
Det Kgl . Danske Videnskabernes Selskab .

Mathematisk-fysiske Meddelelser . XVII, 8.

ON THE FIELD THEORY OF

NUCLEAR FORCE S

B Y

C. MØLLER AND L. ROSENFELD

KØBENHAVN
EJNAR MUNKSGAAR D

1940



Printed in Denmark
Bianco Lunos Bogtrykkeri A/S

REPRINTED 1948 TUTEIN OG KOCH



INTRODUCTION

s was first pointed out by YUKAWA 1) , the fundamenta l

property of the nuclear forces of having a limite d

range can be very simply accounted for by the introductio n

of a new kind of field, generated by the nuclear particles ,

and through the intermediary of which forces are estab-

lished between ' these particles . With such a field is associ-

ated, according to the principles of quantum theory, a new

kind of particles, the mass of which is connected with th e

range of the forces' ) . The value of this mass turns out t o

be intermediate between that of the electron and that bf

the proton, and actually of the same order of magnitude

as that of the new kind of charged particles, calle d

mesons 3 >, found in cosmic radiation .

Charged meson fields can only give rise, in first

approximation, to forces between protons and neutrons ,

Since short range forces of the same order of magnitud e

have been shown by scattering experiments to act betwee n

any pair of protons or neutrons, it seems necessary furthe r

to assume the existence of neutral meson fields ; and ther e

is also some evidence') of such a neutral penetrating com-

ponent in the cosmic radiation. It is clear that the force s

originating from a purely neutral meson field would b e

exactly independent of the proton or neutron characte r

of the nuclear particles ; but there is also, as shown by

KEMMER 5), a possibility of combining in a symmetrica l

1*
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way charged and neutral meson fields so as to secure thi s

charge-independence property of the nuclear forces . This

last possibility is especially important since it permits t o

maintain a relation between a field theory of charge -

independent nuclear forces and the various effects brough t

in connection with the . occurrence of charged mesons, viz .

the relation between the range of the forces and the mas s

of the charged mesons observed in cosmic rays, the relation

between the life-time of these mesons and the decay-

constants of ß-radioactive nuclei'), and the anomalou s

magnetic moments of the proton and the- neutron ?) .

The simplest wave equations for the mesons which

satisfy, besides the claim of relativistic invariance, the

condition of giving a positive definite expression for the

energy, reduce to four types, characterized by differen t

covariance properties of the waver functions, and each

allowing the existence of neutral as well as positively an d

negatively charged mesons"). The expressions for the

nuclear forces resulting from each of these types of meson

fields have hitherto been discussed by using the ordinar y

perturbation method of quantum theory and taking int o

consideration only the first non-vanishing approximation ,

in spite of the well-known lack of convergence of the

method. Our first task will be to examine more closel y

the reliability of such results, and for this purpose w e

shall use a method of canonical transformation' ) quit e

analogous to that used in electrodynamics to separat e

from the expression of the total energy of a syste m

consisting of electrons and an electromagnetic field, a

term depending only on the coordinates of the electron s

and representing the Coulomb potential energy . For a

system consisting of nuclear particles and any meson field,
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it is, in fact, possible, as we shall show . in the first part o f

the present paper, to find canonical transformations effectin g

the separation of a "static" interaction between the nuclea r

particles, defined as the part of the interaction which i s

obtained when one neglects the time-variations of the vari-

ables characterizing the positions, spins and isotopic spin s

of the heavy particles . The expression for this static inter -

action is found to be in all cases just the same as tha t

obtained as a first approximation in the perturbation

method and contains three kinds of static potentials, viz .

besides a spin-independent potential and a spin-spin coup -

ling such as have hitherto been mainly used in the de-

scription of nuclear forces, a further 'directional coupling o f

the type of a dipole interaction .

The next question, which will be discussed in the second

part of this paper, is that of the fixation of the choic e

hitherto left open between the four possible types of meson

fields, and of the possibility of sharply delimiting a regio n

in which the formalism thus arrived at, which has o f

course all the defects inherent in any quantum field theory,

can be applied unambiguously . Above all, it must be ob -

served that the static potential of dipole interaction typ e

is so strongly singular for infinitely small mutual distance s

of the nuclear particles that it would not in general allow

the existence of stationary states for a system of such

particles . In view of the provisory character of the whol e

theory, it might be attempted to remove this difficulty b y

taking recourse to some "cutting-off" prescription, consist -

ing, for example, in replacing the interaction energy of a

pair of nuclear particles by some constant potential for al l

values of the mutual distance of the particles smaller tha n

a conveniently chosen value 10) . Quite apart from the
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arbitrariness involved in the fixation by means of som e

special properties of nuclear systems of a cutting-off radiu s

which should be connected with the general difficulties o f

the quantization of fields, it must he stressed that in an y

such theory non-static effects which do not arise from th e

field quantization would occur to an extent sufficient to

make the exclusive use of the static forces illusory in th e

determination of stationary states of nuclei . As will be

shown with more detail in the second part of this paper ,

these effects are due to the time-variations of the spin s

and isotopic spins of the interacting particles which, i n

first approximation, take the simple form of precessions ;

the quantitative treatment of the corresponding contribu-

tions to the total energy is made impossible by the circum-

stance that they cannot be unambiguously separated fro m

the infinite terms always present in a quantum field theory . .

It must therefore be concluded that a satisfactory fiel d

theory of nuclear forces must he such as not to give ris e

to any static potential of the dipole interaction type .

A further requirement restricting the choice of the typ e

of meson field to he adopted is the condition that the

interaction between a proton and a neutron should lead

to the correct positions of the 3 S ground level and excite d

' S-level of the deuteron, known from experiment. Thes e

two conditions cannot be satisfied with one type of meso n

field only, but it will be seen that, if we take I{EMMER' s

symmetrical combination of charged and neutral fields ,

there is a definite mixture of two types of meson .fields ,

viz . a vector meson field and a pseudosealar meson field ,

for which the resulting static interactions are compatible

with the requirements of the empirical deuteron spectru m

without containing any singular terms, and in which the
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precession effects just described become therefore negli-

gible. In such a theory, it is also possible to apply in a

consistent way to the Hamiltonian obtained after perform -

ing the separation of the static interactions by means o f

the canonical transformation mentioned above, a prescrip-

tion regarding the interpretation of the formalism, analo-

gous to the so-called correspondence treatment of quantu m

electrodynamics"), Needless to say, this prescriptio n

must include the essential restriction, pointed out by HEI-

sENBERG 13 , of the scope of the formalism to processe s

involving only energies not large compared with the rest-

energy of the mesons .

In the third part of the present paper, we apply the theory

just outlined to the discussion of the stationary states o f

the deuteron, including the calculation of the electric qua-

drupole moment of the ground state . As regards this las t

property, its experimental discovery by RARI and his col-

laborators" ) is of considerable theoretical importance ,

since it clearly shows that the forces acting between a

proton and a neutron Inlist to a quite appreciable exten t

depend on the spatial orientations of the spins of the heav y

particles . It is therefore a satisfactory feature of the present

form of the meson . theory that it actually provides such

a directional coupling, arising from non-static interactio n

terms, which permits a complete treatment of the problem i4? .

Finally, we should like briefly to mention the hearing

of the above considerations on the theory of p-disintegration

obtained by introducing, as proposed by YUKAWA L) , an

additional interaction between the meson fields and electron s

and neutrinos, In the first place, our transformed Hamil-

tonian will contain terms which represent a direct inter -

action between heavy and light particles, and which, when
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treated as a small perturbation, immediately give the pro-

babilities of p-disintegration- processes. It may be regarde d

as a satisfactory feature of our point of view that, contrary

to previous treatments, where the nuclear forces carne ou t

in the same stage of the perturbation method as the pro-

babilities of p-decay, an exact account can here be taken

at the outset of the main part of these forces to determine

the stationary states of the nuclei involved in the p-decay

processes . It can further be seen 14a> that the present

theory, involving a mixture of two independent meso n

fields, provides a possibility of avoiding the serious diffi-

culty pointed out by NORDHEIM 15) which affects any

theory using only one type of meson field and which con-

sists in a quantitative discrepancy between the observe d

and the theoretical value of the ratio of the life-time of free

mesons to that of light p-radioactive elements . A detailed

disçussion of the problems of p-disintegration will be pub-

lished later, in collaboration with S . ROZENTAL .
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PART I .

Static nuclear forces .

In the first part of the present paper, we shall be con
cerned with the determination of the static part of th e
nuclear forces due to any one of the four types of meson
fields shown by KEMMLR 8) to satisfy, besides the claim of
relativistic invariance, the condition of giving the eigen
values 0 or 1 for the spin, and a positive definite expres -
sion for the energy of the mesons . In each case, we have,
as explained in the Introduction, to consider both charge d
and neutral meson fields . The attribution of an electri c
charge to the mesons demands the use of complex wave
functions. In fact, only with the help of such complex
wave functions is it possible to construct an expressio n
for the charge and current density satisfying the continuity
equation; and this expression then leads automatically t o
the existence of both positively and negatively charged

mesons . On the other hand, neutral mesons can simply
be described by real wave functions" ). We have thus on
the whole to consider in each case three non-interferin g
meson fields, corresponding to charged and neutral mesons ,
and represented by three independent sets of real wav e
functions of the appropriate covariance character .

Let us denote any three such sets of real field quan-
tities by F1 , F2, F3 (a whole set of tensor components
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will for the moment be denoted by a single letter), th e

index 3 referring to the neutral field, while the indices 1

and 2 refer to the two other real fields which togethe r

describe the charged mesons . We may conveniently grou p

corresponding components of these sets into symbolica l

vectors denoted by

`-(F1,F2,F3) ,

and this notation may be extended to the densrtae s

S = (S 1 , St, S3 )

of the source distributions giving rise to the real fields

in question. Any source density can further be expresse d

as a sum of the contributions from the different nuclea r

particles :

S =

	

(0 ,

where S(`) denotes the contribution of the i-th nuclear

particle .

As shown by KEMMER '), the combination of charged

and neutral meson fields can be chosen in such a way
as to secure that the resulting nuclear forces be completel y

independent of the proton or neutron character of the par-

ticles in all states of the system which are antisymmetric

with respect to space and spin coordinates . This is simply

effected by taping for any contribution Sty) of a nuclear

particle to a source density S an expression of the forai

S( F) =- TW • S
(i)

,

i . e . the . product of some operator S'') , which is the sam e

for the three real fields, by the isotopic spin vector
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T(i) =
(T1(i) ' ,LT(,0

T~ i) 1'

of the nuclear particle, chosen in such a way that th e
eigenvalue + 1 of T(; ) refer to the neutron states of th e
particle and the eigenvalue -1 to its proton states ; the
choice of T(3i) for this purpose being, of course, necessaril y
connected with our attribution of the index 3 to the neutra l
meson field . For the reasons stated in the Introduction, w e
shall adopt this symmetrical form of the theory in th e
following treatment .

