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INTRODUCTION

s was first pointed out by Yukawa?, the fundamental
A property of the nuclear forces of having a limited
range can be very simply accounted for by the introduction
of a new kind of field, generated by the nuclear particles,
and through the intermediary of which forces are estab-
lished between these particles. With such a field is associ-
ated, according to the principles of quantum theory, a new
kind of particles, the mass of which is connected with the
range of the forces®. The value of this mass turns out to
be intermediate between that of the electron and that of
the proton, and actually of the same order of magnitude
as that of the new kind of charged particles, cailed
mesons®, found in cosmic radiation.

Charged meson fields can only give rise, in first
approximation, to forces between protons and neutrons.
Since short range forces of the same order of magnitude
have been shown by scattering experiments to act between
any pair of protons'()r neutrons, it seems necessary further
to assume. the existence of neutral meson fields; and there
is also some evidence® of such a neuntral penetrating com-
ponent in the cosmic radiation. It is clear that the forces
originating from a purely neutral meson field would be
exactly independent of the proton or neutron character
of the nuclear particles; but there is also, as shown by

K,EMMERb), a ossibility. of combining in a symmetrical
p D
1%
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way charged and neutral meson fields so as to secure this
charge-independence property of the nuclear forces. This
last possibility is especially important since it permits to
maintain a relation between a field theory of charge-
independent nucléar forces and the various effects brought
in connection with the occurrence of charged mesons, viz.
the relation between the range of the forces and the mass
of the charged mesons observed in cosmic rays, the relation
between the life-time of these mesons and the decay-
constants of P-radicaclive nuclei®, and the anomalous
magnetic moments of the proton and the neutron®.

The simplest wave equations for the mesons which
satisfy, besides the claim of relativistic invariance, the
condition of giving a positive definite expression for the
energy, reduce to four types, characterized by different
covariance properties of the wave-functions, and. each
allowing the existence of neutral as well as positively and’
negatively charged mesons®. The expressions for the
nuclear forces resulting from each of these types of meson
fields have hitherto been discussed by using the ordinary
_perturbation method of quantum theory and taking into
consideration only the first non-vanishing approximation,
in spite of the well-known lack of convergence of the
method. Our first task will be lo examine more closely
the reliability of such results, and for this purpose we
shall use a method of canonical transformation? quite
analogous to that used in electrodynamics to separate
from the expréssion of the total energy of a system
consisting of electrons and an electromagnetic field, a
term depending only on the coordinates of the electrons
and representing the Coulomb potential energy. For a

system consisting of nuclear particles and any meson field,
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it is, in fact, possible, as we shall show. in the first part of
the present paper, to find canonical transformations effecting
the separation of a “static” interaction between the nuclear
particles, defined as the part of the interaction which is
obtained when one neglects the time-variations of the vari-
ables characterizing the positions, spins and isotopie spins
_of the heavy particles. The expression for this static inter-
action is found to be in all cases just the same as that
obtained as a first approximation in the perturbation
method and centains three kinds of static potentials, viz.
besides a spin-independent potential and a spin-spin coup-
~ ling such as have hitherto been mainly used in the de-
scription of nuclear forces, a further ‘directional coupling of
the type of a dipole interaction.

The next question, which will be discussed in the second
part of this paper, is that of the fixation of the choice
hitherto left open between the four possible types of meson
fields, and of the possibility of sharply delimiting a region
in which the formalism thus arrived at, which has of
course all the defects inherent in any quantum field theory,
can be applied unambiguously. Above all, it must be ob-
served that the static potential of dipole interaction type
‘is so strongly singular. for infinitely small mutual distances
of the nuclear particles that it would not in general allow
the existence of -stationary states for a system of such
particles. In view of the provisory character of the whole
theory, it might be attempted to remove this difficulty by
taking recourse to some ‘‘culting-off” prescription, consist-
ing, for example, in replacing the interaction energy of a
pair of nuclear particles by some constant potential for all
values of the mutual distance of the particles smaller than
a conveniently chosen value'®. Quite apart from the
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arbitrariness involved in the fixation by means of some
special properties of nuclear systems of a cutting-off radius
which should be connected with the general difficulties of
the quantization of fields, it must be stressed that in any
such theory non-static effects which do not arise from the
field quantization would occur to an extent sufficient to
make the exclusive use of the static forces illusory in the
determination of stationary states of nuclei. As will be
shown with more detail in the second part of this paper,
these effects are due to the time-variations of the spins
and 'isotopic spins of the interacting particles which, in
first approximation, take the simple form of precessions;
the quantitative treatment of the corresponding contribu-
tions to the total energy is made impossible by the circum-
stance that they cannot be unambiguously separated from
the infinite terms always present in a cuantum field theory..
It must therefore -be concluded that a satisfactory field
theory of nuclear forces must be such as not to give rise
to any static potential of the dipole interaction type.

A further requirement restricting the choice of the type
of meson field to be adopted is the condition that the
interaction bhetween a proton and a neutron should lead
to the correct positions of the ®S ground level and excited
'S-level of the deuteron,- known from experiment. These
two conditions cannot be satisfied with one type of meson
field" only, but it will be seen that, if we take KruMMER'S
symmetrical combination of charged and peutral fields,
there is a definite mixture of two types of meson fields,
viz. a vector meson field-and a pseudoscalar meson ﬁela,
for which the resulting static inleractions are compatible
with the requirements of the empirical deuleren spectrum

without containing any singular terms, and in which the
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precession effects just described become therefore negli-
gible. In such a theory, it is also possible to-apply in a
consistent way to the Hamiltonian obtained after perform-
ing the separation of the static interactions by means of
the canonical transformation mentioned above, a prescrip-
tion regarding the interpretation of the formalism, analo-
gous to the so-called correspondence treatment of quantum
electrodynamics'”. Needless to- say, this prescription
must. include the essential restriction, pointed out-by HEeI-
SENBERG'?, of the scope of the formalism to processes
involving only energies not large compared with the rest-
energy of the mesons. .

In the third part of the present paper, we apply the theory
just outlined to the discussion of the stationary states of
the deuteron, including the calculation of the electric qua-
drupole moment of the ground state. As regards this last
property, its experimental discovery by Rasr and his col-
laborators'® is of considerable theoretical importance,
since it clearly shows that the forces acting between a
proton and a neutron must to a quite appreciable extent
depend on the spatial orientations of the spins of the héavy
particles. It is therefore a satisfactory feature of the present
form of the meson theory that it actually provides such
a directional coupling, arising from non-static interaction
terms, which permits a complete treatment of the problem ¥,

Finally, we should like briefly to mention the bearing
of the above considerations on the theory of B-disintegration
obtained by introducing, as proposed by Yuxkawa', an
additional interaction between the meson fields and electrons
and neutrinos. In the first place, our transformed Hamil-
tonian will contaih terms which represent a direct inter-

action between heavy and light particles, and which, when
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treated as a small perturbation, immediately give the pro-
babilities of B-disintegration processes. It may be regarded
as a satisfactory feature of our point of view that, centrary
to previous treatments, where the nuclear forces came out
in the same stage of the perturbation method as the pro-
babilities of B-decay, an exact account can here be taken
at the oulset of the main part of these forces to determine
the stationary states of the nuclei involved in the p-decay
processes. It ‘can further be seen!*® that the present
theory, involving a mixture of two independent meson
fields, provides a possibility of avoiding the serious diffi-
culty pointed out by NorpuEiM'® which affects any
theory using only one type of meson field and which con-
sists in a quantitative discrepanéy between the observed
and the theoretical value of the ratio of the life-time of free
mesons to that of light B-radioactive elements. A detailed
disqussion of the problems of p-disintegration will be pub-
lished later, in collaboration with S. RozZENTAL.
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PART 1.
- Static nuclear forces.

