Coulomb field of the
nucleus which, at distances far from the nucleus, behave as "plane
waves" (distorted by the Coulomb field) with definite wave

numbers k. These states may be decomposed in partial waves6:

k>	 4 (-1)„,ile;a,Yl—„,(k)Yi„,(V,(p)krFi(kr), 	 (2)
1=0

where a l = arg r ( l + 1 + in) is the Coulomb phase and Fi(kr)
the regular solution of the wave equation behaving as

1
sin kr — 1 z — 1n 2 kr + a l) for kr »» 1.

2

Introducing this into (1) one may integrate over the angles,
utilizing the formula*

V(21t +1)(212 +1)(2 1 3 +1) 11 12 13 	 li 12 13

11 m, Y►, „,,Yls,,,, d
S2 =	

4	 0 0 0^ \ 1n 1 m 2 1n 3/ •	
(3)

By integrating over the direction of k one obtains the total cross

section

64 7r2 Z7' e 2 mlvV  B(EA)

h 4
vl 	 (2 A + 1)21 

x^,̂ (2 i; + 1 ) (2 + 1)klô ô u

2\21 
',l

^—^^2,

* Here we use the Wigner notation for the vector addition coefficients. The
relation between those and the Clebsch-Gordon coefficients of Condon and Shortley
(E. U. CONDON and G. H. SuoxrLw, Theory of Atomic Spectra, Oxford 1936) is

( 11 12 l3 ) — (— 1)1I-11—ma

m 2 ma	
	 	  < 1 m , 12 m2I(1,12)13 —ms > -

m , V213-{ 1

Gel =

(4)
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with
1

iYlii
^-1 = k k 

S0F, , (k t r) r ^l—tIT(kr)clr.

The selection rules for the angular momenta /i and i, are directly
seen from equation (3) :

1i —I,I6A	 l i +l, and I i +1,+A even.

The evaluation of the total cross section is thus reduced to
the evaluation of the radial integrals M11-4-1 . The differential cross
section and the angular distribution of subsequent y quanta can
also be expressed by these radial matrix elements. In a forthcoming
review article', formulae will be given for these cross sections
together with a more complete discussion of electromagnetic
excitations.

III. Evaluation of the Radial Matrix Elements.

According to the formula (22) of I, the radial matrix element
is given by

ll^ ^-1 __ I I' ( l^ + l + i17,) I ! I'(11 + 1 + iy1) i/ 
(2 1 7 + 1)!(24+1)!

(1i+1,-2+1)! iir+i^. +sxi,yife 2(17;+7Ir)(k•i 	 kt)k

F2(1i+1,-A+ 2, l i + l —i '7 i , 1, + 1+ int , 21i + 2,21,+2,x,—y),

(5)

(6)

Since the series expansion of the F2 function only converges for
x and y in the neighbourhood of zero, one has for the numerical
evaluation to find the analytic continuation of this function in
the neighbourhood of infinity.

The analytic continuation is in fact given by the Barnes
integral representation 8 , and suitable asymptotic expansions may
easily be derived from this. However, we shall here use only the
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analytic continuation for the special case li = h + 2 and derive

the other matrix elements by means of recursion formulae.
In these matrix elements, where the change of 1 is maximum

(maximal matrix elements), the F2 function reduces to an Fl
according to formula A 5. This may again be expressed by an

F3 function (A5) for which an analytic continuation in terms of

F2 functions is known (A4). One thus obtains immediately, e.g.,

F2 (2 1+2,1+2+1—in i , 1+1 +in1 , 21+22+2,2 I+2,x,—y) =

[(xY21_2	 2r(2+ i^)^(_1)i+t—if(2 1-}- 2 A+ 1!	
r(22)Ir(1+A+1+i77t)I2

F2 1-22 +1,1+1 —iyl , 1+1 +in1,—A +1 —ie,— A +1+ie,

r(-2—ie) 
F(1+1—ind r(I +A+1 +i7i)

xF2(— A+1 +ie, 1 +2+ 1 —iÎi ,1+1 +iij/,2-+-1+ie,-2+1+ie, 
1 ,	

J1 )}^
.