We shall begin with the case of the-vector meson field ,
which has hitherto been most extensively studied ') and
which, on account of its similarity with the electromagneti c
field, is perhaps more suited for the exposition of the method

of derivation of the static nuclear forces .

1 . Survey of the formalism of the vector meson theory.

For the description of each of the three real vector
meson fields, we have to introduce a four-vector* ((J, V)

and an antisymmetric tensor (F, G) ; the charged meson s
will thus be described by two independent sets of suc h
vectors and tensors :

( ->

	

I

+~ -~-
1

LT1
' Vl,l

	

~ 1 ' GI) ;
~~-

	

-

t L~z' V2)' A' G2 .

and the neutral field by a third se t

(L3 V3 ), ~1 3 , G 3 )

With the notation introduced above, all field component s
can be compactly expressed a s

* The arrow indicates a vector in ordinary space .
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(Û, v), 4'7 G) ,

and they satisfy the following system of equations* :

grad V+ T

Î+' ~= x 2 U + rot G- ,

x2 V = -d1vl+' + N
-~

	

-~ -~
G=rotU +S ,

where 1
denotes the range of the nuclear forces . The four -

vectorsx(11T, N) and the antisymmetric, tensors (T, S) re-
present the densities of the source distributions of the meso n
fields according to the following definitions, which refer to
the description of the state of the heavy particles in thei r
configuration space (x (i), x (û) ,

	

, x (i)

	

) .

	

11 (°

	

1 (1) a (_) 8~ x- x= gl

	

(0 )

	

(i)

	

(i)

	

---)-

	

-> (i)N =N =

	

T

	

ô( x- x ) ,

--->

	

-->

(1 )

(2)

(3)

T(i)

	

92

	

T(0 p2i) a
(0

$ lx-x
( i)

(i)
(0

	

(0 8 ~ x -x

	

;
(0 )

T

	

( 4 )

P3 6S (i) _

(i) -s- ( i)

	

- s- (i)

	

( i ) - (i)the matrices p , o and a = pi a are the usual Dira c
matrices belonging to the i-th nuclear particle, while th e
constants gi , g2 , which have both the dimension of a n
electric charge, determine the strength of the sources o f

* The notation A represents the time derivative of A, divided b y
the velocity of light .
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the meson fields and consequently the magnitude of th e

nuclear forces . It must be noticed that, in contrast to N

and S, the components 11 and T contain a factor of th e

same order of magnitude as the ratio between the velo-
cities of the nuclear particles and the velocity of ligh t

(which we will express by saying that they are "of the

first order in the velocities") .
The field equations (1), as well as the equations o f

motion for the heavy particles, which we need not writ e

down explicitely, may be derived as canonical equation s

from a Hamiltonian

07-(- _ + j(-F ,

	

(5)
where

{(.Yr
--± (i)-3 (i)

	

(i) (1+T3)

	

2

	

-T3)

	

~ ) 1=

	

a

	

p-}-p3

	

2--- 1x.v c -I--
2
	 lYlP C

	

(6)

is the kinetic energy of the nuclear particles, and*

~C

	

2 S{x2j2+Gr' + K2 L
2
}dU

~ ~
- S{ii. + T-F} dv

the meson field energy, including the interaction with th e

nuclear particles ; in the expression (6), MN and Mp denote
the _masses of the neutron and the proton respectively ,

and p (1) represents the momentum of the i-th particle
multiplied by the velocity of light . The canonical variable s
(p (I) , x (i) ) of the nuclear particles and (-F. ,, Zi ) , of the
meson fields satisfy the commutation rule s

--

	

l
a The notation A • B (and likewise A

2
) represents a double scala r

product, i . e. a double summation

	

LL B over the ordinary
p Sri

space indices p and the symbolic space indices no .

(7)
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[p ( i )u , x (k) vl - ~C 8(tk) 8uv

r

	

J

, t ) , F,i~x,t)] =
tic

i
	 8( x -x')h u v

all other pairs commuting ; their time-derivatives are the n

calculated by the usual rul e

ri tc [~,A] ,

V and G being regarded as functions of the dynamica l

variables defined by the equations (2) . Although this Ham-

iltonian scheme appears very unsymmetrical, it can be veri-

fied that it satisfies the requirement of relativistic invariance .

2. Separation of the static nuclear force s
in the vector meson theory.

The analogy of the equations (1) and (2) with the Max-

well equations of an electromagnetic field suggests in th e

first place to consider as the static parts of the meso n

fields the solutions of the equation s

F° = - grad V °

div °+x 2 V° = N

G°=rotI °+ S
--~

	

-)-
rot G° -i- x2 Zj° = 0

obtained from (I) and (2) by cancelling the time-derivative s
->-

	

-}
L; F and the quantities T and ÆI, which are proportiona l

to the velocities of the nuclear particles . Strictly speaking,

we should also in the expression (4) for S replace the p 3(i
)

(9)

(10)
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by 1 ; but, in order to obtain a more symmetrical treatment ,
we prefer to retain the small differences p3 `ß -1, which are
only of the second order in the velocities . The solution of
(9) and (10) is readily reduced-by using the conditio n
div U° = 0 which follows from the second equation (10 )
-to that of the equation s

DV° --x ' r" = - N
ßU° -x'U° = rot S

	

(11 )

With the help of the Green functio n

1 e-xr !
(p (r)=

	

=
4Tr r

which satisfies the equation
-->-

A cp-x2 cp = -5 (x-x'

we obtain immediatel y

j V-°( x ) =

	

S p (r ) '

(
~ ) _ - S rot S `x ) ~ (r) dD' , J

from which we derive F° and G° by means of the firs t
equations (9) and (10) .

If we insert these expressions into the field Hamiltonia n

e7CF,, we find that it separates exactly in the form

(16)

where the first term,

(12)

(13)

(14)

We may now define new field variables U1 , F1 by
putting

= U°+ U1 , F= F° -{- F1 .

	

(15)
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@.7~F = 2 t
~{)~ i K2 ( V° ) 2f dU + 2

\{(o)2+ K (io 2}dv

	

%2

	

(17)

is a function of the coordinates of the heavy particles alone ,
while the second ,

r~

j
~lF =

2 \1 { (I+' l ~ ! K 2 ( divl+'
i

)

2
~-(rot (T i r 2 --F- K2 (dv ,(18)

~

has the same form as the Hamiltonian of a meson fiel d

in free space ; the last term ,

F=-e1Î1(Ûo+i'~+T(Î'°+I") jdv, (19)

which represents both a direct interaction between the heavy
particles and an interaction between these particles and th e
non-static meson fields, is only of the first order in the
velocities. In fact, the remaining cross-terms, which occu r
when the substitution (15) is carried out,

{F° Fi -V° div Fi f dv + ~ {G° rott
-'i -I- K 2 U° Z±'' } dv ,

reduce by partial integrations t o

Ç {g`O { grad V°

	

dv

	

{rot

	

+ x2 Z °f Î ~ dv,

i . e . to zero in virtue of the equations (9) and (10) .
Now, it must be observed that, according to the defini -

-* -
tions (15), the different components of U, F 1 do not com -
mute with all the coordinates of the heavy particles, so tha t
the terms of the Hamiltonian relating to the nuclear par-
ticles alone are not commutable with e./"lFi and that, therefore ,

not the whole interaction of the system is represented by
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the terms e7CF° and WF . This incompleteness of separatio n

arises, however, only from the non-commutability of the
-* (i) (0 (0

matrices o , p , T and, if one could look apart from

this non-commutability, the variables Ul, i I would eve n

satisfy the canonical commutation rules . The separation

(15) would then be part of a canonical transformatio n

which, applied to , would also effect a separation o f

this function into terms of direct interaction between th e

heavy particles and the Hamiltonian (18) of pure meso n

fields, with a small remaining interaction between these

fields and the heavy particles .

Let uS denote the unitary operator of such a canonica l

transformation, defining any new variable A ' in terms of

the old variables by the formula A ' = @S' -1 A e The Ha-

miltonian of the system in terms of the new variables i s

then simply given by the expression eS' Jr' er'- 1 , where

eSa ' and gir' are the same functions of the new variable s

as the functions e and uYr of the old variables, the latter

function being defined by (5), (6), (7) ; we have, of course ,

identically e$ ' = e5? The neglect of the non-commutabilit y

of the matrices o- (1) , p ( ~ ) , T(1) in the calculation of such A n

expression means neglecting some terms which contain line-

arly the commutators of these matrices with eYr', i . e . o n

account of the relatio n

[A', 2r- '] = 0'1 [A, @r] e?= Jlci of-1A e5`'

the time-variations of the matrices o-
co,

p , T(i) . If we

therefore conveniently define as static interaction s

( i )
those which are independent of the time-variations x

(i)

	

(0

	

(i)(t )a , a , p , T of the variables of the nuclear particles* ,

In his papers cited above e ), E . STUCKELBEEG proposes a definition
of the expression "static interaction" which, as he also points out in a

D . Kgl . Danske V idensk . Selskab . Math .-fys . Medd . XV l1, 8 .

	

2
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we see that the canonical transformation considered will lea d

to the separation of all such static interaction terms in th e

Hamiltonian . The direct interaction term contained in WF

being obviously of non-static character, the energy of stati c

interaction of the heavy particles is thus simply obtained

by putting in the expression (17) for all p i) equa l

to 1; the remaining non-static part of e7CF is only of th e

second order in the velocities .

The explicit expression of the operator

	

of a canonica l

transformation which, under neglect ;of the non-commutabi-

lity of a (i1, p (`), T (I), contains the formulae (15), is easily

verified to be*
a,.

~ = e' e
with

	

}

	

(20)
-i-'°

	

~
e7iF =

	

U°dU .

We have in fact

i

	

t -Ÿ ~

	

1 -ŸU' = ~ Z,r e3 - U+ QS' LU, ~] = r,T+
c [L, ~~F]

->-
= U- U° = U1 ,

and similarly
--)-I„ = _F'-F°

since [A cSJ ] =

	

c [A, e7L'F ] , when [A, Q -F ] is com-

note to "Nature", 143, 560 (1939), differs from the definition adopte d

here by excluding only the terms depending on the x . As will appea r
in Part Il, the present definition would seem more convenient for the
formulation of the restrictions to be imposed on the physical interpre-
tation of the formalism .

a Of course, the operator

	

is not uniquely determined ; another
possible choice would be, for example ,

L She F i do - h°

	

F tv .
= e

	

e

	

J

About this point, see p . 37 .