_Ih the first part of the present paper, we shall be con-
cerned with the determination of the static part of the
nuclear forces due lo any one of the four types of meson
fields shown by KemMmEeR® {o satisfy, besides the claim of
vrglativistic invariance, the condition of giving the eigen-
values 0 or 1 for the spin, and a positive definite expres-
sion for the energy of the mesons. In each case, we have,
as explained in the Introduction, to consider both charged
and neuatral meson fields. The attribution of an electric
_charge to the mesons démands the use of complex wave
functions. In fact, only with the help of such complex
wave functions is it possible to construct an expression
for the charge and current density satisfying the continuity
equation; and this expression then leads automatically to
the existence of both positively and negatively chargéd
mesons. On the other hand, neutral mesens can simply
be described by real wave functions'®. We have thus on
the whole to consider in each case three non-interfering
meson fields, corresponding to charged and neutral mesons,
and  represented by three independent sets of real wave
functions of the appropriate covariance character.

Let us denole any three such sets of real field quan-

tities by F,, F,. Fy (a whole set of tensor components
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will for the moment be denoted by a single letter), the
index 3 referring to the neutral field, while the indices 1
and 2 refer to the two other real fields which together
describe the charged mesons. We may conveniently group
corresponding components of these sets into symbolical
vectors denoted by

and this notation may be extended to the densities
8= (5, 8;, Sg) .

of the source distributions giving rise to the real fields
in question. Any source density can further be expressed
as a sum of the coniributions from the different nuclear
particles:

§=3 87,

where 8 denotes the contribution of the i-th nuclear
particle.

As shown by Kemmer?, the combination of charged
and neuiral meson fields can be chosen in such a way
as to secure that the resulting nuclear forces be completely
independent of the proton or neutron character of the par-
ticles in all states of the system which are antisymmelric
with respect to space and spin coordinates. This is simply
effected by taking for any contribution 8% of a nuclear
particle to a source density & an expression of the form

SO (O

3

. ; . ) iy i
i.e. the product of some operator s, which is the same

* for the three real fields, by the isotopic spin vector
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O = (0, 10, 1)

of the nuclear particle, chosen in such a way that the
eigenvalue + 1 of Tg) refer to the neutron states of the
particle and the eigenvalue —1 to its proton states; the
choice of Tg) for this purpose being, of course, necessarily
connected with our attribution of the index 3 to the neutral
meson field. For the reasons stated in the Introduction, we
shall adopt this symmetrical form of the theory in the
following treatment. _

We shall begin with the case of the  vector meson field,
which has hitherto been most extensively studied” and
which, on account of its similarity with the electromagnetic
field, is perhaps more suited for the exposition of the method
of derivation of the static nuclear forces.

1. Survey of the formalism of the vector meson theory,

For the description of each of the three real vector
meson fields, we have to introduce a four-vector® ([7: V)
and an antisymmetric tensor (E ES the charged mesons
will thus be described by two independent sets of such
vectors and tensors:

- — [—> [~ =
F

\U:’ Vl)’ ( v 1)§ (Ve ‘Iz>’ (F'z’,Gz)
and the neatral field by a third set
(Uss V), (Fy» Gy)-

With the notation introduced above, all field components
can be compactly expressed as

* The arrow indicates a vector in ordinary space.
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(@, v). (F, &),

and they satisfy the following system of equations*:

U-—F AV+T

— & —gra .

N M
F = U—!-lot G—M

—

KV =—divF+N

> - (2)
"G =rotlU+ 8, :

1
where < denotes the range of the nuclear forces. The four-

vectors (M N) and the antisymmetric, tensors (T S) re-
- present the densities of the source distributions of the meson
fields according to the following definitions, which refer to
the description of the state of the heavy particles in their

1) >3 —> ()
configuration space (x *, = ,--+, x ---):

o “—>(i)
M=M= 3

(1)—’ @ ("_"; (l))

@ > (D) 3
~=>A~° ZQIZT s{z—a ), |
; 7
e D ga @ (D > (> —>3)
T=>T =-2%7 c Slxz—=x
by IS (z—a )
g g(i) 9s () () —>) 5 ("* —>(i)) )
= == = T ] (o] r—x 5
= kq™ P
. @ > —>( (D= (D .
the matrices p l, s and & - = pll o are the usual Dirac

matrices belonging to the i-th nuclear particle, while the
constants g,, g,, which have both the dimension of an
electric charge, determine the strength of the sources of

* The notation A represents the time derivative of 4, divided by
the velocity of light.
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the meson fields and consequently the magnitude of the
‘nuclear forces. It must be noticed that, in contrast to N
and § the components Ji; and —f’ contain a factor of the
" same order of magnitude as the ratio between the velo-
cities of the nuclear particles and the velocity of light
(which we will express by saying that they are “of the
first order in the velocities™).

The field equations (1), as well as the equations of
motion for the heavy particles, which we need not write
down explicitely, may be derived as canonical equations
from a 'ﬁamiltonian

oA = Tyt M, (5)
where

. . (D) ()
< )OO n{l+-T 11—
I, = 2{0{ “p l+p§)(i2‘?MNc2+~ ;" Mpcz)} (6)

is the kinetic energy of the nuclear particles, and*

=L B ev s et o |
. ™
—r —> — —) -
.—S M ULT Fldo !

the meson field energy, including the interaction with the
nuclear particles; in the expression (6), M, and M, denote:
the masses of the neutron and the proton respectively,
= (1) B . N . .

and pl represents the momentum of the i-th particle
multiplied by the velocity of light. The canonical variables
= (i) (D) i —

(p , & > of the nuclear particles and (—F, U )‘of the
meson fields satisfy the commutation rules

o —> 2
* The notation A - I8 (and likewise A ) represents a double scalar

product, i. e. a double summation Z ZA;ln Bfn over the ordinary
u m
space indices p and the symbolic space indices #2¢.
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[p(i)u, x(’""} — EE Sl ghv
i
‘ (8)
— 2 he (7 7 cw
[Urn (x’ t)’ Fl\: (CL‘ ’t” = T 8( xr—x ) 8 Swnn’
all other pairs commuting; their time-derivatives are then
calculated by the usunal rule

A =— [, 4],

—>

¥ and & being regarded as functions of the dynamical
variables defined by the equations (2). Although this Ham-
iltonian scheme appears very unsymmeirical, it can be veri-

fied that it satisfies the requirement of relativistic invariance.

2. Separation of the static nuclear forces
in the vector meson theory.

The analogy of the equations (1) and (2) with the Max-
well equations of an e]éctromagnetic field suggests in the
first place to consider as the static parts of the meson
fields the solutions of the equations

>

F° = —grad P°

s (9
div F° +@V° = N

(10)

— — —
{ 6° — ot T°+8 }
—> —

rot G°+U° =0

obtained from (1) and (2) by cancelling the time-derivatives

_ > o —> - . .