\\ 	 x x 11

With this formula one gets for the radial matrix element*

D/—A—L = e2 
^ 	  ()I(2kI)Â_2xJI±)I2

I'(1+1+i^1i) rl 	 I (2 2 -1)1

F2 ^- 2A+1,1+1 —i yll,l+l+i^l ,— A I 1 —i^,—^ +l +i^  E  ,  E
2 Tit 2 ri/ ï

r in ^ \ 1. + i $ r(1 +A + 1—iYli) r (—A— i^)++- 2 ReI ^ e	 I
L	 2^1 /	 r(1+1— inl)

xF2 (-2+1+ie, 1 -{-2+1 in i , (+1 -Hint , 2 +1-}-i$,

—A + 1 +i^, $ ° 	 ) 1 1 •2 y1 2 n1

* Dr. L. C. BIEDENHAEN has kindly communicated to us an independent
derivation of expressions equivalent to formulae (8) and (9) which were obtained
directly without explicit use of the properties of the hypergeometric functions.

1 ,1)xx

r(l + 1 + in1)
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Similarly, for the other maximal matrix element, one obtains

—,ï—t 2	 P(1 +1+irli 	 (711) 1
(2	 A — s	 I P A + i0 l2

MI.I+A = e	 P(1+2+ 1 + hid ^m (2 kf)	 x 
1 (2 A —1)1

F2(-2A+1,1+1+1Yh,1-{-1— inl, —A+1— isy,— A+l+iE,—E,
2 rh 2 /71'

	

r ( ^	 P(1 +A + l+i^f)P(—A—i^)
-}- 2 Re 

IL 

	

2 ^ 1 	P (1 + 1 -f-

xF2 (— A +1 +i^, 1+ A+1+171 / , 1±1—ih, A+ 1 +i,

—A-}- 1 + ie,— ^, — E
2 ^h 2 iI1)^

= e T$Mr±/j,i ( 17i —"1).

In the first F2 function of these formulae, the first parameter,
— 2 A + 1, is a negative integer. Thus the functions are reduced
to polynomials which for the lowest multipole orders are given
explicitly by

F2 (-2A+ 1 ,1-}-1 — inf,1 + 1+ ini,— A+1—i$,—A-{- 1 	 	 , 	 I
2 n1 2 n1/

0	 for A = 1

1 	  y11(y11 + y11)

2 (1 + 2)	 77,
for A = 2

1	 vii(r11 +nd [5 l(11 + 111) E +4(31f 2e)] for A = 3.
2(1+ 2)( 4+ 2)	 1̂

The formulae (8) and (9) are well suited for a numerical evalua-
tion, since i lie series expansion of F2 converges for nearly all
interesting values of the parameters. However, for 1» n the con-
vergence is rather slow.

IV. Recursion Formulae.

The non-maximal radial matrix elements can be derived from
the maximal ones through recursion formulae. We shall first
derive a recursion relation of this type, which we shall use for
quadrupole matrix elements.
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Recursion relations connecting different nlullipoles can be

used, e. g., for the calculation of the octupole matrix elements

from the quadrupole ones.
For the numerical evaluation of the maximal matrix elements,

it may also be advantageous to use recursion formulae connecting
successive maximal matrix elements.

From the general formula I (17) one gets a recursion formula

of the first type by demanding the condition

x1( I l —	x2ll+x3(1f + 1)+x4(Il + A+l)=0	 (11)

besides the two conditions 1 (18, 19). In the quadrupole case,
this leads to two recursion formulae, where one has to set I l =

— 1 and	 = if + 1, respectively.

y1 111 +31, 1+ 1 +y2 11113+ y3 Mll+ 2+ y .1LI -311+1 = 0^ (12)

y1 N11+3z l+ya M1 +11- 1 +y3 1111 +1 1 +1 y41VL11 3 = O,

where

(13)

y, = kl (1 +2)(21 +3)ll +l + i^l^l

Y2 = —kfl(21+1)11+1+117f1

ys = 3k0+1)(21 +1)11+2 +i0

y4 = —3k1(l+l)(21+3)ll+ i,711

y; = —3k1(1+1)(21+1)11+2+ini1
y; = 3kf(l+1)(21+3)Il+infl
y; = —kf( l + 2)(21 + 3 )1 1 + 1 +i'ffl
y4 = k 1 1(21+1)11+1+ini 1 •

(14)

By elimination of the matrix element Nh+ 1, l+ 1 from (12) and
(13) one obtains a recursion formula of the desired type

ZMI1 3 = Z 1 1111+ 2+ Z 2 M1 311 + 1 +Z3111 +32 1 +Z4.111+11 -1

with
— 1(l+1)(

f̂ - 77^
z	

)3
z1 = 	 1 1 + 1 + i n' 111+2+ hill z3= ?41 1 + 1 +1771111+2 +iy^ll (15)

z 	 2 1 +3 1 +i1 1+1 + i 	 Z4 	 ,. 
2 1+3 1+iry 

11
1 + 1 + 1 

1
z= 1 + 11	 7Y11	 1̂f1	 4—	 7yf2 1+11 	 If	 y`.