~.1 ,

mutable with cgI ,, which is the' case for A = Uand A
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when we neglect the non-commutability of spin and isotopic

spin operators . Always with this last restriction, the trans -

formation er leaves all the variables of the nuclear particle s
-3- tit

unchanged with the exception of the momenta p . In terms

of the new variables, the Hamiltonian of the system is

given by

e '

	

= a' _7ck'
_`0,-1+ a ' cn

where er ' , as already stated, is the same function of the

new variables as the function er of the old variables defined

by (20) . The term Q? '

	

0'1 differs from the kineti c

energy

	

' of-the heavy particles only through new inter -

action terms

[ @7(; e'j

	

a ti>
.

S,-1
lP ti)' , ,

Jl

	

J

of the first order in the velocities, while of cours e

es' -Ki e-1 = cn + @n + -q.rF

with the definitions (17), (18) and (19) .

3 . Pseudoscalar meson theory.

The method explained in the preceding section may

immediately be applied to any other type of meson field .

Since the procedure is entirely similar in all cases, we

shall in this section give a brief treatment only of th e

pseudoscalar meson theory, which, as stated in the Intro-

duction, will be used extensively in the following . The

field components here consist of pseudoscalars &B and pseudo-

four-vectors (I', fi) satisfying the equations

2*
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w = 4p -Q
~

-d) = x 2 ls -{- dtv 1' -R ,
(21)

- grad if -1-- P,

	

(22)

in which the sources of the field are represented by th e

density functions

(i)

	

(i)
T

	

0 2 (x-x (i)),

	

(23)

T (0 6-(i) l x-
x (0\

i
(24)

S ~ x - xT

	

) ,Pi.
(i)

	

(i)
(i)

i

transforming respectively as pseudoscalars and pseudo-four -

vectors ; the constants f1 and f2 are again chosen so as t o

have the dimensions of an electric charge. The quantitie s

R and Q are of the first order in the velocities .

The field equations (21), with 1' defined by (22), appea r

as canonical equations if we regard the ‘P's as canonical

variables with conjugate momenta 41, obeying the commu-

tation rules

L

	

(f--r

cl)yn

	

t) ,
1
~

	

-~
ntx, t)] _ -6 x-x)'61Ln, (25)i

etc., and if we take for the field Hamiltonian, includin g

interaction with the nuclear particles ,

~ = 1 {cU L -}- ( )
2
-I-- x2 412 } dv - 4141+ Q cj~} dv

2

	

►

+ 2~ {02-Ptifd" .
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From the point of view of the derivation of the field equa-

tions (21), the addition to the Hamiltonian of the last

integral, which is an invariant function of the variable s

of the heavy particles, remains of course arbitrary . The

reason for its inclusion in the present case, in contrast to th e

omission of the corresponding integral
2 1 ( 2- (S

)
2 } dv

I 1 = - grad 'Y° -1- P

~ divl-*" + K 2 if ° = 0 ;

the equations (28) are equivalent to

'P° -K2IF° = div P,

	

(29)

giving

yr° = -
S
div(x )•cp (r)dd .

	

(30)

Defining new field variables 'P 1 , 'bt by the relation s

'P = 'f°+T 1

(1) 1 ,

we obtain a separation of the Hamiltonia n

e7C$ _ JCcl) ° -f- e7Co1 ,+ 21-)Ø

	

(32)

entirely analogous to (16), since the cross-ternis again vanis h

on account of (28) . We have here

in the vector meson theory, will become apparent in th e

next section .

The static parts y i°, (I ° of the pseudoscalar meson fields

will be defined as the solution of the equations

(28)

(31)
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=
2

	

\--K2(11'°)2 -(P)2}dv ,

Ç
101 ) 2 -~-- (grad

	

)2 + x 2 ('10 ~)2 f dv, .

	

(34)

-. -(IT (w° E 4j 1 ) -1- Q (1'jJ dv -} 2 Q 2 dr~ . (35)
e .

If we again provisorily look apart from the non-commu-

tability of spin and isotopic spin matrices, 'we see that thi s

separation is effected by applying to the total Hamiltonia n

4- arc, a canonical transformation, the operator o f

which is
al)

e.S'= eh`

	

,

(33)

with

e>%z~ =

	

r t'dv .

	

(36)

The static interaction is in this case given by (33) .

4. Calculation of the static interaction potentials .

It remains to put the static interactions derived in th e

preceding sections into the form of potential energies o f

the heavy particles, i . e . to express them as explicit func-

tions of the dynamical variables of these particles. Let us

begin with the expression (17) relative to the vector meso n

theory . By partial integrations and use of the equations (9)

and (10), we find readily

S(V°N+G°S)dv ;
2
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with the help of (14) and (13), we obtain further* from

the definition (10)

G°= S - rot S (S (x ' ) A grad' p) dv'

	

l

_' S ~
S
S( x' ) A' q) dv ' + (S ( x ' ) . grad') grad q) dv ' (37)

= K21q) dv'+ (S(x) grad') grad pdv',,

so that we get

1= j ÇAF ~x) .cY(x) cp (r) dvdv'

K2 '( ~ -~ -~- - --a

+-2-
1 S(x)S 4, x' ) p(r) dvdU '
. ;

1 >// >

	

' ~

	

,
I 9 kSl x } grad) (S

(
x) grad )qp (r)dvdv

,
,

and finally, introducing through (3) and (4) the variable s

of the heavy particles ,

° = 1

	

(T(i) T (k)
)

(k)}

	

+ 9',2 P(
i3)~6 (i) p(k

)1~Ø
( k)

lF

	

_i

	

19' 1

1,k t

If we put all p
3
`) = 1, this expression gives the potentia l

energy of static interaction due to the vector meson fields ,

including-as a defect inevitable in any theory treating th e
nuclear particles as material points-the infinite static self-
energies of these particles .

When necessary, we affect the operators grad, div, rot . . . with

the same index as the point at which the derivatives are to be taken .

2
(i)

	

(I) ) (p(3

	

(k)
+

K2~

	

s a- grad ~ (pa 6

	

grad
~)

q) ~r(ik)
~ ,

r
( (ik) - -~

- x
(i) --*(k) I) .x



24 Nr. 8 . C . MØLLER and L . ROSENFELD :

Passing now to the case of the pseudoscalar meso n
theory, we get similarly from (33) and (28)

@K.m = 2
\ lI'°•P- (Pr}du ,

and, with (30) ,

l'° = P- grad
S
P l) grad' qp dv '

= P-~(P
/
x)•grad ')grad pdv ' ,

so that the static interaction in this case become s

° = - 1 ~ lÿ l x ) grad) (P l .x ' ) grad'~ g> (r) dv du' (41 )~ 2

or, on account of (24) ,

	

1

	

( i ) (k) / f2 f

	

(i)

	

( i)-4( k )

	

(k)

	

.eytr °
= - 2

	

I

CT T ) (K

	

6 grad ) -
o- grad ) qp (

(ik)
r ) . (42)

It will be observed that, if the invariant S { Ü2 - (P)2 } dv

had not been included in the Hamiltonian @7C defined b y
(26), we would have obtained a supplementary stati c
interaction

T(i)T(k))
6(i)

6(it) ) 8 x ([)- x (k)) ,

which, as discussed by KEMMER '8), is of so strongly
singular a character that it could not give any finite bind-
ing energy for the deuteron. With our choice of the Hamil-
tonian C1) this singular term is eliminated, and ther e

occurs instead a term
2

Q2 dv which, though of the sam e

type, is only of the second order in the velocities an d

(40)

i, k
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therefore inseparable from all other infinite terms t o
be discarded according to the correspondence point of view
developed in Part II . In the vector meson theory, no such
singular terms occur if, following Yuxnwn 17), the Hamil-
tonian (7) is adopted in preference to an expression differ -

ing from (7) by the term `'(2) y -(S)2 } dv, which ha s

been considered by other authors 17) . This would perhap s
appear as a natural way of removing the arbitrarines s
connected with the occurrence in the formalism of suc h
singular terms of direct coupling between the nuclea r
particles .

For the two remaining types of meson fields, we shal l
only write down the expressions for the static interactions ,
resulting from entirely similar considerations :

Scalar meson field :

1

	

(k)) f12 ~ ~ (ik) )
T T

	

i

	

r (43)

Pseudovector meson field :

1 ~ / (i) (k)~ [q 2

	

)
T T

	

a a. k

1

	

r 1 l >( i)

	

(i)

	

-~(k)

	

(k)`

	

(ik)

	

+ ~( Kll - I K2J
J

( a grad ~ ( a grad ~

	

~ 1 ~

Comparing the expressions . (39), (42), (43), (44), we se e
that they contain three different kinds of potentials, viz .
(apart from the dependence on isotopic spin common t o
all of them) : 1) a potential p (r( ik)) depending only on the
mutual distances of the nuclear particles ; 2) a spin-spin

r--(i)--(k)

	

( ik)coupling l a a ~ y (r ) ; 3) a directional coupling
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2 1-»(i)grad (i)) (
--6 *(k)

	

(k)

which, apart from the sign, is of the type of a dipol e

interaction. The most general form of static interaction ,
resulting from an arbitrary mixture of the four types of
meson fields is, therefore, a linear combination of these
three kinds of potentials ,

i, k

~
G3 (

o-
(t)

grad
(i)\

k a (k)grad(lc))
j Ø

(j (jk) ) ,

(~ )((k) 1T T )
t
r1 + G2

(->-(i)-±(k) )a a

(45)

with coefficients given b y

2

	

•~ 2G1-9i - f1

G2 = g2 g 1

G3- A-12 2 _ g'i 2 +
g 2•

(46)
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Part II ,

Limitations of the Formalism .

1. Difficulties arising from the potential o f

dipole interaction type .

For the fixation of the choice between the four possibl e

types of meson fields responsible for the nuclear forces ,

an important criterion is afforded by our empirical know -

ledge of the stationary states of the deuteron . In trying t o

account for the deuteron spectrum by means of one type

of meson fields only, vector meson fields have generall y

been adopted"), in spite of the fact that the correspond -

ing static interaction (39) includes a term of dipole inter -

action type which, strictly speaking, makes the existenc e

of stationary states of finite binding energy impossible . In

view of the provisory character of any quantum field

theory at the present stage, this difficulty might, in fact,

not be deemed fundamental, and it might be attempte d

to avoid it by a cutting-off prescription . Such an attempt,

carried out by BETHE 10) , has led to the conclusion that,

while the way in which the cutting-off is performed is o f

small influence on the results, the value to be assumed

for the cutting-off radius depends critically on the combin-

ation of charged and neutral meson fields adopted : if one

uses the symmetrical combination proposed by KEMMER,
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the cutting-off radius should be chosen larger than th e

range of the nuclear forces, and a reasonable value of thi s

radius could only be obtained if the meson field were

assumed to be purely neutral . Even looking apart from

the unsatisfactory character, pointed out in the Introduc-

tion, of a purely neutral meson theory of nuclear forces ,

any meson theory involving forces of the dipole interactio n

type is affected, however, as we shall now proceed t o

show, by a . more Serious difficulty, due to the non-stati c

effects connected with such forces .