U, F and the quantities T" and M, which are proportional

to the velocities of the nuclear particles. Strictly speaking,
— .

we should also in the expression (4) for 8 replace the p!’
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by 1; but, in order to obtain a more symmetrical treatment,
we prefer to retain the small differences pg(,i)—- 1, which are
only of the second order in the velocities. The solution of
9 and (10) is readily reduced—by using the condition
div L° = 0 which follows from the second equation (10)
—to that of the equations

AV°®—x V° = —N
—
AT —T° = rot §. an
With the help of the Green function
1 KT —
= — 2
o) = ;= ) (12)
which satisfies the equation
— =
Acp—qu):—S(a:—:c'), (13)

we obtain immediately

[ | (?) = SZV(_;)Q)(r)dU' l
J : - (14)
| 7(3) = (w8 o@ar.|

— —
from which we derive F° and &° by means of the first -
equations (9) and (10).
We may now define new field variables U1 F by
pulting
—> — — — —> —
U=U°+U', ¥F=F+F"' (15)
If we insert these expressions‘ into the field Hamiltonian
oL, we find that it separates exactly in the form

= HE + T+ W, (16)

where the first term,
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I .
HE = é g{(ﬁ)i 2 (V)} du+~;- \{( G+ (O} av, (17)

is a funclion of the coordinates of the heavy particles alone,
while the second,

* 2 9 Ry r ;,v b > ﬁ: 2
T = %\{(Fl)?Jr k2 (div F+ (vot O+ (0} v, (18)
“ ) ! -
has the same form as the Hamiltonian of a meson field
in free space; the last term,

90, — _g{ﬁ(ﬁ%fﬁ) + BT+ T fdo, (19)

which represents both a direct interaction belween the heavy
parlicies and an interaction between these particles and the
non-static meson fields, is only of the first order in the
velocities. In fact, the remaining cross-terms, which occur
when the substitution (15) is carried out,

(" = o 1. % —> —> L o
S\F F'—V° div £ } dv + S {GO rot T+ U° U* } dv,
reduce by partial integrations to
— . -
R{Ff’ +grad ¥V° }ﬁ‘ do + S {rotao + k2 f°} [_,:l dv,

i.e. to zero in virtue of the equations (9) and (10).

Now, it must be observed that, according to the defini-
tions (15), the different components of ﬁ’, ﬁ‘ do not com-
mute with all the coordinatles of the heavy particles, so that
the terms of the Hamiltonian relating to the nuclear par-
ticles alone are not commutable with @7[}1 and that, therefore,

not the whole interaction of the system is represented by
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the terms 7,° and 2¢,. This incompleteness of separation
arises, howgzver,_only from the non-comimutability of the
matrices_g(l), p(l), " and, if one coulg lo_c;k apart from
this non-commutability, the variables U", F* would even
satisfy the canonical commutation rules. The separation
(15) would then be part of a canonical fransformation
which, applied to e, would also effect a sepération of
this function into terms of direct interaction between the
heavy particles and the Hamiltonian (18) of pure meson
fields, with a small remaining interaction between tilese
fields and the heavy particl-es.

Let of denote the unitary operator of such a canonical
transformation, defining any new variable 4’ in terms of
the old variables by the formula 4’ = !4 & The Ha-
miltonian of the system in terms of the new variables is
then simply given by the expression o’ e of’—1, where
&’ and /" are the same [unctions of the new variables
as the functions & and % of the old variables, the latter
function being defined by (5), (6), (7); we have, of course,
identically ¢’ = of The neglect of the non-commutability
of the matrices__c;(i)', p(i)l, T(i)l in the calculation of such an
expression means neglecting some terms which contain line-
arly the commutators of these matrices with ', i. e. on
account of the relation -

[A), eH 7] = F~1 [4, H ] of = Rci F—14 of
the time-variations of the matrices _;(i), p . T(i). If we
therefore conveniently define as static interactions
those which are independent of the‘time—variations—;:(i') =
g(i),_g(i), |5(i), 'i‘(i) of the variables of the nuclear particles®,

* In his papers cited above®), E. STUCKELBERG proposes a definition
of the expression “static interaction” which, as he also points out in a

D. Kgl. Danske Vidensk. Selskab. Mativ.-fys. Medd. XVIL, 8. 2
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we see that the canonical transformation considered will lead
to the separation of all such static interaction terms in the
Hamiltonian. The direct interaction term contained in 2/,
being obviously of non-static character, the energy of static
interaction of the heavy particles is thus simply obtained
by putting in the expression (17) for <%.° all péi) equal
to 1; the remaining non-static part of @#.° is only of the
second order- in the velocities. S

The explicit expression of the operator o of a canonical
transformation which, under neglect of the non-commutabi-
lity of-gm, p(i), ’l‘(i), contains the formulae (15), is easily
verified to be* |

of = ot T
with ‘ -
= S{ﬁo i}‘_ %Oﬁ} dv.
We have in fact
U= ' T= U+ [T o] = O+L [T o)

—> — —>
= —¥° = Ul,
and similariy
— — = —
¥ =F—F°= F",

since [Z e5°] = of th [I @7@] , when [I J@J is com-

mulable with € L?,, which is the case for 4 = Uand A = ¥,
note to “Nature”, 143, 560 (1939), differs from the definition adopted

here by excluding only the terms depending on the —’L> As will appear
in Part 1I, the present definition would seem more convenient for the
formulation of the restrictions to be imposed on the physical interpre-
tation of the formalism.
* Of course, the operator ¥ is not uniquely determined; another
possible choice would be, for example,
ST T

esa: th e

Abeut this point, see p. 37.
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when we neglect the non-commutability of spin and isotopic
spin operators. Always with this last restriction, the trans-
formation o leaves all the variahles of the nuclear particles
unchanged with the exception of the momenta p In terms
of the new variables, the Hamiltonian of the system is
given by '

' I ST =S M ST S ST

where &', as already stated, is the same function of the
new variables as the function o of the old variables defined
by (20). The term o’ o7 o 1 differs from the kinetic
energy o/ of-the heavy particles only through new inter-
action terms

egol—l[ (‘J(;’ O}DI:" :Z—f&

of the first order in the velocities, while of course
’ . ’ —1 ) ~1
eP@%J‘FQS" =g+ Hy+ 2y

with the definitions (17), (18) and (19).

3. Pseudoscalar meson theory.

The method explained in the preceding section may
immediately be applied to any other type of meson field.
Since the procedure ‘is entirely similar in all cases, we
shall in this section give a brief treatment only of the
pseudoscalar meson theory, which, as stated in the Intro-
duction, will be used extensively in the following. The
field components here consist of pseudoscalars § and pseudo-

four-vectors (l‘ ®) satisfying the equations
2*
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ll" = (P — i : .

. Q, > } (21)
- = P+ divl'— R,

1’ = —grad ¥+ P, (22)

in which the sources of the field are represented by the
density functions

R—:-]”IZ"T(

Y05 (=), (23)

= Ish R we

] P=13>3:"0%(c—2?), |
SN 24
0

i
@ @

Z’l‘l pll S(m—x )

:
transforming respectively as pseudoscalars and pseudo-four-
vectors; the constants f; and f, are again chosen so as to
have the dimensions of an electric charge. The quantities
R and ©Q are of the first order in the velocities.

-

The field equations (21), with I defined by (22), appear
as canonical equations if we regard the W’s as canonical
variables with conjugate momenta ®, obeying the commu-
tation rules

- -, he (—~ -
|:(D’nl(ms t)s \F",(.’I:,t)] = _i_s(xmx).sg",n9 (25)
etc., and il we take for the field Hamiltonian, including

interaction with the nuclear particles,

ot = L\ (@ (B 0w} oo rews g
’ * j(26) »

2\l
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‘From the point of view of the derivation of the field equa- -
tions (21), the .addition to the Hamiltonian of the- last
integral, which is an invariant function of the variables
of the heavy particles, remains of course arbitrary. The
reason for its inclusion in the present case, in contrast to the

@@
in the vector meson theory, will become apparent in the

omission of the corresponding integral

next section.
The static parts W°, @° of the pseudoscalar meson fields
will be defined as the solution of the equations

@° =0, (27)
[T = —grad 9" B |
L, ERe A (28)
l divI™® + 2 P° = 0;
the equations (28) are equivalent to
—
AP’ — 2P = div P, (29)
giving '
—
P = ~—S div (x')-q)(r) dv'. (30)
Defining new field variables W', @' by the relations
Y=Y+
{, ®- @ @D
we obtain a separation of the Hamiltonian
Ty = A+ Hyl+ Wy (32)

entirely analogous to (16), since the cross-terms again vanish
on account of (28). We have here



22 Nr.8. C.MprLLER and L. ROSENFELD:

Ho' = ;S{(-F°>2+K2<W°)2—— ()} av, 33)
Iyt = ;—Q{(dﬂ)ﬁ(grad PH L (WY dy, . (34)

Wy = —K{R(W%W)—{‘Qd"} d~v+é§ Q*dv. (35)

If we again provisorily look apart from the non-commu-
tabilify of spin and isotopic spin matrices, we see that this
separation is effected by applying to the total Hamiltonian
o, -+ ey a canonical transformation, the operator of
which is

with
@7{&) = S Yedrgp. k (36)

The static interaction is in this case given by (33).