(15)
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By means of (15) the non-maximal quadrupole matrix elements
are determined from the maximal ones already calculated in
(8) and (9).

The recursion relation connecting matrix elements of different
multipoles may also be derived from I (17). One relation involving
octupole matrix elements is, e. g., obtained with the subsidiary
condition x 1 = 0. This leads to

g X111+1 = yt Alt/ + y2 lylll+2+y3 311-1 (+1,

where
y1= 2 k111+ 1 +i^7»

y " = (l+ 2)(21-}- 3) ya = k, (2 1+ 1)1 1+ 2+ ir11j

y 3 =— k i (2 1+ 3)I 1+ii I.

In order to obtain recursion relations which involve only maximal
matrix elements, we shall use the general properties of the F1
functions which occur in these matrix elements. The property
which we shall utilize is the following:

F1 ((e+n 1 , ß + 71 2, ßT + n 3, y + 17 4, x, y)

a	 ô 1 	 (19)
  (x , y) + B (x , y) â  + C (x, y) — I F 1=-{A 	 ( a , ß, ^ , 7/, x , y), 1

where n,. are arbitrary positive or negative integers and A, B, and
C rational functions in x and y9.

A method of deriving recursion formulae is then to eliminate

â F1 and 
a  F1 between three such equations. The F1 function

x y
which occurs in the maximal matrix elements is, for 1. = 1 f + A,

F1(1 + A-{-- 1— 	 l+ 1 -{- hit , 1 -}- 1— i ri 1 , 21 + 2 2 +2, x, y) = F1(I)

with	 x =  
277i
	

2 '71 
y —

	

^7f + yli 	 ^7/ -^7i

One easily obtains

F1(1+1) =  (21+22+2)(21+22+3) 	 1 
I 1+2+1+ind211+1+i?2,I2(x—y)

I, (1+ 1—ii1 ) (x 
1) x (1 +1+i^71) (y- 1 )^  ̂ ^Fi(1)•a 

(20)

(21)
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Similar expressions for F1 (I — 1) and F1 (1 + 2) can be derived. The
elimination of the derivatives gives the desired recursion formula

u111:II-31^-13,1-3+^2 ^1 + +,1-2 +GJ3 11I1 + 11, 1- 1 +1U4 1111 
A-1

	

W1 	 = 0

with

w1 = 2rii ?)fl t - 2 + i n/ Ii l- 1 + inf lll +A - 2 +I^III

w2= —II -1+ inf l[ 12 (2T17+4?4)+l[4(A-2) (74+ 24)+ 7/1—r7j]

+(A -2) [(2 A -3) — 3 /7,] +6 ni74]

	

wg = 	+A - 1+ in i I[1 2 (4 + 2 22j) +1[4( A - 2 ) 1 l7 + —^f]
n1

2 (A -2) n2+6,77 ni]

w4=- 2 74l l + 2- 1 + i iII1 +A + iÎilll+ l^fl.

V. Limiting Cases.

We shall here study two limiting cases of the general formulae
for the Coulomb matrix elements. The one is the case of vanishing
energy loss, i. e. nf — = = 0, where one easily can obtain
a simple expression for an arbitrary Sommerfeld number. The
second case is the classical limit where mi, of » 1, while Tif — ^1
is finite. This must lead to expressions identical with the usual
classical integrals1o, 1

a) $ = 0.

For the maximal matrix elements, the second term of equa-
tions (8) and (9) is zero* while the first F2 function is equal
to one. One gets thus immediately the result

6)Q1 
=
	

—11 = (2 k)R-2 [(A-1)!] 2

(2A-1!)
F(1+ 1 + i^) 

I'(I+2+1+i7))
. (24)

The other matrix elements can be obtained by means of the
recursion formulae. For the quadrupole case one may use
equation (15)**. However, this becomes singular for $ = 0, and
the limiting process $ .— 0 has to be performed with some care.