In order to get an idea of the nature of these non -

static effects, we have, according to the considerations of

section 2 of Part I, to examine the time-derivatives o f

the dynamical variables of the nuclear particles occurrin g

in the expression of the transformation matrix CSC , i . e .- ( i) --(i)

	

(i)

	

(i )
X , 6 , p 3 , T ; neglecting all terms depending on the

velocities of the heavy particles, we are left with th e

consideration of a an d and T (i) . The motions corresponding to

these time-variations may he described as a precession o f

the vector a (i) in ordinary space and of the vector T (L) in

symbolic space ; for instance, in the most familiar case o f

the vector meson theory, developed in Section I of Part I ,

these motions are defined, to the approximation indicated ,

by the equations *

6-(')= I Ÿ2 T (0 [G \ x(0) n(i)

	

6(-)
he x G(x(`')],

(47)
(i)

	

1

	

r

	

(i)

	

g2 ->- -~ (i)

	

( i) l

	

(( )
T

=
he ~9i Z'( x )-f- K G~x )~6 , AT + conj . )

. * The symbols n and A indicate a vector product in ordinary and

symbolic space respectively. The abbreviation "conj ." will sometimes b e

used to represent the Hermitian conjugate of the expression preceding it .



(In the last formula, a term proportional to the smal l
(MN-Mp ) c

quantity K	 has been neglected) . A criterion of the

importance of the non-static effects can be derived fro m
an investigation of the amount of these precessions which

is due to the static part of the meson fields . In our ex -

ample of the vector meson theory, we obtain the corres-
ponding time-variations by inserting in (47) the expres-

sions (14) and (37) of V° and G° ;

~ ( i) _ 2

	

~
' (

T
(i)

T

	

k (k))
K
$

6
( k)

6

	

~2e

(Ell

	

`
1111

	

i k

+ ( 6 (k)grad
(k) ) grad(0 1 (p

o.
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2

i

	

rr+ (g2) 1K2~(k)
~ (i )

K

• (i) - ) 2
T - ltCG

k

+ (

	

' g r a d ) ( 6 (t)grad(i)))J
q:, (l(ik))

T(k) "
A

T (L),

the terms corresponding to k = i in the summations vanish -
ing automatically . On account of the separation (16) of th e
Hamiltonian, these equations are of course simpl y

, 6

	

T (i) =

	

[ c~IC
0

T
(

he

	

F ehe

with elCF given by (39), and, for the most general form
of meson theory, the corresponding equations may be
obtained in the same way, elCF° being replaced by th e

general expression (45) :
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T
(i)

T
(k)

) L G 2-4a(k
)

'

	

2

	

[G 1 + G(

	

k )
i

G3 -} ( k )

	

( i)

	

) ( k) ~

	

( i)+ K2 ( v grad
(k)

) ( a grad(i ))] ~ ~r ) T ( A T

Now, it is clear that if the periods of such precession s
are not large compared with the time of propagation o f
the main part of the non-static meson fields through a
distance of the order of the range of the static nuclea r
forces, there is no justification in using only the stati c
parts of the meson fields for the determination of the sta-
tionary states of a nuclear system . According to (49), the
angular velocity of precession of spin and isotopic spin
of a nuclear particle is, for sufficiently small values o f
the distance r of the next neighbour in the nuclear con -
figuration considered, of the order of magnitude 1 G 3 1

x 2 4 Trr 3
if G 3 � 0, and - G 4	

Trr if G 3 = 0, G being written for G1
or G 2; on the other hand, the time of propagation of the
main part of the non-static meson fields through the distance
x-1 will be of the same order of magnitude as - l . The

condition just formulated defines therefore a critical valu e
r e of the distance r, such that the consideration of th e
non-static forces will be important as soon as r < rc . If
the theory involves static couplings of the dipole inter -
action type, we have therefor e

3--( 3

xr~ = 4Tncc ,

	

(50)

i$k

	

(Gl ~(k)

	

(k)

	

(i)1

	

(ik)1 i -->- (i )-}-

	

( 6 grad
)

grad

	

(p \

	

J

	

r ) 1 /1 o-
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while, if no such couplings occur, we find for the critica l

distance the smaller value

KT~ =
G

4-rhc '

In a purely neutral meson theory, entirely similar con -

siderations apply to the a-precession . In particular, taking

the theory of neutral vector mesons investigated by BETHE 10 ,

for which he gives*

G3	 .9 a
2
	 =0.08 ,

4-rr he

	

4 ïrrhe

we see that the critical distance given by (50) is of the

same order of magnitude as the cutting-off radiu s

x r0 = 0.320 or 0.436 .

It would, therefore, not seem consistent to disregard the

non-static forces even in a treatment involving a cutting -

off prescription. Neither can there be any hope that a n

explicit consideration of the precession effects just discusse d

would permit to avoid the singularities of dipole inter -

action type, since the contributions to the energy of th e

system arising from these effects are of an essentially dif-

ferent form . Above all, however, such large precession effects ,

although not directly depending on the quantization of th e

meson fields, could not be unambiguously separated fro m

the typical quantum effects which give rise to the well -

known divergences of any theory of quantized fields . We

may, therefore, conclude that, within the frame of th e

present formalism, we can only expect to obtain a meson

* The explicit appearance of the factor 4 Tr is due to our use of units

analogous to the Heaviside units of electrodynamics .

(51)



32 Nr. 8 . C . MOLLER and L . ROSENFELD :

field theory capable of consistent interpretation (to a suf-

ficiently restricted extent) if all couplings of dipole inter -

action type are eliminated at the outset, i . e . if

G . = 0 .

	

(52)

On the other hand, a more detailed examination of th e

non-static meson fields due to the spin and isotopic spi n

precessions, to which we will come back in section 5 ,

shows that, in a theory which does not involve any coup-

ling of dipole interaction type, the effect of these fields on

the stationary states of a nuclear system will actually b e

much smaller than that of the static forces, if the mea n

distance between any pair of nuclear particles in such a

state is larger than the critical distance defined by (51) .

A comparison with the empirical data, which will be given

later in connection with the discussion of the propertie s

of the deuteron, shows that the last condition is well ful -

filled for ordinary nuclear systems . As regards the difficultie s

of field quantization, we might perhaps expect that the unam-

biguous conclusions derived by completely disregarding the m

would still be reliable provided the theory using the unquan-

tized fields does not itself contain any ambiguity . From thi s

point of view, we should conclude that, in a meson theor y

satisfying, besides (52), the condition just discussed, only

the static potential will be of importance for the deter-

mination of the stationary states of nuclear systems .

2 . Choice of a special form of meson theory.

Let us now consider the different forms of the meso n

theory satisfying the requirements in question . In order t o

secure agreement with the known properties of the sta-



on the Field Theory of Nuclear Forces .

	

33

tionary states of the deuteron, we have to impose furthe r

restrictions on the static potentials given by these theories .

In particular, we shall require that'the static potential b e

attractive in the sS and 1S states of the deuteron, revealed

by scattering experiments, and. that the 3S-level be

lower than the 1 S-level . It will be seen-always assuming

KEMMER's symmetrical combination of charged and neutral

meson fields-that these simple qualitative requirements ,

which lead to two independent inequalities involving G 1

and G2'1 are, together with (52), sufficient to restrict the

choice of the form of meson theory to an essentially uniqu e

possibility .

According to the expression (45) of the static potential ,

with G2 = 0, the mentioned inequalities to be fulfilled by

G1 and G2 are

- 3 (G 1 -4- G 2) < Gl - 3 G2 < 0,

which reduce to

(53)

From the values (46) of G1 and G2 it is immediately appa -

rent that the conditions ,(52), (53) cannot be fulfilled b y

any theory involving only one of the four possible types

of meson fields, so that we are led to consider the pos-

sible mixtures or "compositions" of two or more of these

types of Melds . It is then easily verified that, if we try to

compose only two types of fields, the only possibility i s

a mixture of vector ' and pseudoscalar meson fields satis-

fying the conditions

D. sgl . Danske Vidensk . Selskab, Math .-ïys. . Medd . XVII, 8 .

	

3

(54)

(55)
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It , should further be observed that from the point of view o f
nuclear forces the possible compositions of three or four type s
of meson fields (obtained by adding to a mixture of vector

'and pseudoscalar fields either a pseudovector field, or a
scalar field, or both) only differ from the composition o f
two fields just mentioned by unessential numerical change s
of the constants g, f, so that their greater complication i s
not compensated by any advantage* . We shall therefore i n
the following adopt the simplest mixture of vector an d
pseudoscalar meson fields, as defined by the relations (54) ,
(55) .

The corresponding Hamiltonian may be writte n

e?Z"i~~~,aX'F .+ e7ro .

	

(56)

with @Y , eX'F , n2 given by (6), (7) and (26), respec-
tively ; the commutation rules between pairs of canonicall y
conjugated variables are given by (8) and (25), all othe r
pairs of variables commuting . The separation of the static
potential. may be effected by the canonical transformatio n
defined by the operator

(57 )

* An entirely similar discussion may be carried out in the case of
a purely neutral meson theory, the static potential being then given b y
the expression (45) with the factors (T(0 T(k) ) omitted . The inequalitie s
to be fulfilled by G 1 and G2 are in this case

GI-I-G2<G1-3G2 <0 ,
reducing to

.Gl<3G2, G2<0 .

Also in this case, there is one possible composition of two fields, viz . a
mixture of a scalar meson field and a pseudovector meson field, and
this possibility is essentially unique .
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.7IF, and @7ße, being given by (20) and (36) ; the new vari -
--(iy -*(i) _*(i)'

	

(i)'

	

(i)

	

(i)

	

-
ables x = x , p , P3

	

p3 , 6

	

T ; U', F' ; P' ,

4) ' = are defined in terms of the old' variables by for-

mulae of the type A ' = @
ia A er . As a function of the ne w

variables, the Hamiltonian takes then the for m

@IC =

	

e7C, ' Q5 '-i

	

(58)

if and' denote the same functions of the new vari-

ables as the functions @ and er of the old variables define d

by (56) and (57). In the next sections, we shall discuss

the general features ofthe physical interpretation of thi s

formal scheme .

3 . Interpretation of the transformed variables .

The interpretation of the different variables is, closel y

connected with the form of the fundamental integrals o f

the system, representing its total linear momentum* ,

R

F~
P

(I) !