4, Calculation of the static interaction potentials.

It remains to put the static interactions derived in the
preceding sections into the form of potential energies of
the heavy particles, i.e. to express them as explicit func-
tions of the dynamical variables of these particles. Let us
begin with the expression (17) relative to the vector meson
theory. By partial integrations and use of the equations (9)
and (10), we find readily

oz =\ ¥ @B
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with the help of (14) and (13), we obtain further* from
the definition (10)

—
’
X

6= S rotS (g( ) A grad’ q)) dv’

=8

S

+ S g(?) Nod —}-S (S x') -grad’) grad ¢ dv’( (37)

~ @ {F (@ oar +{(8() gma) grma g,
so that we get ‘

1

&

HE =

!

Nor

K.N (2) N(;:)')cp(r) dv dv’

L%

v

+

w0l %,

\ g(_x)) g(?) @ (r) dv dv’ (38)

[

-

S ('é’(?{) grad) (g(?} grad') e (r) dvdv’,

Do |

and finally, introducing through (3) and (4) the variables
of the heavy particles,

o 1 N\ 7( O W 9 . (D@ k()
Iy =5 (T T )'{gi+9§ Pal " Pa
ik
G\ O @y w—a  doy| ( aey 1 (39)
+<—1—<—> (ps o grad )(93 o grad )Iqa(r J
( (ik) |—>(i) —>(k) )
r = |xr —& ’

If we put all p(gi) = 1, this expression gives the potential
energy of static interaction due to the vector meson fields,
including—as a defect inevitable in any theory treating the
nuclear parlicles as material points—the infinite static self-
energies of these particles.

* When necessary, we affect the operators grad, div, rot ... with
the same index as the point at which the derivatives are to be taken.
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Passing now to the case of the pseudoscalar meson
theory, we get similarly from (33) and (28)

oy = S\ BB,

L)

and, with (30),

—> — g o
1" = P—grad SP ( ac') grad’ @ dv’ l
— [ == (40)
= P—S (P ( x ). grad') grad ¢ dv’, [
so that the static interaction: in this case becomes
' 1 > > > = ; '
J&’) =—3 S (P ( x ) grad) (P ( x') grad') o ()ydedy (41)
or, on account of (24),
o =5 >, () (T g (5 graa)e ()

i, k

' i ) . o1 0 ()2
It will be observed that, if the invariant -,;S{Qa — (P} }dv

had not been included in the Hamiltonian e7f¢ defined by
(26), we would have obtained a supplementary static
interaction

l§ (1—’)) 2dv = % § (’l‘(i)T(k)
o/ Lk

) (?(i)?(k)} 5 (;ki)_;(k))’

which, as discussed by KemMer'®, is of so strongly
singular a character that it could not give any finite bind-
ing energy for the deuteron. With our choice of the Hamil-
tonian % this singular term is eliminated, and -there

occurs instead a term %S O® dv which, tlioughv of the same

type, is only of the second order in the velocities and

(42)
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therefore inseparable from all other infinite terms to
be discarded according to the correspondence point of view
developed in Part II. In the vector meson theory, no such
singular terms occur if, folloewing Yukawa'®, the Hamil-
tonian (7) is adopted in preference to an expression differ-
"ing from (7) by the term1 S\(.l’) >)2} dv, which has
been considered by other authols D, This would perhaps
appear as a natural way of removing the arbitrariness
connected with the occurrence in the formalism of such
singular terms of direct coupling between the nuclear
particles.

For the two remaining types of meson fields, we shall
only write down the expressions for the stalic interactions,
resulting from entirely similar considerations:

Scalar meson field:

‘255—/ u)(k) ( ﬁkw- (43)
Pseudovector meson field:
_3 .;57: (02 ®) {9,12 (TOT9) ‘
()] 5 ) (5 g | o)
Comparing the expressionvs. (39), (42), (43), (44), we see

that they contain three different kinds of potentiéls,‘ viz.

(44)

(apart from the dependence on isotopic spin common to
all of them): 1) a potential ¢ (r®) depending only on the
mutual distances of the nuclear particles; 2) a spin-spin

‘*(i)—>(k)>
g

. (ik) . .
coupling (c q)(r ); 3) a directional coupling
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% (—c;(l)gra d(l)) (?(k)gra d(k)) q)(r(tk))
which, apart from the sign, is of the type of a dipole
interaction. The most general form of statie interaction,
resulting {rom an arbitrary mixture of the four types of
meson fields is, therefore, a linear combination of these
three kinds of potentials,

S ,
% 2' (:92®) { G+ 6, SOT®)
ik

(45)
+ % (7 graa® (& Pgrad®) J] o (1)

with coefficients given by
[ G, = gt — "
1 Gy = 95 —g;* (46)
Gy = gs—f" — 9\  +go"
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Part 1. .

Limitations of the Formalism.

1. Difiiculties arising from the potential of
dipole interaction type.

For the fixation of the choice between the four possible
types of meson fields responsible for the nuclear forces,
an important criterion is afforded by our empirical know-
ledge of the stationary states of the deuteron. In trying to
account for the denteron spectrum by means of one type
of meson fields only, vector meson fields have generally
been adopted'”, in spité of the fact that the correspond-
ing static interaction (39) includes a term of dipole inter-
action type which, strictly speaking, makes the existence
of stationary states of finite binding energy impossible. In
view of the provisory character of any quantum field
theory at the present stage, this difficulty might, in fact,
not be deemed fundamental, and it might be attempted
to avoid it by a cutting-off prescription. Such an attempt,
carried out by BeTHE'”, has led to the conclusion that,
while the way in which the cutting-off is performed is of
small influence on the results, the value to be assumed
for the cutting-off radius depends critically on the combin-
ation .of charged and neutral meson fields adopted: if one

uses the symmetrical combination proposed by KEMMER,
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the cutting-off radius should be chosen larger than the
range of the nuclear forces, and a reasonable value of this
radius could only be obtained if the meson field were
assumed to be purely neuiral. Even looking apart from
the unsatisfactory character, pointed out in the Introduc-
tion, of a purely neutral meson theory of nuclear forces,
any meson theory involving forces of the dipole interaction
type is affected, however, as we shall now proceed to
show, by a. more %erious difficulty, due to the non-static
effects connected with such forces.

In order to get an idea of the nature of these non-
static effects, we have, according to the considerations of
section 2 of Part I, to examine the time-derivatives of
the dynamical variables of the nuclear particles occurring
in the expression of the transformation matrix o, i.e.
;\1),—0{(1)’ p;[), (i), neglecting all terms depending on the
velocities of the heavy particles, we are left with the

. . —>(0) - (i) . o
consideration of ¢ and v ". The motions corresponding to
these time-variations may be described as a precession of

>, @
the vector o in ordinary space and of the vector T in
symbolic space; for instance, in the most familiar case of
the vector meson theory, developed in Section I of Part 1,
these motions are defined, to the approximation indicated,
by the equations*

j(i) hlc c‘;f ) [ E(ﬁ(o) AT > o A 6(? (iw

. 1 —> (i) — (IN—> 1 (47)
T(z): _{[gll’(x(l')+%2l}(x(l)) (z)“\T + conj.