* This is not true for A = 1, the result (24) is, however, right also in this case.
** The formula (25) has been found also by L. C. BIEDENnnnx and C. M. CLASS

who have given a numerical evaluation of the total cross section and one of the
coefficients for the angular distribution of the subsequent y's for the case = O.

(22)

(23)
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'7 2

=	 li—
r(1+ 1 + ind

11

e°
'7t

(25)

2(21+

r(1+ 1 + iri;)

-
1)1(l+1)-÷oE

2 1 -2	 7tr1^ (71, 

^	

e_ 2_ ye^

771 ^^

r(1+ 1 -{-

r(1-1- 1+ ind

1 
{21+1 —nn + i n [w(1+ 1— in) —y(1 + 1 + in)]}.

21(1+1)(21+1)

We have here used the expansion r(x + b) r(x) [1 + by (x)] ,
where y(x) is the logarithmic derivative of the F-function.

For the octupole case one may use equation (17), and one
gets directly

Mr,i+1 =

	

	
k	

(3I1-I-1+ir712
31(1 +1)(1 + 2)(21-1-1)(21+3)I1 +1 +i^^1

[21+ 1 —an + irl(y ( 1 + 1 —in) — v( 1 + 1 + in))] -1(1+ 1)(21+1)}.

The limiting case r1 = 0, i. e., the case where a plane wave Born
approximation applies, is immediately obtained from (24) and (25).

For r1 »» 1 one obtains the classical limit for E = O. The
deflection angle 0 is there determined through ty 0/2 = nl/1 (see
below) and one gets, e. g., for the quadrupole case

Mi-,13++

M 1'

3
= ML + 2 ,1 =

=

11 sin' 0/2
,126

1
•

(27)

These matrix elements are just 4/'1 2 times the classical integrals
for E = 0 given by Ter-Martirosyan (loc. cit.). The connection
between the matrix elements and the classical integrals is ob-
tained by the WBK approximation.

b) The classical limit.
In the classical limit rl )) 1, the main contribution to the

matrix element < 1, I r —1 Y4,14> > of equation (1) will arise from
a narrow region of 1 values around13
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( = IIIU	
cot (^ 2 ,P = ^ g 1

where p is the classical impact parameter and B the angle between

k; and I; r.

For i » 1 and $ finite, the F2 functions of (8) and (9) ap-
proach the confluent hypergeometric functions of two variables

V12 according to equation (A3). One obtains thus, in view of
equation (28),

Tip-
 I; —7. ( e) = 4 r/^ 

2 sin • 0/2 e

H
	 + i$,z,z*)

(2A-1)!

+2 Re 	 z2.± /2(—A+1 + i$,A+ l +i 	{ l+ ie, z, z*)] I.

with	
z = 2

	

e(cot Ø/2 — i) = 	 i9/2 
2 sin 0/2

The classical integrals 'ßp, (0) are defined in ref. 1 n. Similarly,
one obtains

(28)

1.— tlYIi + A, l

(29)

7,2-2
	 1A;
4yi1.

_	 ^  2'1 SlllA 8^2 e ^ (cot B/2+ 8/2-7/2)

4^

X / Ir(A +I$)I2Yi2(-2 	 1,—A-I-1—i,- -A+ 1 + ,—z"`
(2 A-1)!

+ 2 Re [Ir (— A— i) (z :t:) ï. + t g (_ 1)ï.

W2(—A+1 +	 + 1 +i$,—A+ 1+ i$,—z*, —

= (— 1) R ^ ^^ ^^  I,t—A(— 0).
nA 

z) 	 (3f)

The non-maximal matrix elements may be obtained by means
of the recursion formulae.
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The series expansion (A3) of the W2 function converges for all
values of the variables, and the formulae (29) and (30) are thus
directly suited for a numerical evaluation.

Since the limiting formula (A3) also holds for any value of n
in the limit 1 » 1, the formulae (29) and (30) constitute the limits
f the general formula (6) for large values of / i and i,.