	

grad ~i dv- 'a grad 40 bid , (59)
~~,_

its total angula.r .lnolraentum *

2--c-

-~

	

c

	

(i)

	

( x~

	

;
l~ grad)~

	

x
t)

/1'p
(i)+

(60)

U A I+~ dv -4) {x A grad) IP dv,

and its total electric charg e

The formulae (59) and (60) represent the indicated quantities

multiplied by c .
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ii-T (i) i

	

{
2 3 IhC

\1_UA Z+'~ 3 dU-
~iC ~ `~f°

A~}3 dU . (61)

The conservation laws for these quantities follow imme-

diately from the invariance properties of the Hamiltonian ,

since the expressions (59) and (60) are respectively propor-

tional to the operators of the infinitesimal transformation s

of the groups of translations and rotations in ordinar y

space, while the expression (61) is closely connected t o

the component of index 3 of the transformation in iso-

topic space analogous to a rotation, viz` .

2c

.�.., 7

T
(i)
- UA~dv- -

>

(62)

(there being here no terms analogous to orbital momenta) .

The three integrals (59), (60), (61) have the propert y

of being sums of terms referring separately to the heav y

particles and to each type of meson field . As regards the

angular momentum, it is further possible to distinguish ,

for the heavy particles and the vector meson fields, betwee n

orbital momentum and spin, while the pseudoscalar meso n

fields have of course no spin, It is just these additivity

properties which provide the justification for the usual inter-

pretations of the variables . This is first of all the case for

the variablesp fit) , o (i)
and T ip) of the heavy particles ; the

expression (61) shows further how the two first symboli c

components of the field variables are associated wit h

charged mesons, while the components of index 3 correspond

to neutral mesons ; finally, if the linear momentum (59) i s

expressed in the usual way as a function of the Fourier

* The formula (62) represents the indicated quantity multiplied by c .
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amplitudes of the field variables, the resulting expressio n

shows clearly the connection of these amplitudes with mesons

of definite momentum .

Now, it is of course desirable that also the transforme d

variables should possess all the properties just discussed ,

and it should be pointed out that this is actually the case

for the transformation defined by the operator (57) . In fact ,

the invariance of this operator 0' with respect to transla-

tions and rotations in ordinary space as well as to rota-

tions in symbolic space leads at once to the conclusion '

that the operators (59), (60), (62) commute with e?, so that

the integrals of linear momentum, angular momentum an d

electric charge of the system, in contrast to the energy, are

the same functions of the new variables as the . functions

of the old variables given by (59), (60) and (61) .
The requirement that our canonical transformation shoul d

thus conserve the form of the integrals (59), (60), (61) re -

stricts to some extent the arbitrariness in the choice of th e

operator e as a product of exponential factors (cf. footnote

on p. 18). In the first place, all the exponents must b e

invariant with respect to ordinary rotations ; further„ in

order to uphold the additivity property of the total electri c

charge (61), they should be invariant with respect to rota-

tions in symbolic space about the "direction" of index 3,

i . e . they should be of the form A 3 B3 , or Al B1 + At B2 ,

or AB. The form (57) for e? has been adopted only o n

account of its greater symmetry and simplicity .

4. The Hamiltonian in terms of the new variables.

We shall now proceed to derive a more explicit expres-

sion of the Hamiltonian (58) in terms of the new variables ,

bringing out the effects due to the non-commutability of
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the . spin and isotopic spin variables . For this purpose, we
shall start by replacing in (56) ACF andØ by their ex -
pressions (16) and (32) resulting from the explicit intro-
duction of the static parts of the meson fields. Neglectin g
all terms of higher order than the first in the velocitie s
of the heavy particles, we may thus write

e l =

	

+

	

(Ul, I+i1 ; T 1 , (U') +

	

,

	

(63)

" where the first term
-{- n,n

	

k

is the sum of the kinetic energy ~Ck and the static inter-
action

T(C)T(k )/ 9'i +g2 ( a°
(L)

Q tk))]p
(r(ilc)\ (65)

of the system of nuclear particles, the second term is th e
function

-~ -
Ç{i+' -}- x (div F)" --~ (rot U) -- x2 LT }

Ç{(I)2+(grad
40 2T x L °F 2}do

representing the Hamiltonian of a system of pure meso n
fields, taken for the field quantities U1, P1 ; ()l defined
by (15) and (31), and the third term is the couplin g

= -S{31- U+ TF'++IT-1-dv,

of the first order in the velocities .
Now, if A is any function of the old variables, we

have for its expression in terms of the new variables th e
general formula

(64)

(66)

(67)
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A = e, A , ey,-1= A` -f-
hc [

er, A'] -!- . . . +
Î

{tlc d7C', A ' l -F

	

,

	

ll

	

(68)

jwith
1-lc

~C ' . A'} =
c [

~C' c ( ~C', . . .,
~1c

eC', A'] • .
1

,
L

(1 brackets)

in which A' denotes in the usual way the same function of
the new variables as the function A of the old variables .
We therefore ge t

@7C = e2'(;'+ ~(U' -u', FT-f ; W'-

m

+

	

yy~~l
i

I!
~ e~/~ n'~ +

l
1= 1

with

+@7‘'' Lr,~ (70)

e%C' ,

and similar formulae for f ' and yi ' . Since we shall in
the following make use exclusively of the new variables ,
we may from now on, for convenience, omit the primes
by which they were hitherto distinguished from the ol d

variables .
Noting tha t

he [
7 C , fi ] = " r'' -1 [@ 7i

	

'j°, c [ e7C , 4F ] = P°, (7 1 )
he

	

h

we find from (70) for u, f, qi expressions of the type

a~ _ (r+l)! 1. he ~C ûa}

	

(72 )
= 1

showing that, as was to be expected, these quantities woul d
vanish if we could look apart from the non-commutability



40

	

Nr. 8. C . MøLLÉH and L. ROSENFELD :

of all spin variables . It is further apparent that u, f, IF

satisfy equations of the same form as the equations (9) ,
(11), (27), (29) for U°11t° In fact, we have .

grad divf- x2f = grad n

- roi rot u - x2 l = rot S

div grad p-x2,tp = dive,
(73)

with

s _

i
,7c ,(1+ I)" I:tc

	

, N

(1-F-1)î

	

S
}

(1-}-1)î he
.

In particular, we can derive from (73) the expression s

divf=-~~(r) dv ' div grad n(~)=-

	

A q) dv '

rot u _
-~

q) (r) dv' rotrots~x)

_

	

(x)®q) dv° - ~

-~ -~

grad qir = -S g> (r) dv ' grad div p ( x)

° - S (p-)- ( x') grad) grad q) dv ' .

Taking account of the formulae . (73) and (75), we
obtain, according to (66), by means of partial integrations ,

• grad) grad qp dv' (75)
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~(u-~~,

	

if) - w, Ø) = ~, ( u, w, *II)

~

	

~
-i-

2 S
{- x-2a2 div I+'-{- rote--; grad If) dv+ conj. (76)

2dvdv' (tt 2 (x)n(x)+0 x)s(x)) A

besides the written terms in (76), there occurs a further
expression

Çdvdu ' {( C) grad) ( 3 ( x) grad) - p . x) grad) (p ( x ') grad)} (I) (77) '

which, however, vanishes except for terms of at least
second order in the velocities .

Turning to the fourth term in (69), we may transfor m
it into

i

	

o
1!

{@7c ~ _ - C~%i -
0

2

(t+ 1) 1 l`iC

	

@2'c , (78 )
!

if we denote in general by' A the time variation of A

A
~tc [

.~, A]

due to the motion of the nuclear particles under th e
influence of the static forces ; thus

(79)

(80)

As regards the last term in (69), we may write, on ac-
count of (71),

~~
[ e1"i, ~ -

Wn + av (81)
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~~ ~ ~
with

	

2t]n = - ~{MU° + T ~° +RV}dv

	

(82)

and

{[i,i] e+ ~
e

[
~f, I] F+ he

[~ç, R]

-i- ~c [~C, Q]

	

dv ;

it is readily seen that the factors of the products occurring

in ORand consequently also of those occurring in ,v -

are commutable, so that both TO. and ou are real operators .

Using the formulae (9), (14), (30), the term (82) of direc t

coupling between the nuclear particles is easily brought

into the form

Øn = T()-R()P()} (84)S
- . grad q) dvdU' ,

or, with the expressions (3), (4), (23), (24), and omittin g

the undefined contributions which correspond to self-

energies (i = k) ,

(i) (k)) (~x(ïk)
grad

(k)
+

-
X
>(ki)

grad
(i}

) cp

(tk )

	

T T

	

~r )

with

	

~
~(ik)

	

Ø1g2 ff~ (i) '(k)

	

(i) - ~ (Ic) i

	

(i) ~ (i))

	

f1 P2
~(i)->-(k )

X

	

K

	

1P1 Ps 0-

	

-T' Îa2 G"

	

2 0-

Summing up, we find, on account of (76), (78), an d

(81), for the expression (69) of the Hamiltonian as a

function of the new variables,

(83)
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(new var .) ~ + ~

-OC -'-- 2 S ~- x
2 n div F+ s rot U-p grad '1s } du + .conj .

	 1(	 {i ~7C, ~C} I
-I l+ t)! r7 c

2=1

n-
2

dUdU ' KY2 11 (x -:x')
~ ~ ~

+8 )7: (x) A T

+ 9-on + ~ + ~ +

	

(1+ I)! ~iC
~7C,

	

+ ~v .

It consists of the Hamiltonian @% , given by (64), (65), o f
the system of nuclear particles with static interactions, th e
Hamiltonian @Xi, defined by (66), of the pure meson fields,
and several coupling terms, depending on various quanti -

ties defined by (67), (74), (80), (83) and (85) ; it should
be remembered that the expression (86) is exact only to th e

first order in the velocities of the heavy particles . Further ,

we shall, in all terms containing @7C , disregard the con-
tributions arising from the mass-terms in the kinetic energ y

(which represent couplings between the heavy partic -
les and the meson fields), since they involve the facto r
(MN - Mp ' c

	

G

t K

	

which is small compared with 47r c
For later purposes, let us write down the field equa-

tions derived from (86), when we look apart from al l

velocity dependence, and thus in particular cancel th e

terms of the last line in (86) :

P+U =

	

x 2 graddiv .F- 1U°+()
o _

K2 U + rOtrOtU -I+" +0,

	

(87)
9
0
~~ = dD - Y ~ + 0

~-4a = K 2 -41 +0 :

(86)



44

	

Nr . 8 . C . MOLLER and L . ROSENFELD :

3

	

0

here the "stationary" source densities i °, - F°, - 1Y arise

from the term - 7{' in (86), while the symbols O, O

denote the source densities derived from all other velocity -

independent coupling terms in the Hamiltonian .

In the expressions of the source-densities which we

have called "stationary", the velocity-dependent terms ar e

of course to be cancelled, so that these sources just corres-

pond to the precessions of the spins and isotopic spins o f

the heavy particles under the influence of the static forces .