1)

+*¥ The symbols A and A indicate a vector produet in ordinary and

symbolic space respectively. The abbreviation “conj.” will sometimes be
used to represent the Hermitian conjugate of the expression preceding it.
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(In the last formula, a term proportional to the small
My—Mp) ¢
fix
importance of the non-static effects can be derived from

quantity has been neglected). A criterion of the
an investigation of the amount of these precessions which
is due to the static part of the meson fields. In our ex-
ample of the vector meson theory, we obtain the corres-
ponding time-variations by 1nsert1ng in (47) the expres-
sions (14) and (37) of ¥° and 6r°

LS 2 * S oW [ 500
c D)2 (‘l3> (1‘ T ) [K*c
e \k/ ==

_ + (T:;(k)grad(k)) grad(i)] 0] (z'ﬁk)) } /\_c>r(i),

.ii : 7 2 .
ey e

itk

(3 Pad®) (T Vgra d(i)))} o ()™ } Ar

(48)

the terms corresponding to k=i in the summations vanish-
ing automatically. On account of the separation (16) of the
Hamiltonian, these equations are of course simply

SO, 2= L lere, 2"

- (l) ] [
o = — |&H2
fic L he L°F

I

with e77.° given by (39); and, for the most general form
of meson theory, the corresponding equations may be
obtained in the same way, %7 being replaced by the

general expression (45):
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) 2 N7/ o oy |~
cl={— E(TIT)[GZG
fic «
itk
Gy () 6} aon |
+R—23(0' grad )grad JqJ(r(l ))}Ac(z)

i 2 27' == (i) = (k)
T()={?i_c [G1+GZ(O' c )

itk
T % (—;(k)gra d(k)) (?(i)gra d(i))] 0 (r(ik)) T(k) l A T(i)'

J

Now, it is clear that if the periods of such precessions

(49)

are not large compared with the time of propagation of
the main part of the non-static meson fields through a
distance of the order of the range of the static nuclear
forces, there is no justification in using only the static
parts of the meson fields for the determination of the sta-
tionary states of a nuclear system. According to (49), the
angular velocity of precession of spi'n and isotopic spin
of a nuclear particle is, for sufficiently small values of
the distance r of the next neighbour in the nuclear con-

. . . 16, 1
figuration considered, of the order of magnitude — —2 —— 5

: 1.1 . o A
if G3 #£ 0, and EG inr if G3‘ = 0, G being written for G,
or (,; on the other hand, the time of propagation of the
main part of the non-static meson fields through the distance
K wi_ll be of the same order of magnitude as KLc The
condition just formulated defines therefore a critical value
r, of the distance r, such that the consideration of the
non-static forces will be important as soon as r<tr_. If
the theory involves static couplings of the dipole inter-
action type, we have therefore

Kr, = (50)
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while, if no such couplings occur, we find for the critical
distance the smaller value

G ,

“Te = gmhe” (1)

In a purely neutral meson theory, entirely similar con-

—_

siderations apply to the o-precession. In particular, taking

the theory of neutral vector mesons investigated by BeTug'?,
for which he gives®

Gy _ g

4 he 4:rrhc

= 0.08,

we see that the critical distance given by (50) is of the
same order of magnitude as the cutting-off radius

Kr, = 0.320 or 0.436.

It would, therefore, not seem consistent to disregard the
non-static forces even in a treatment involving a cutting-
off prescription. Neither can there be ‘any hope that an
explicit consideration of the precession effects just discussed
would permit to avoid the singularities of dipole inter-
action type, since the contributions to the energy of the
system arising from these effects are of an essentially dif-
ferent form. Above all, however, such large precession effects,
although not directly depending on the quantization of the
meson fields, could not be unambiguously separated from
the typical quantum effects which give rise to the well-
known divergences of any theory of quantized fields. We
may, therefore, conclude that, within ’rhé frame of the
presentfdrmalism, we can only expect to obtain a meson

* The explicit appearance of the factor 4 m is due to our use of units
analogous to the Heaviside units of electrodynamics.
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field theory capable of consistent interpretation (to a suf-
ficiently restricted extent) if all couplings of dipole inter-
action type are eliminated at the outset, i.e. if

Gy = 0. (52)

On the other hand, a more detailed examination of the
non-static meson fields due-to the spin and isotopic spin
precessions, to which we will come back in section 5,
shows that, in a theory which does not involve any coup-
ling of dipole interaction type, the effect of these fields on
the stationary states of a nuclear system will actually be
much smaller than that of the static forces, if the mean
distance between any pair of nuclear particles in such a
state is larger than the critical distance defined by (51).
A comparison with the empirical data, which will be given
later in connection with the discussion of the properties
of the deuteron, shows that the last condition is well ful-
filled for ordinary nuclear systems. As regards the difficulties
of field quantization, we might perhaps expect that the unam-
biguous conclusions derived by completely disregarding them
would still be reliable provided the theory using the unquan-
tized fields does not itself contain- any ambiguity. From this
point of view, we should conclude that, in a meson theory
satisfying, besides (52), ‘the condition just discussed, only
the static potential will be of importance for the deter-
mination of the stationary‘ states of nuclear systems.

2. Choice of a special form of meson theory.

Let us now consider the different forms of the meson
theory satisfying the requiremenis in question. In order to
secure agreement with the known properties of the sta-
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fionary states of the deuteron, we have to impose further
restrictions on the static potentials given by these theories.
In particular, we shall require that the static potential be
attractive in the 3S and 1S states of the deuteron, revealed
by scattering experimehts, and that the ?S-level be
lower than the 'S-level. It will be seen—always assuming
KeMMER's symmetrical combination of charged and neutral
meson fields—that these simple qualitative requirements,
which’ lead to two independent inequalities involving G,
and Gy are, together with (52), sufficient to restrict the
choice of the form of meson theory to an essentiﬂly unique
possibility. B | ; N
» According to the expression (45) of the static potential,

with G; = 0, the mentioned inequalities to be fulfilled by
Gy and G, are : « ‘
—3(Gy+6,)< G, —3G, <0,

which reduce to 6, >0, |

6,>51. — 63
-3

From the values (46) of G; and G, it is ixﬁmediatelyﬁppa-‘

rent that the conditions (52), (53) cannot be fulfilled by

any theory involving only one of the four possible types

of meson fields, so that we are led to consider the pos-

sible mixtures or ‘“‘compositions” of two or more of these
" types of fiélds. It is then easily verified that, if we try to
compose only two types of fields, the only possibility is
a mixtare of vector and pseudoscalar meson fields satis-
fying the conditions

' | fo? = gs% ' (54)

gs’ >3912- = ‘ A (55)

D. Kgl. Danske Vidensk. Selskab, Math.-fys. Medd. XVII, 8. 3



34 Nr. 8. C. MoLLER and L. ROSENFELD:

It should further be observed that from the point of view of
nuclear forces the possible compositions of three or four types
0f_ meson fields (obtained by adding to a mixture of vector
and pseudoscalaf_ “fields either a pseudovector field, or a
scalar field, or both) only differ from the cémposition of
two fields just mentioned by unessential numerical changes
“of the constants g, f, so that their greater complication is
not compensated by any advantage*. We shall thereforé in
the ‘following adop{ the simplest ‘mi_xture of vector and
pseudoscalar meson fields, as déﬁhed b_y;the relations (54),
(55).