VI. Conclusions.

By means of the results obtained in this paper it is possible to
calculate the exact matrix elements needed for the computation of
the total and differential cross sections in Coulomb excitation. The
main di ttic• ulty encountered in a numerical evaluation is the rather
large number of angular momenta which contribute to the pro-
cess. The main contribution will in fact arise from I values of
the order 1 = î, but also much higher 1 values must be taken
into account. A direct application of the formulae for the matrix
elements is made difficult by the fact that the F2 functions con-
verge rather slowly for 1 > n. However, this difficulty is over-
come by the use of recursion formulae, whereby one may com-
pute all matrix elements from the maximal matrix element,
corresponding to 1 = 0,1, and 2. Furthermore, in the limit l» 1,
the matrix elements approach always the classical integrals
k)--2 /4271  I- (0, ), with tg 0/2 = n/l. Extensive tables of these
integrals have recently been compiled*.

VII. Numerical Results.`'

A numerical evaluation along the above mentioned lines has
been carried out on the high speed electronic computer BESK
in Stockholm. The first three maximal matrix elements were
calculated with an accuracy of 10-11 . A comparison between
the directly evaluated matrix elements and those obtained by the
recursion formulae proved that Ibis accuracy was sufficient for
the application of successive recursion from these three first matrix
elements.

* This tabulation, which was made by the authors, is not published, but
parts of it are available on request.

** This chapter has been added to the original manuscript on May 10th 1955.
We are greatly indebted to Prof. G. BREIT for drawing our attention to an
error of sign in the numerical calculation of ref. 11.
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Fig. 1. The ratio of the exact to the classical total cross section function IFS (m, )

/fh.Q (co, ) for electric quadrupole excitation as a function of n,. The curves for differ-
ent values of C 2 coincide within the accuracy of drawing for s )1.
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Q2 ^^`'

•0 5

Tr ^
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Fig. 2. The angular distrihution coefficient 02 as a function of s; for different
values of s .
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Fig. 3. The angular distribution coefficient a4 as a function of E for different
values of n;.

-0/
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Nr. 19	 15
Ez	 )

a^ ^7^^ ^

An extract of the results is shown in Figs. 1-3.
The total cross section function fG2 (^, $) is connected with the

total cross section for electric quadrupole excitation through

2 2	
/

QE 2=	 ^ 2
1

2 B(E2) fE2 (^li, $).
Z2   h

With this definition one expects from the WBK approximation
that the quantum mechanical corrections on f are small. Thus

64 7r2
fE2 O71,	 = 	

25

	

3 1(1 - 1 ) 3 2	 1(1 +1)(21+ 1) 	 —3 2l
2 (2 1— 1) (Ml-2, 1/ + (2 1 — 1) (2 1 + 3) ( ^11 ^

3 (1+ 1) (1+ 2) 	 s l2l

+	 2 (21 + 3)	
(N1

1+2,1J I



1,1Ar 
3 l 2
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The classical limit of this function is

fE2 (°O ,	 =	 d8 8	
^

Y2( ,0) 12112µ (82 sin 18/2.:sino	 125 µ

This function was tabulated earlier (ref. 11) and is reproduced
in Table 1. The results for the total cross section function is plotted
in Fig. 1 as the ratio fE2 (7), $) ! fE2 (x, ). Within the accuracy of
drawing the curves for different values of < 2 coincide for 21 > 1.

The angular distribution coefficients are given by

02 = b 2 /b o and 0 4 = bib()

with

s l(1- 1)(1 -2) ^ —3 
)2 

1(l+1)(21+ 1)(21- 3(21+5
M	 - --_ --	 - --------	 _

(2 1 - 1) 2 	 1-2,1	 (21 - 1) 2 (2 I -}- 3)2

_L_
3(1-}- 1) (1^-- 2) (1-}- 3) 	 3	 2

(2 1 + 3)2	 (M1 +2, 1)

(1- 1)1(1+1)	 3	 36 	  2	 M1-2, 1 M1,1 cos (a, - Ul-2)
(2 1-1)

l (1-1- 1) (1+ 2) -3	 —3
-	 M1+2,1 M11 COS (Ul—ß1+2)(2+3)2 I

J 9 1(1-1)(1-2)(1-3) 3 	 2 9(1 -1)1(1+ 1)(1-1-2)(21+1)	 —3\2

l2	 ^ M 	 ) ±	 —	 ( 1 1,16 	 Î. (2 1- 1) (2 1+ 1)	 1-2, 1 	 4	 (2 1- 1) (2 l+ 3) 2 	 l