While they are of course independent of the field variables ,

the other source densities 0, O do not contain any field -

independent part, since the terms in (86) from which they

are derived are at least quadratic functions of the field

variables. This follows at once from the remark tha t

he
(_7I, Af (l > 1), where A is any function of the variable s

of the heavy particles alone, is homogeneous of order l i n

the field variables . Such a property would he quite trivial ,

were it not for the non-commutability of. the field compo-

nents U and P+ ; since these, however, occur only in th e

combinations
3
E°U do and

3
U° Fein, a reduction of th e

order of {	 ~7C, Al in the field variables could only aris e
he

	

)
through a facto r

t
:2c Ç~(x)]' ° ~~) dvdv'

t

_

	

°)x)dv,

which, according to (9) and div

	

= O, reduces to zero .

We are now prepared to discuss, in the next section ,

to what extent an unambiguous solution of the field equa-

tions is possible, and whether the non-static meson fields
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so obtained are of any importance for the properties of

the stationary states of nuclear systems .

5 . Physical interpretation of the formalism .

The convergence difficulties which prevent a consisten t

combination of the field concept with the ideas of quantum

theory, oblige us to restrict in a suitable way the use of

the formalism developed in the preceding sections . In the

case of electrodynamics, the choice of the required restric-

tions is guided by the well-known correspondence argu-

ment"). It is true that we have in the present case, o n

account of the large meson mass, no empirical evidence

of field properties of mesons in a domain where quantu m

effects would be negligible ; but just in the critical region,

defined by (51), with which we are concerned in th e

problem of nuclear fields, the influence of the meso n

mass on the , properties of the field becomes unimportant .

It therefore seems natural to adopt, in discussing th e

limitations of the formalism of meson theory, a poin t

of view closely analogous to that of quantum electro-

dynamics .

The canonical equations derived from the Hamiltonia n

should thus not be considered as an exact system o f

equations, but solved by a process of successive approxi-

mations in which, starting from a suitably defined unper-

turbed system, the calculation of the solution corresponding

to a given initial state of this system should not be carrie d

further than the first step leading to a non-vanishing resul t

for the effect under consideration ; and such results should

of course only be considered as reliable if even this first

step does not involve any ambiguity .
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The justification of such a procedure, as well as th e

precise way in which it is to be conducted, can only b e

derived from the treatment of the "corresponding" problem,

in which the meson fields are not quantized . If, in such a

treatment, we start from a state in which all the fiel d

components are zero everywhere, it is clear that, provide d

the procedure converges, the various interactions betwee n

heavy particles and meson fields, and the resulting sourc e

densities in the meson field equations, are to be regarde d

as perturbations of increasing order according to the powe r

to which they contain the field components . We have

further to demand that, in the application of the metho d

of successive approximations thus defined to the system of

unquantized meson fields, the effects of higher order than

those which should alone be retained according to the

above prescription be actually negligible ,

Looking from this extended "correspondence" point o f

view at the Hamiltonian (56) expressed by the origina l

variables, we see that a strict application of the prescriptio n

just formulated would not lead to any reliable estimate o f

the binding energy of a nuclear system : it is true tha t

we could in this way derive the expression of a direct

coupling between the heavy particles, but we would not be

justified in treating such an expression as an operator

which, together with the kinetic energy, would determine

the stationary states of the nuclear system . A quite analog-

ous situation would of course be met with in electro-

dynamics, if the same prescription were applied to th e

Hamiltonian including the longitudinal part of the electric

field and vector potential ; in fact, a true correspondenc e

with classical theory is only achieved when these longitu-

dinal fields have been eliminated and replaced by the static
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Coulomb interaction . It is just the purpose of the canonica l

transformation discussed in Part I to obtain for the treat -

ment of nuclear systems a starting point comparable to

the quantum mechanics of atomic systems . Although th e

separation of the static part of the fields, performed in

this manner, is not a relativistically invariant operation ,

we have in either case a natural frame of reference (viz .

that in which the centre of gravity of the system is a t

rest), with respect to which such a separation has a well -

defined meaning .

We have thus to examine to what extent a con -

sistent use of the scheme based on the Hamiltonian (86) ,

expressed in terms of the transformed variables, may b e

found by means of the "correspondence" prescriptio n

formulated above . For this purpose, we shall first discuss

the convergence of the corresponding theory in which th e

meson fields are not quantized, and afterwards the limi-

tations imposed on the theory by the difficulties of fiel d

quantization. In this discixssion, we shall of course b e

concerned with two distinct problems, viz . the influence o f

the non-static forces on the stationary states of nuclea r

systems,. and the transition processes due to the interaction

between such systems and the meson fields .

As regards the calculation of the non-static interaction

between heavy particles, arising from unquantized meson

fields, we shall first investigate the non-static meson field s

due to the stationary source densities in (87) . Since we
are interested in the values of these fields in the region
occupied by the nuclear system, we may neglect the retarda -

tion effects ; remembering that div U° = 0, rot .Y+' ° = 0,

we therefore get immediately from (87), for the quasi-

stationary fields due to the spin precessions,
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O _

	

O

ZIs = K 2 P°, F+ 's = - U°, aDs =

	

Ifs - 0. (88)

In order to estimate the influence of such fields on th e

stationary states of nuclear systems, we shall compare th e

interaction energy V to which they give• rise with the

static interaction V. . A sufficiently accurate expression of

V is obtained by inserting the fields (88) in the corres -

ponding approximate field Hamiltonian

	

--e.7C . Using

(13) and

(
_

	

jj
_ _

	

'
~

~~(i x- x_ I14p 1
ff x-x"I~dU =

~ ((
lI x _x~I)

x2Kx/ , (89)

we get

-47
tP (Ix-x'I)

(i-Kix- X

2

	

'

theré occurs a further term

-2 dvdv'dv"~(S (x' )gradq)(Ix-x ' I)) (S (x')gradq)(I - x'I)
)

-(.P(x')gradc) x- x' I) ) (4- ( ' )grad q) (Ix-x' I) ) ~
which vanishes to the first order in the velocities. For

estimates of order of magnitude, it will be sufficient to

consider a pair of nuclear particles at some fixed distance

r (< x-1), the different powers of this distance representing

the order of magnitude of the expectation values of th e

corresponding quantities in the stationary state concerned ,

provided these expectation values are finite . The relative

orders of magnitude of velocity-independent terms of .

interaction are then conveniently expressed in powers of

the parameter

Vs _ - 2 ~ dv'dd' ~x 2 N ( 1Or ) -f- S(x ' )( x ' ) ,
(90)
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G

	

1

y
.=

4 Tr l'i c K r (G N 9> or 92)•

	

(92)

Thus, by reference to the formulae (49) (with G3 = 0), we

see that
v• N y2 V ;

	

(93)

the requirement that W be small compared to leads

therefore precisely to the introduction of the critical

distance rc defined by (51) . Passing to the higher approx-

imations in (87), and observing that the order of magnitud e

of the quantity e7C, in which the stationary fields (88) have

been introduced, is just ye , we may easily verify that al l

successive contributions to the interaction between nuclear

particles differ as to order of magnitude at most by powers

of y. If we now also take into account the velocity- ,

dependent contributions, we have to introduce, besides y ,

another parameter
p + v 1

C K r

where v represents the order of magnitude of the velocitie s

of the heavy particles . The main velocity-dependent contri-

bution to the coupling between nuclear particles is the ter m

(94)

(95)

which, since it does not involve the meson fields, may

from our present point of view simply be included in th e

Hamiltonian of the unperturbed system of nuclear particles ,

where it will be considered as a correction to the stati c

interaction. The other velocity-dependent couplings, which

all represent interactions between the heavy particles and the

meson fields, will be seen to give contributions of higher orde r

in p or y. This holds further for the contributions arising
D . Kgl . Danske V idensk. Selskab, Math.-fys . Medd, XVII, 8.

	

4
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from the terms of second order in the velocities, which

we have omitted from the Hamiltonian (86). Since, for

actual nuclear systems, ß is numerically about the sam e

as y, the convergence condition j3 << 1 leads again practic-

ally to the value of the critical distance re given by (51) .

It should be observed that, if we had performed the

preceding discussion in the case of the pure vector meso n

theory or any other including static couplings of the dipol e

interaction type, we would have had to take account o f

velocity-independent terms corresponding to the first term s

of (77) and (91), and we would have been led to a condi-

tion involving the critical distance (50) instead of (51) .

As is well-known, the quantization of the meson field s

implies the occurrence of fluctuating fields even in th e

absence of any nuclear matter, and the interaction of such

zero-fields with any nuclear particle will give rise to an
infinite contribution to the self-energy of the particle .

While, as we have just seen, the interaction betwee n

nuclear particles due to unquantized meson fields coul d

in principle be calculated to any approximation, provided

only that the distances involved are larger than the critica l

distance rc, the necessity of avoiding the infinite self-

energies due to the zero-fields forces us, in accordanc e

with our general prescription, to discard entirely all non -

static terms of direct coupling between nuclear particle s

(except of course the term j , included in the unperturbed

Hamiltonian of the system of nuclear particles) .

The consideration of the probabilities of transition

processes due to the interaction between heavy particle s

and meson fields imposes on the theory, according t o

HEISENØERG12>, a radical limitation arising from the

increase of the probabilities of "explosive" processes, when
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the energy involved becomes large compared with the rest -

energy of the mesons . In fact, if A is the wave-length o f

the mesons taking part in the process considered, it i s

easily seen that, for the first explosive processes to set

in when the energy increases, the transition probabilitie s

are proportional to some power of the paramete r

G

	

1
a

	

4Trhe (KA)`

The order of magnitude of the energies for which such

explosions set in is thus connected, according to (96), wit h

a critical length given by

(96)

K r0 _ (97 )

which is smaller than the critical distance re in the pur e

vector meson theory, given by (50), but larger than th e

distance (51) corresponding to the form of the theory

which we have adopted. This limitation affects equall y

any form of meson theory, except") a theory of purel y

neutral meson fields involving only couplings which depen d

on the fundamental constant gl .
If, as advocated by HEISENBERG, the critical length ro

has a universal significance, in the sense that the usua l

concepts of field 'theory would not be applicable within

regions of a linear extension smaller than ro, we have to

expect in our case a somewhat more rigorous restriction o f

the domain of applicability of the interaction potential s

and than that defined by the critical distance re . Still ,

there remains a range of distances between ro and x 1,

where the form of these potentials is significant and wher e

4*
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the treatment of the stationary states of nuclear system s

outlined above yields (in contrast to the case of vecto r

meson theory) unambiguous results*, It seems probabl e

-though by no means certain 20>- that such results

would not be , essentially affected by the modifications

which a rational introduction of the universal length r0 i n

the theory would involve, since these modifications would

presumably be confined mainly to regions of linear exten-

sions smaller than r 0 , which are of minor importance for

the determination of stationary states .

From the preceding discussion we conclude that, if w e

treat the Hamiltonian (86) from the correspondence poin t

of view described in this section, we obtain as the only

significant interactions between nuclear particles thos e

defined by the potentials and - ; the other terms of

coupling between nuclear particles and meson fields ma y

be used only to calculate, in conformity with the corre-

spondence prescription, the probabilities of the variou s

transition processes involving energies of the mesons no t

large compared with their rest-energy .