The corresponding Hamiltonian may be wrilten

A = oHh Kk (56)

with 7, o, « @l given by (6),‘(7) and (26), re}sp.ec—
tively; the commutation rules between pairs of céno'nieally
conjugated variables are given by (8) and (25), all other
pairs of variables commuting. The separatidn of the static
potential may be effected by the canonical transformation
defined by the operator N

o e
| . ] T € . . (57)
Cwith . T = T+ FHy,

* An entively similar discussion may be carried out in the case of
a purely neufral meson theory, the' static potential being then given by
the expression (45) with the factors (’l‘(i) T(k)) omitted. The inequalities
to be fulfilled by G, and G, are in this case

S G1-F Gy<< 61— 3Gy << 0,
reducing to
.G1 <(3Ga, Ga<{0.
Also in this case, there is one possible composition of two fields, viz. a

mixture of & scalar meson field and a pseudovector meson field, and
this possibility is essentially unique.
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7}, and ¥y being given by (20) and (36); the new vari-
iy ety ity iy D=y dy = = -

ables 2 =50 p’('), p(;) _ p;o’ (n). TPy

®’' = @ are defined in terms of the old variables by for-

mulae of the type A’ = o' A ef. As a function of the new

3

variables, the Hamiltonian takes then the form
A = S K ST . (58)

if X" and & denote the same functions of the new vari-
ables’vas the functions e and e of the old variables defined
by (56) and (57). In the next sections, we shall discuss
the general features of the physical interpretation of this
formal scheme. . o

3. Interpretation of the traunsformed variables.

The interpretation of the different variables is. closely
connected with the form of the fundamental integrals of
the system, representing its total linear momentum®

.3 e . B - i
§7*>(i)LS7 O Y ; W, (R
Soop F grad U do— Y B grad W, (39)

T RER TR

its total angular, momentum®*

i . LI 3 . N
p3 {?‘T>A?(’>+- Lapay } -3 Q F*(z Agrad) U¥dy

B=1. 8 o (60)
-S m\qu—Sd)(x/\grad) Wy,
and its total electric charge o
* The formulae (59) :and .(60) represent the indicated quantities

multiplied by c.
. ‘3%
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W * . '
eZL_éELjL}:_C {ﬁ,\lfv}wv_h_ecg{‘l’l\tb}gdu. (61)

i

The conservation laws for these quantit'ie's follow imme-
diately from the invariance properties of the Hamiltonian,
since the expressions (59) and (60) are respectively propor-
tional to the operators of the infinitesimal transformations
of the groups of translations and rotations in ordinary
space, while the expression (61) is closely connected to
the component of index & of the transformation in iso-
topic space analogous to a rotation, viz*.

hic 0] = o
5 T —SUAde-i—Q‘I’A‘DdU (62)

(there being here no terms analogous to orbital momenta).

The three integrals (59), (60), (61) have the property
of being sums of terms referring separately to the heavy
- particles and to each type of meson field. As regards the
angular momentum, it is further possible to distinguish,
for the heavy particles and the vector meson fields, between
orbital momentum and spin, while the pseudoscalar meson
fields have of course no spin. It is just these additivity
properties which provide the justification for the usual inter-
pretations of the variables. This is first of all the case for
‘the variables;(i),g(i) and T(i) of the heavy particles; the
expression (61) shows further how the two first symboalic
components of the field variables are associated with
charged mesons, while the components of index 3 correspond
to neutral mesons; finally, if the linear momentum (59) is
expressed in .the usual way as a function of the Fourier

* The formula (62) represents the indieated quantity multiplied by c.
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amplitudes of the field variables, the resulting expression
shows clearly the co.nniection of these émplitudes with mesons’
of definite momentum. '

Now, it is of course desirable that also the transformed
variables should possess all the properties just discussed,
and it should be pointed out that this is actually the case
for the transformation defined by the operator (57). In fact,
the invariance of this operator o with respect to transla-
tions and rotations in ordinary space as well as to rota-
tions in symbolic space leads at once to the conclusion °
that the operatbrs (59), (60), (62} commute with &, so that
the integrals of linear momentum, angular momentum and
electric charge of the system, in contrast to the energy, are
the same functions of the new variables as the functions
of the old variables given by (59), (60) and (61).

The requirement that our canonical transformation should
thus conserve the form of the integrals (59), (60), (6\1) re-
stricts to some extent the arbitrariness in the choice of the
operator ef as a product of exponential factors (cf. footnote
on p. 18). In the first place, all the exponents must be
invariant with respect to ordinary rotations; further, in
order to uphold the additivity property of the total electric
charge (61), they should be invariant with respect to rota-
tions in symbolic space about the “direction” of index 3,
i. e. they should be of the form 44 B,, or A, B, +A, B,,
or AB. The form (57) for e has been adopted only on
account of its greater symmetry and simplicity.

4, The Hamiltonian in terms of t{he new variables.

We shall now proceed to derive a more explicit expres-
sion of the Hamiltonian (58) in terms of the new variables,
bringing ouf the effects due to the non-commutability of
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the spin and isotopic spin variables. For this purpose, we
shall start by reﬁlacing in (56) <#, and e#y by their ex-
pressions (16) and (32) resulting from the explicit intro-
duction of the static parts of the meson fields. Neglecting
all terms of higher order than the first in the velocities
of the heavy particles, we may thus write

— -
A = H,+ I (UL, F5 W, ®)+ 20, (63)

where the first term , , ,
H, = M+ D, (64)

is the sum of the kinetic energy <, and the static inter-
action. o '

. ,[. . i) ik
2= %Z 1) g2 + g3 (?();)(k))h(rm) (65)

i, k

of the system of nuclear particles, the second term is the
function

G = % S{i’w—}— K2 (div 1—5)2-!— (rot i?)z—}— K2 i}z} dv
B L% - . (66)
+ —;S {(1)2 + (grad ¥)*+«* l}’z}du

representing the Hamiltonian of a svslem of pu.re meson
fields, taken for the field quantities T T @' defined
by (15) and (31), and the third term is the coupling

% — ——S{M T+ TF+R%}'+Q<1}} do,  (87)

01 the first order in the velomtles

Now, if A is any function of the old vauables we
have for its expression in. terms of the new vanables the
general formula
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A=of4 &= A'-+I_;E[@7{',A']+.. +11'{ @7{}4_1
. ‘ ’1 . (68)'
[3 1 l

. o Al ? I ’ ’ P e ‘{f ’ .

with {hc@%”,A} H[J{ hc[@%, , Lien A]! ]]

fic

{t brackets)

in which A’ denotes in the usual way the same function of
the new variables as the function A of the old variables.
We therefore get ‘ '

H = Ik @zf“(t_f'—u', F—f vy, @)+ 2

1{1 T @F} Em { T, w'}l (©)

— I e ’ ~ 1! \he

-, \ 1 {4 Y0 ll § I 1 .

w = . I ANN I U 70
=0 hc , ey hc

and similar formulae for: f and |p Slnce we shall in
the followmg make use exclusively of the new variables,
we may from now on, for convenience, omit the primes
by which' they were hitherto distinguished -from the old
variables.
. Noting that
—

Lo, Ul =T '\[@7{ Fl=F" };c[@%" ¥] = ¥, (71)

— > )
we find from (70) for 2¢, f, ¢ expressions of the type

. = I . !
,u_r:i —m(l—lr-l)!{gg J{,U}, ‘ (712)

showing that, as was to be expected, these quantities would
vanish if we could look apart from the non-commutability
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: ‘ o

of all spin variables. It is further apparent that w, f, ¢
satisfy equations -of the same form as the equatlons 9,
(1), -@27, (29) for B”' F° @°, In fact, we have.

—
grad din 2]' = grad n
—rot rot u—-K u = 10t8 (73)

div grad gp—K g = divp.,

with
[ :
" @i e N
FA) W i@7{§}l
" T & @rniiae -
= 1 {‘i @75?}1
P= s @+ 01 R ¥

In particular, we can derive from.(73) ‘the expressions

divfr— S (r)dv' dlvgradn( ) = Sn( )Aq)du
= — >
rot 22 = ~S ¢ (r) dv' rot rots(x’)

= S—;(_;')Acp- dv’ ~S (_;G:) ~grad) grad o dv’ ( (75)

’ ’ > >y
grad ¢ = —~g o(r) dv’ grad div p ( )

= —S (;(—;) gr‘ad) grad g dv’ .