+ 
9 (1  + 1) (1 + 2) (1 + 3) (1 + 4) 

l ^ 
3 `2

16	 (2 1 ± 1) (2 1 + 3) 2 	l 1+2, 1I

15 (1 - 2) (1 - 1)1(1-}- 1) _3

4	 (2 1- 1)2 (2 1 + 3) 
M1-2, 1

15 1(1+ 1) (1+ 2) (1+ 3)	 3 3
4	 (2 1- 1)(2 1+ 3) 2 M1+2,1 Mll cos (61-a1^- z)

105 (1- 1) 1(1+ 1) (1+ 2) 3 	 3

+ 8 (2 1- 1) (2 1+ 1) (2 1+ 3) `"1+2,1 1"1-2,1    cos ( a1+2 —(11-2) 1

M-1,1
3
 cos (al - a1_2)



for =0

for e±0

for e=0

fore ± 0
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The results for a2 and 04 are plotted in Figs. 2 and 3. The classical
curves (71 = x) calculated earlier" contain an error of sign.

The curves for y1t = 0 are discontinuous having the values

ci201t = 0,e)=' 2

2

1

16
a4 (77t = 0,	 =

3

2

Table 1.

$ /„2 (co , $e) • 10+P

0.0 0.8954
0.1 0.8638
0.2 0.7289
0.3 0.5608
0.4 0.4046
0.5 0.2781
0.6 0.1844
0.7 0.1189
0.8 0.7511
0.9 0.4663
1.0 0.2855
1.2 0.1035
1.4 0.3628
1.6 0.1238
1.8 0.4143
2.0 0.1363

Y
0
0
0
0
0
0
0
0
1
1
1
1
2
2
3
3

The classical total cross section function for electric quadrupole excitation
for - G 2.
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F1 (a, )3, )3' y, x, y) =

F3 (a , a', fl, 13 ', y, x, y) _

7 am +nF'mNn xmny

Yin +n In! nl

am an fin Nn xm yn
 ,

in, n= 0

GC

Ym +n m! n!

(A1)
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Appendix:
Some Properties of Generalized Hypergeometric Functions

of Two Variables.

Besides the function F2 defined in I, we shall here use the
following Appell functions:

m, n
where

I'(a +n)
an	 F(a) a(a +1)....(a+n-1).

These double series have the following domain of absolute con-
vergence:

I.xl <1 l y l <1.

From these hypergeometric functions one can obtain related
functions by a limiting process, (the so-called confluence), e. g.,

lim F2 ' a, , I , y, y' , 81 x, e2 y) = `2 (a , y, y' , x, y),	 (A 3)
E, -^0	 ■	 8 i 82
E,—O

where
^

T2 (a,y,Y',xy) _^^ am + n xm yn

Ym mYm n!in, n= 0

(A2)

is a series expansion which converges for all values of x and y.
There exist a large number of functional relations connecting
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different hypergeometric functions. Some of these represent an
analytic continuation, such as

Fg(a,a,'ß,ß',Y,x,y) = f(a,a',13,13')(— x)—a(—y)—a

F2 (a+ a'+ 1 —y,a,a',a+ 1 —ß, a'+ 1—ß ', l ,l)
x y

+ f(a , ß', ß, a ') (— x)—a(— y)—ß

F2(a-+- ß' +1 	 y,a, ß' ,a + 1— ß ,13'+ 1 	 a ' , 1, 
1 1

x y

+ [(13 , a', a, l3') (— x)-ß (— Y)—cc

F2 (13+ a'+ 1— y, ß,a',ß + 1— a, a'+ 1— ß' -11 ,-
1 )

X

+ f(ß, ß', a , a ') (— x)-13 (— y)—ß

F2 (ß +ß'+1 y, ß,ß', ß + 1— a,ß'+ 1 —a ', 1, l),
x y

where

^	 Q	
(Y)r(e—^)r(ß— ,^)

	

f( ,^ °' >	 (e)r (6) r(Y	 1,1).

Others represent the reductions which occur for special choices
of the parameters. We shall here use the following reduction
formulae:

13',7',a,x, y)=(1—y)Fl (ß,a-13',ß',Y>x, 1 x	)—y

x, y) = (1 —x)—ßF1(ß', ß, a —ß,Y', 1 ^x , y

a (a , a',ß, Y —ß, Y,x, y) = (1 — 
y)—a (13, a, a', y, x, 	 y  ).

y -1
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