As regards the determination of such transition pro-

babilities, it should be observed that, for purposes of prac-

tical calculations, it would in most cases be more advan-

tageous to apply the procedure of successive approximation s

described to the Hamiltonian (56) expressed in terms of

the old variables, since the operator of interaction betwee n

nuclear particles and meson fields involved in this Hamil-

tonian has a much simpler form . If the use of the origina l

* It will be noticed that the existence of the universal length ro

would deprive of any well-defined meaning all potentials of direct inter -

action between three or more nuclear particles, which, as shown by th e

preceding discussion, become important only for distances of the orde r

re . Cf. 19*)
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variables is thus adopted, as has naturally been the cas e

in all calculations hitherto carried out,-it is obviously

permissible to add to the Hamiltonian of the unperturbe d

nuclear system the interaction potential 9-n + W., since

this operator does not give any contribution to the matri x

elements contained in the expression of the transition pro-

babilities . From the character of the processes involved, i t

is clear that results obtained in this way should be entirel y

equivalent to those of calculations using the transforme d

variables, in spite of the widely different forms of the inter -

action operator in the two cases. In fact, the probabilities

of such processes are proportional to the square of th e
iwt

matrix elements of the operator e h for initial and final

states of the whole system, consisting of some stationary

state of the unperturbed nuclear system and (at least fo r

one of the two states) one or more meson wave-packet s

at large distances from the nucleus. If we use the new

variables, and if we also apply the transformation to

the scheme of representation, we should, according to th e

conclusions of Section u3, take as wave-functions describin g

the initial and final states the same functions in the ne w

representation as in the old . Strictly speaking, we hav e

therefore to do with different states in the two cases, bu t

the difference is vanishingly small for the kind of state s

concerned, since the transformation ef modifies only the

form of the meson field components in the neighbourhoo d

of the nuclear particles .

As an illustration of this point, let us consider the inter-

action between meson fields and- a single nuclear particle ;

the interaction operators occurring in the two forms of th e

Hamiltonian are, according to (56) and (86),
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(old var ) (-)O +,~.

{

	

jrc7I- Qii,-] + ] + f terins of higher order

f

(98)
he L

	

k

	

lin field components ,

where QV is given by (67) an d

0 o = S{_K Ndiv F+,S rot fÏ Pgrad y►}dv . (99)

A striking difference between these operators is that al l
velocity-independent terms of first order in the field corn-
ponents have disappeared from the operator correspondin g
to the use of the new variables . This indicates that th e
velocity-independent interaction 0 0 in the old variables ac-

tually gives only velocity-dependent contributions to th e
probabilities of emission or absorption of single mesons by

a nuclear particle. In this simple case, the equivalence o f
the two modes of calculation of these probabilities is rea -

dily verified as follows. Observing that Oo

	

tic [

	

0?irt] ,

we may write

term
s Q

	

e +	 [ e%i,

	

+ t] i
{order

. of higher

	

(100)

The probability per unit time of a process of emission or

absorption of a single meson is in first approximation pro-
portional to the square of the same matrix element of eithe r
O or Q, corresponding to two . states of the same unper-
turbed energy + @IC. Now, according to (100), suc h
matrix elements are actually equal to the approximation
considered, since the corresponding matrix element o f

~ ( k+ ~) _ ( ~+ f 1
`~c}

4 .
new va r

is zero .
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We should finally like to point out that the use of th e

transformed variables brings considerable simplification i n

the discussion of the processes due to the interaction o f

meson fields and nuclear particles with electromagneti c

fields , or with electrons and neutrinos. To such problems ,

which include "optical" properties of nuclei and 3-disinte-

gration, we shall come back in later papers .
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Part III,

Stationary states of the deuteron .

We shall now apply the potential of interaction betwee n

nuclear particles V.+ , derived from the special form

of meson theory proposed in this paper, to the study o f

the stationary states of the simplest nuclear system, the

deuteron. In this discussion, the velocity-dependent couplin g

will be treated as a perturbation . We therefore begin by

recalling the main features of the solution of the proble m

for a potential of the form , as given by KEMMER 78), .

and derive from it a rough fixation of the numerica l

values of the constants 'g i ( and (g2 ( . We then estimate

the influence of the perturbation potential f on the

binding energy and eigenfunction of the ground state and ,

finally, apply the last result to the calculation of the

electric quadrupole moment of the deuteron in this state .

L Stationary states of the deuteron as determined

by the static potential .

Let us first consider the stationary states of the deu-

teron as determined by the static potential V.. Following

KEMMER 18), we describe these states, in the frame of

reference in which the centre of gravity is at rest, by . the

proper solutions of the equation
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{hc a
grad +ßMc2 +

	

(r)(~E(x ) = E `YE (x~, (101)
I

	

JJ

-* -4-N -)-P
where x x -x are the relative coordinates`, r = x I ,

-~N ---P

	

->-N --- P
a = a -a , = p 3 +p3 and M cN.)

	

c M . As shown

by KEMMER, the non-trivial proper solutions reduce to thre e

types, which he . denotes by I a, I b and II b, a and b

referring to the even or odd character of the eigenfunc-

tions . In the non-relativistic approximation, types I and I I

correspond respectively to the triplet and to the single t

system ; in this approximation, each state is characterize d

not only by the energy E and total angular momentu m

j, but further by the orbital momentum 1, and we hav e

for type Ia :

	

1= j±1,

for types I b and II b : 1= j.

The radial part of the "large" (i . e . velocity-independent )

components of the proper solutions is in all cases deter -

mined by a ' SCHRÖDINGER equation

~M \d
et'

1(1r 1)) +e r r+E}RI ~r)

	

0,
(102) .

where

for type I a : f" . = [1(g
2
	 i+ 92) .

4Tr . '
2

	

'2
for type I b : I' = [ 1-2(- 1)J +1J g492

	

(103)

for type II b; I' _ f2 (- 1)j-1] .4i + 3 g 2

4 -rr

In the present paper, we shall confine ourselves to a

provisory survey . A more exact treatment of the equation

* Quantities' referring to the two particles of the deuteron ar e
distinguished by the upper indices N and P.
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(102) is being carried out by Dr. L . HULTHÉN, who will

also apply his results to a discussion of the problem s

here treated .

As regards the description of the ground state and o f

the excited 'S state revealed by scattering experiments, w e

may, if we assume that the proper energy of the latter i s

approximately zero, use the available results of numerica l

integrations 21) of the equation (102) for S states and

E < O. These . results may to a fair approximation be

summarized") in the formul a

r

	

Mm 1J E ~
he -

1 .69
M

+
(/ 5 MO '

where Mm represents the mass of the meson . For the two

S-states concerned, which are of types I a an d

j = 1 and j = 0 respectively, we therefore get

3 (g 1 +g2) - 1 .69 "m +1/5 1E 0	 ~
4 trhe M

	

Mc2 '

-gi+g2
1

Mm

4 -rr hc =
.69M ,

Ea v 0.0023 Mc2 denoting the binding energy of th e

ground state . From (105) we . find

2 V E0 -
4 .rr he

	

4

	

5'Mc2l -
0.027 ,

-independent (to the approximation used) of the valu e

of the meson mass,-and furthe r

4Tr tic
= 0 .56

	

-f-
M

0.009,

(104)

II b with

(105)

(106)

gz

	

Mm
(107)
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showing that ~ g 2 i is essentially determined by the valu e

of the meson mass only . We get

2

for	 m
= 1

	

g2- = 0.065 ,
M

	

,10 4Trh c

Min

	

2

for
m

= -1 : -92- = 0 .037 .
M

	

20 4•rrhc

M

Ro (r) =

	

2 e 2

The numerical values (106) and (108) provide the justi-

fication of the general statement on p. 32, that the mean

distance between any pair of particles in stationary states

of nuclei is large compared with the critical distance '

defined by (51) . In fact, such mean distances will o f

course be at least of the order of magnitude K-1 . This may

in particular be seen for the ground state of the deutero n

by using for the radial wave-function the approximat e

analytical representation given by WILSON E1> :

IXKr

(108)

Mm 1
a = 2 .13, for M = 10 '

Ma=3 .3, for m = 1
M

	

20'

(109)

The 16 components of the eigenfunction of any station-

ary state of (101), characterized by the eigenvalues o f

p p , cr ; p3 , 63 , may to the first order in the velocities b e

written, with reference to the table on p . 52 and formu-

lae (6) to (14) in KEMMER'S paper, in the form

co>

	

(1 )

_

	

,

	

(110)

where the velocity-independent term
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(0 )

`Y=S p S N Z p N

	

(111)
pa ,1 p a ,1

	

a a a3

and the first order term
(1 )

w = s pP ,i sp",-1zQz
P

a
N+ 8 p -1 8 N 1 zN p , (112)

a

	

a

	

a

	

3

	

3

	

a

	

a

the upper sign corresponding to type I, the lower to

type II ; Z is symmetrical with respect to v3 , 63 for

type I, antisymmetrical for type II . We shall, in the follow -

ing, only use the explicit expression of the Z and z fo r

states of type I a and j = 1 given by the formulae (113)

and (114) on p . 61 . In these formulae, Y(r) are the nor-

malized Legendre function s

and the numerical factors have been chosen so as t o

normalize the total eigenfunction to unity, provided th e

radial factor R I is normalized in the usual way.

ylm) =	 1 ei'r`
q) PI, m (cos Ø) ,

v2Tr

PI,

(x) V21+	_

	

1 (l - m)1 1
(1--x

2
)
2
	 (x
dl+m 2

	

Im

	

I
2

	

(l+012 •I!

	

dx
I +m



1 = 0 :

Vm(m+1) Yom-1 )

- V(m - 1) (1-m) Yôm)

- V(In-f-1) (1- rri) Ypm )

Vm (m- l> ~o+1)

	 1	 Ro (r)

r

	

'
▪V 2

- V(1-4- m) (2-m)
Y(im -1) -On+1) }im )

1/(1 -m) (2 -I- m

co _
t

	

d 1

Mc 1/3 ~dr r~ R0 '

- (m-1) y'i'n ) Y(
MY (m +1 )

V(2- m) (3-m) Y 2m 1 )

V(2+ m) ( 2-ni) Y(m )

- V(1+ m) (2-m)
Yim

- 1)
- (m+2)

Y(1>z )

(0 )Z. N -
O'3 63

Z(y)P N -
63 69

(2 )
Z P N

Q 3 a3

V(2+ m) (2-m) Y2m )

V(2-}- m) (3-}- m) i (2m+
1 )

-(m-2) Yim )

0 -rn)0+(2 -}-

o
1	 CO (r)

	

(113)

	

a-''''
2V2 r

't

q
M0
z

	 1	 R2 (r)
2V 5

1 C2	 (r) (114)
▪4 r ' '

1=2 :

Y (m +1)
1

h
C2 =

Mc
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2. First order perturbation of the ground stat e

by the non-static potential .