Taking account of the formulae (78) and (75), we
- obtain, according to (66), by means of partial integrations,
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H(C—w, F—F; ¥ —g,®) = (U, F; ¥, ®)
1 B T e e .
+ {—K ndivF +sgrotU—p grad'll} dv + conj. (76)

besides the written terms in (76), there occurs a further
expression

(o {32 graa) (32 grad) — (3(2) graa) (32 graal}o )

which, hoWever, vanishes except for terms of at least
second order in the velocities.

‘Turning to the fourth term in (69), we may transform
it into

é I!{ﬁc@7 J}z_@%f Z(H-l)vlﬁ ¢, (78)

®
if we denote in general by A the time variation of A

o
A=

1o [ Al (79)

due to the motion of the nuclear particles under the
influence of the static forces; thlus
‘e ®
©. = > > —> @
T S (FoT—-TU F+v @ do. (30)

As regards the laé_t term in (69), we may write, on ac-
count of (71),

h"—c (K, 20) = 2+ w (81)
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with 90 = —S{ﬁﬁ°+ TP R 'l’°} i | @2)
and S |

‘ o i lor AL L '
m:__g{h_c[df,m]t+hc[af, T]F+hc[@7{,RJ'l‘ -

i
5[, @) «.b} dv:

it is readily seen that the factors of the products occurring
in 22 —and consequently also of those occurring in » —
are commutable, so that both 2, and » are real operators.
Using the formulae (9), (14), (‘30); the term (82) of direct
coupling between the nuclear particles is easily brought
into the form , »

o0, = { (3 () A8 (3) 4 3 () #(3) - (D B())

-grad ¢ dv dv’,

(84)

or,- with the expressions (3), (4), (23), (24), and ofnitting
the undefined contributions which correspond to self-
energies (i = k),

1 ) (o (> (ik) &) —> (ki) (i) (ik)
Q{jn =5 Z (1‘ T )(X grad -+yx grad )<p<r ),
ik
with (85)

—>{ik) g R U P IR G ad t) H—=> &
x =700y o Ao 4py 0 F%[sz g

Summing up, we find, on account of (76), (78), and
(81), for "the expression (89) of the Hamilionian as a
function of the new variables,
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= @]ﬁfn + @7(’:

- 10f s e -“ — "
a@7{+§g{——1< ndwF+8rotU——pgrad‘l’}dv—i—conj.

gflﬂ{i@fﬁf
& (01 e T
—% Kdv dv’ (K__z’”, (Z') n (._1:') +§ (—a:)_; (—>

z . i
\ E 1 1
+@ﬁn—rw+%) +1=1 m{ﬂ@?‘{,@ﬁn—*—w}.

It consists of the Hamiltonian sﬁn,'given by (64)‘, (65), of
the system of nuclear particles with static interactions, the
Hamiltonian @7?,”’, defined by (66), of the pure meson fields,

and several coupling terms, depending on various quanti-

‘ties defined by (67), (74), (80), (83) and (85); it should

be remembered that the expression (86) is exact only to the
first order in the velocities of the heavy particles. Further,

. [C] . .
we shall, in all terms containing <7, disregard the con-
tributions arising from the mass-terms in the kinetic energy
(which represent couplings between the heavy partic-

les and the meson fields), since. they involve the factor.
(My— Mp)c o .
e —="— which is small compared with

G
hx ' 4mhe’
For later purposes, let us write down the field equa-

tions derived from (86), when we look apar{ from all
velocity dependence, and thus in particular cancel the

terms of the last line in (86):

> — s = —®>o i
U = —FA+x “graddivF-U '+ @
. ® .
F 6, | @

: B S &
¥ =«@U +rotrot & — ¥° +
. . @ ;
¥ =0 -9+
— = PP —AYLO;

xﬂAw

(86)
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here the “statlonary source densities — U —_i“’ -9 arise
from . the term — Hin (86), while the symbols 0 /]
denote the source densities derived from all other velocity-
independent coupling terms in the Hamiltonian.

In the expressions of the source-densities which we
have called “stationary”, the velocity-dependent terms are
of course to be cancelled, so that these sources just corres-
pond to the precessions of the spins and isotopic spins of
the heavy particles under the influence of the static forces.
While they are of course independent of the field variables,
the other source densities 6, @ do not contain any field-
.independent part, since the terms in (86) from which they
are derived are at least quadratic functions of the field
va‘riables. lThis follows at once from the remark that
{}ll;e%’, A} (1> 1), where 4 is any funclion of the variables
of the heavy particles alone, is homogeneous of order [ in
the field variables. Such a property would be quite trivial,
were it not for the non-commutability -of the field compo-
nents U and F since these, however occur only in the

combinations SI"’ & dv and S & E’dv, a reduction of the

; 1
order of {%6@7{ , A} in the field variables could only arise
through a factor

I\FGR)IER), PN @
e/ .
= Slf_")" (_a;) ﬁ° (—:g) dv,
which, according to (9) and div if °= (), reduces to zero.
We are now prepared to discuss, in the next section,

tc what extent an unambiguous solution of the field equa-
tions is ‘possible, and whether the non-static meson fields
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so obtained are of any importance for the properties of

the stationary states of nuclear systems.

5. Physical interpretation of the formalism.

The convergence difficulties which prevent a consistent
combination of the field concept with the ideas of quantum
theory, oblige us to restrict in a suitable way the use of
the formalism developed in the préceding sections. In the
case of electrodynamies, the choice of the required restric-
tions is guided by the well-known correspondence argu-
ment'V. It is true that we have in the present case, on
account of the large meson mass, no empirical evidence
of field properties of mesons in a domain where quantum

" etfects would be negligible; but just in the critical region,
defined by (51), with which we are concerned in the
problem of nuclear fields, the influence of the meson
mass on the properties of the field becomes unimportant.
It therefore seems natural to adopt, in discussiﬁg the
limitations of the formalism of meson theory, a point
of view closely analogous to that of quantum electro-
dynamics. ' ‘ '

The canonical equations derived from the Hamiltonian

should thus not be considered as an exact system of-
~ equations, but solved by a process of successive approxi-
mations in which, starting from a suitably defined unper-
turbed system, the calculation of the solution corresponding
to a given initial state of this system should not be carried
further than the first step leading to a non-vanishing result
for the effect under consideration; and such results should
of course only be considered as reliable if even this first
step does not involve any ambiguity.
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The justification of such a procedure, as well as the
pi'ecise way in which it is to be conducted, can only be
derived from the treatment of the “corresponding” problem,
in which the meson fields are not quantized. If, in such a
treatment, we start from a state in which all the field
componenté are zero everywhere, it is clear thét; provided
the procedure cénverges, the various interactions between
heévy particles and meson fields, and the resulting source
densities in the meson field equations, are to be regarded
as perturbations of increasing order according to the power
to which they contain the field components. We have
further to demand that, in the application of the method
of successive approximations thus defined to the system of
unquantized meson fields, the effects of higher order than
those which should alone be retained according to the
above prescription be actually negligible.

Looking from this extended ‘“‘correspondence’ point of
view at the Hamiltonian (56) expressed by the original
variables, we see that a strict application of the preseription
just formulaied would not lead to any reliable estimate of
_the binding energy of a nuclear system: it is true that
we could in this way derive the expression of a direct
coupling between the heavy particles, but we would not be
justified in treating such an expresSiion as an operator
which, together with the kinetic energy, would determine
the stationary states of the nuclear system. A quite analog-
ous sitnation would of course be met with in electro-
‘dynamics, if the same prescription were applied to the
Hamiltonian including the longitudinal part of the electric
field and vector potential; in fact, a true correspondence
with classical theory is only achieved when these longitu-
dinal fields have been eliminated and replaced by the static
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Coulomb interaction. It is just the purpose of the canonical
transformation discussed in Part I to obtain for the treat-
ment of nuclear systems a starting point comparable to
the quantum mechanics of atomic systems. Although the
seperation of the slatic part of the fields, performed in
this manner, is not a relativistically invariant operation,
we have in either case a natural frame of reference (viz.
that in which the centre of gravity of the system is at
rest), with respect to which such a separation has a well-
defined meaning.