The non-static potential may, according to (85), b e

written as

	

-

N P - NP -)PN
= - (T T ) ~ X' -X ) grad

-3-NP	 ',"P N

	

'N *N ->P N P}} N

	

(116)
X

	

Îi2 6 P2 - g	 2 ( cs -}- to- A6 Pa P3 ) P
	 K

	

2

Since this operator is invariant for rotations and for reflect -

ions with respect to the origin of the relative space coordi-

nates, the matrix elemen t

(B 1 wn I `4 ) = 'v E wn 9jAdU .

is r 0 only if the states A and B have the same quantum

numbers j and rn and the same even or odd characte r
(o )

a or b. Taking account of the symmetry properties of F
(1)

and `Y with respect to the spin coordinates pa and o- 3 of

neutron and proton, it is easily seen that, to the first

order in the velocities, we then hav e

(o)

	

(1)
(B~

	

iA ) =

	

`i'A dn
1,

	

(0 )
~~ .`'Ll.'RA, (117)

if the states A and B belong to the same type I or II ,

while no intercombinations between states of types lb an d
(o)

	

(1)
II b occur. Since, for a given type, `.' and `l' are of differen t

symmetry with respect to the p 3 's and a-3 's, we hav e

( 0 ) ->-NP(1)

	

(0) ->PN(1 )
`YB* X TA = - `F'

*d x 'I ' A ;
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(o)
observing further that `Y corresponds to the eigenvalue 1

N P
of p s p3 , and that

-*IV -->N -*P
a +la na = a (a a ) ,

	

(0)

	

( 1)

	

S
9'*

	

'A dv

N P N-*P

	

. f1f2

	

T T ) p 2 a grad

	

cp jl	

K

or, using the expressions (111), (112) ,

	

5
(Q)

	

(1 )

	

9B

	

ï'A dv

Taking now as state A the ground state and as stat e
B any other state combining with it, i . e . a state of type
la and energy E, with j = 1, and I = 0 or 2, we ma y
easily from (117), (118) calculate the corresponding matri x
elements with the help of the representation (113), (114) ;
since these matrix elements must obviously be independen t
of m, it is only necessary to carry out the calculation fo r
an arbitrarily chosen value of m . The result i s

( E,I=0 1
2Yr,1 0 )

(--N->P
a a

(1 )

`Y~dv
91q 2

K

=-2iS ~s(TNTP) cr P grad(p~ fif2(di9a

K

	 (6V~P

)} ZA d u .
l K

5 919-Îif2 t1m u

	

4rr

	

d

	

d

	

(F)*
_~ _~ (_- _ (Ro

. R o

4 Tr he

	

M ~

	

K

	

dP' `dr r J
o

I~E,I=2 1 .'20r, 0)

2
V	 Î1	 '(~rm

)2M24
	 Tr

	

d~~d

	

1 \~
/	 ~(~ÿ1 92 +	

4 ;r ~c

	

D7

	

c
K 3

	

dr dr ~ r/

s
0

(E)*
•R2 ) )dr .

((119)
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The displacement of the ground level due to the poten -

tial Ten is thus in first approximation, if we use for Ro the

expression (109),
W

a42

	

Q
-(Oi 1) x

(x+1) eke
2

0

2 a4 (a +2)

2(a-►-1) 2 *

Assuming
1VT

	

10 and a= 2.13, we, find, according to

(108) and (54) ,

~~Eo~~?0.01• I59'ifÎ1 ~ .Mc2 ,
v/4-rr hc

	

(121 )

the double sign, corresponding to the two possible choices

of the sign of f2 : g8 . We thus see that if, for instance, th e

factor	
5g1	 his of the same order of magnitude"as 1	 ,
j4

	

c

	

V4 TrÏlc

i. e ., according to (106), N 0.16, the displacement I AE0 I i s

quite considerable, being in fact more than - of the whole

binding energy I Eo I .
This circumstance would make a more rigorous treat -

ment appear desirable, but one should not forget that th e

existence of a universal length ro might introduce just i n

the determination of AE0-in contrast to effects dependin g

on the static potential only-a quite appreciable modifi-

cation. Although it is difficult to estimate the nature of suc h

a modification, one might presume that one could get an

idea of it simply by extending in (120) the integration ove r

x only from xr0 to infinity. According to (97) and (108), thi s

would reduce the value of AE0 by about a factor 2 . it may

be observed that a similar modification would leave the mean

AE, = C
2

5 ~i1~2 - f1f2 Mm
4-iri*tc

	

M

5 919'2-11f2

4Trl itc
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value of the static potential practically unchanged ; with

reference to the formulae (129), (130) below for the qua-

drupole moment of the deuteron, it will be seen that als o

this quantity is not appreciably affected by the modificatio n

just discussed .

At any rate, it is easily seen that even such a large

correction as (121) to the binding energy Eo would not

essentially modify the numerical values of the constants

g 1 ; and i gv I, and -would therefore not impose any essen -

tial limitation on the choice of the constant f1 .

The perturbed eigenfunction (DE, 1=0 ; j =1, m of the

ground state may be writte n

i°p
(E,1=0IW,,I0 )

1) Ea,r= 0;j= 1,m = 9jEe,i=o
;j=1,m !

	

TE , t= o;j° 1 , nadE
E o -E

o

(E,1-219010 )

Eo -E = 2;j =1,m dE '

all states of types 1 a other than the ground state belonging,

in our case, to the continuous spectrum . In the calculatio n

of the electric quadrupole moment to the first order, only

the last integral will give a contribution.

D . Kgl. Danske Vidensk. Selskab, Math .-fys . Medd . XVII, 8.

	

5

o
i

(122)



66

	

Nr . 8 . C . MOLLER and L. ROSENFELD :

3 . Electric quadrupole moment of the ground state .

The quantity defined as "electric quadrupole moment"

of the normal state of a nucleus in interaction with a n

external electric field is 23 )

/
Q E~ ; j u S ~Eo ; J, m= j (3 cos' e

~2V2
- ~~0E0 ; ), = j 1~

	

P2 0 (COS e~ r 2 dv .

- 1) r~ w Z=

~~ry
u ; i,,n = j dv

According to (122), this gives for the ground state of th e

deuteron, in first approximation ,

(E,1=2 2W0)
Q = dE - -

Eo-E_
2~/ 2

~Eo,1=o;1,nz=7. E,[=2 ;j=1,=

	

V5 P2,o(cos e)r 2 dv+ conj .

Since the first order of magnitude in the velocities of th e

nuclear particles is about the same numerically as that o f

the parameter 4	
Tr
	 hc , we should also take account of any

quadrupole moment of second order in the velocities whic h

could be present in the unperturbed system ; it is imme-

diately seen, however, from (110) to (113), that in our cas e

such a quadrupole momen t

`!'

	

I2
`2 P (cosh r2 dv

E9 ; na j

	

2,o

	

)

V DV D

reduces, to the order of magnitude indicated, t o

2 2v? P2o (cos 8) r8 dv ,
y5

	

,

which vanishes because

(123)

(o )

463 63

(124)
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P 1
cr3 Q3

(° )

Z6
P

Q
N

3 3

is independent of the angular variables .
Since, according to (113), (114) the product

i En, l =O ;1 =1 , ni=1' E,172 ; j=l,in- 1

reduces, after summation over the spin coordinates an d
integration over the angle (1), t o

1

	

R* R (E )

P20 (cos0)- 2	 2

	

2

	

,
2V5

	

r

the expression (124) takes the simple form

Q
_ v2 [(0l r 2 l E,1= 2) (E, l= ~I~.~0)--conj .~ dE

5

	

E° -E
(125)

where

(OI r2 IE, 1== 2) _ Ro(r)RZE) (r)r2 dr .

	

(126)
0

With the same notation, the integral occurring in the ex -
pression (119) of (E, 1 = 2

	

n ! 0) may be writte n

d q)

(
d

	

~ ( R R

(E)*~

	

/._ d"~

	

1 dqp)

dr dr + r

	

° 2 ~ dr

	

` dr 2 + r dr
o

	

• o
__(E

!-2 cp ( K2
+ 3K +T l/

if account is taken of 'the fact that
i--

R° R(
)*

I

	

= O .
Cdr

	

r = o
Taking now the radial wave-functions real, we thus ge t

8 (ilg2+~f12

	

2

i~~C
2 .Q

	

5• 4 TT~c
•(mn, )

M
. /

4ir

	

(0 ~ r2 I E, 1= 2)E,1-2 sp

K3 !
° --

	

1 E6 ~-f E

~

0

R 2
(E)

* dr

(127)
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An estimation of the order of magnitude of Q may b e
obtained by writing, on account of the completeness of th e
system of eigenfunctions RAE),

= 8 9i .42+f
f

	 i22_(Mm) 2 	 Mc2	 1

5 4Trtc

	

M IEo1+Em x 2(0Ie K`~(xr-J-3-I-K )IO,

E. being some eigenvalue, for which it is natural to assum e
the value corresponding to the maximum of the numerator
of the integral in (128) . Using (109) we fin d

.°~ .

	

3

	

`

0= 2 e- (a+ 1)x

C
x -}- 3 + x} x2 dx

o

	

/

	

. (130)

	

3 a3 (a 2 } 4a } 5) N 2.7 .

	

J

	

2

	

(a -I- 1) ¢

The value of E. was estimated by taking for Rå) the

BESSEL function 1/kr Jb19 (kr) (with k
= -

1/ME
g

I corresponding
to a complete neglect of the static potential . It was found
that the maximum of the numerator of the integral i n
(128), calculated in this way, lies at about km N 1 .3x, or

2

E. N 1 .7
0141)

Mee

N 0 .017 Mc 2 .

For the absolute value of Q, we therefore ge t

e-Kr(xr -F- 3 -1
3

)xr

(129)

(131)

(132)-1 (A N0 .6 gi±fI
1/4 Tr he

1. x2 ~

or, if we assume
g 1 ± fi

1/4 IT Iic
	 gi

1/4Trhc
N 0.16,

Q
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QI N0.1• 1
2-

N4•10
27 cm 2 .

K

The only meaning of this rough calculation is to sho w

that the value of Q, on the present theory, may well b e

of the order of magnitude indicated by the provisory em-

pirical results 13),10) ; the theory may of course he fitte d

to account for any sign of the quadrupole moment, prac-

tically without influence on its absolute value . We see at

any rate that, while the existence of a quadrupole momen t

is of fundamental importance in pointing to a relativel y

large contribution of directional couplings to the interactio n

between nuclear particles, the incorporation of such an effec t

in the meson theory does not involve any considerabl e

restriction in the choice of the formalism .
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