‘We have thus to examine to whal extent a con-
sistent use of the scheme based on the Hamiltonian (86),
expressed in terms of the iransformed variables, may be
found by means of the ““correspondénce” prescription
formulated above. For this 'purpose, we shall first discuss
the counvergence of the corresponding theory in which the
meson fields ave not quantized, and afterwards the limi-
tations imposed on the theory by the difficulties of field
quantization. In this discussion, we shall of course be .
concerned with two diStinct problems, viz. the influence of
the non-static forces on the stationary states of nuclear
systems,. and the transition pfoééSsés due to the interaction
between such systems and the meson fields.

As regards the calculation of the non-static interaction
between heavy particles, arising from unquantized meson
fields, we shall first investigate the non-stalic meson fields
due to the stationary source densities in (87). Since we
are interested in the values of these fields in the region
occupled by the nuclear system, we may neglect the retarda-
tion effects; remembering that div U° -0, rot F° =0
we therefore get immediately from (87), for the qu351-
stationary fields due 1o the Spln precessions,



48 - Nr. 8. C. MaLLER and L. ROSENFELD:
R : .

s T —@? ® .
U=« F°, F=—T° ® =¥, =0 (88)

8

In order to estimate the influence of such fields on the
stationary states of nuclear systems, we shall compare the
interaction energy 2, to which they give. rise with the
static interaction 27 . A sufficiently accurate expressi’on ‘of
- 2 is obtained by inserting the fields (88) in thg corres-

ponding approximate field Hamiltonian @%f‘ — &% . Using
(13) and

(ol T2 ollZ—2l) o= ol 7= (). EZ 1, )

we get .
e L L SN
Q).————-ggdu'dv"{ N( )N(x")—i—S(x')S(x")}

* NN Kl‘?_—ﬁ,l
o= (1<),
. there occurs a further term
—;—dedu'dv"{(s ( )gradcp Ia:——x l ) ( grad ¢(~> ;c)"l))

(B @) a0 (7-2D) (B () raa o (2-2))}

which vanishes to the first order in the velocities. For

(90)

_(_97

estimates of order of magunitade, it will be sufficient to
consider a pair of nuclear particles at some fixed distance
r(<¥ Y, the different powers of this distance representing
the order of magnitude of the expectation values of the
corresponding quantities in the stationary state concerned,
provided these expectation values are finite. The relative
orders of magnitude of velocity-independent terms of
interaction are then conveniently expressed in powers of
the parameter '
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G 1 s o .
Y= Yuhe «r (G oo gyorgy) , (92)
Thus, by reference to the formulae (49) (with G,=0), we

see that o ‘
9)34.\3 y2 9}"; "~ (93)

the requirement that 2, be small compéred to 2 leads
therefore precisely to the ‘introduction of the ecritical
distance r, defined by (51). Passing to -the higher approx-
imations in (87), and observing that the.order of magnitude
of the quantity €7, in which the stationary fields (88) have '
been introduced, is just y* we may easily verify tha-; all
successive contributions to the interaction between nuclear
particles differ as to order of magnitude at most by powers
of y. If we now also take into account the velocity-
dependent contributions, we have to introduce, besides vy,

another parameter
L
”,

p =

ole

(94)

where » represents the order of magnitude of the velocities
-of the heavy particles. The main velocity-dependent contri-
bution to the coupling between nuclear particles is the term

W, oo B 2, _ (95)

which, since it does not involve the meson fields, may
from our present point of view simply be included in the
Hamiltonian of the unperturbed system of nuclear particles,
where it will be considered as a correction to the static -
inleraction; The other velocity-dependent couplings, which
all represent interactions between the heavy particles and the
meson fields, will be seen to give contributions of higher order
in B or y. This holds further for the contributions arising

D. Kgl. Danske Vidensk. Selskab, Math.-fys. Medd, XVII, 8. 4
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from the terms of second order in the velocities, which
we have omiltéed from the Hamiltonian (86). Since, for
actual nuclear systems, B is numerically about the same
as 'y, the convergence condition P ({1 leads again practic-
ally to the value of the critical distance r, given by (51).
It should be observed that, if we had performed the
preceding discussion in the case of the pure vector meson
theory or any other including static couplings of the dipole
interaction ‘type, we would have had to take account of
velocity-independent terms correspording to the first terms
of (77} and (91), and we would have been led to a condi-
tion inveolving the critical distance (50) instead of (51).
As is VV{*.H-IRDOWH, the quantizatioﬁ of the meson fields
implies the occurrence of ﬂuctuatingﬂﬁelds even in the
ahsence of any nuclear matter,A and the interaction of such
zero-flelds with any nuclear particle will give rise to ém
infinite coniribution to the self-energy of the particle.
While, as we have just seen, the inleraction between
nuclear particles due to unquantized meson fields could
in principle be calculated to any approximation, provided
~only, that the distances involved are larger than the critical
distance'r;, the necessity of avoiding the infinite self-
energiés due to the zero-fields forces us, in accordance
with our general prescription, to discard entirely all nomn-
stalic terms of direct coupling between nuclear particles
(except of course the term 22, ,included in the unperturbed
Hamiltonian of the system of nuclear particles).

" The consideration of the probabilities of transition
processes due to the interaction between heavy particles
and meson fields imposes on the theory, according lo
18)

HEISENBERG a radical limitation arising from the

increase of the probabilities of “explosive” processes, when
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the energy involved becomes large compared with the rest-:

energy of the mesons. In fact, if A is the wave-length of

the mesons taking part in the process considered, it is
eaéily seen that, for the first explosive processes to set
in when the energy increases, the transition probablhtles

are proportmnal to some power of the parameter

G 1

TrFe G (96)

g ==

The order of magnitude of the emergies for which such
explosions set in is thus connected, according to (98), with

a critical lemgth given by

_G_ s et . E
ﬁ]/zw—ﬁz’ e

which is smaller than the critical distance r, in the pure
vector meson theory, given by (50), but larger than the
distance (51) corlespondmg to the form of the theory
which we have adopted. This limitation affects equally
any form of meson theory, except'? a ’Lheorv of purely
neutral meson fields i m*vo;vmg only eouphncs which depend
on the fundamental constant I

If, as advocated by ‘HEisENBERG, the critical lenéth r,
has a universal swmﬁcance, in thL sense that the usual
concepts of field theory would not be applicable within
regions of a linear extension smaller than r,, we have to
expect in our case a somewhat more rigorous restriction of
the domain of applicability of the interaction potentials 27,
and 22 than that de_ﬁhed by the critical distance r,. Still,
theré remains a range of distances between r, and K

where the form of these potentials is significant and where
4%
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the treatment of the stationary states of nuclear systems
outlined above yields (in contrast to the case of vector
meson theory) unambiguous results*. It seems probable
—though by no means certain®)— that such results
would not be essentially affected by the modifications
which a rational introduction of the universal length r, in
the theory would involve, since these modifications would
presumably be confined mainly to regions of linear exten-
sions smaller than r;,, which are of minor importance for
the determination of stationary states. '

From the preceding discussion we conclude that, 1f we
treat the Hamiltonian (86) from the correspondence point
of view deseribed in this section, we obtain as the only
significant interactions between nuclear particles those
defined by the potentials 2’ and 2£,; the other terms of
coupling between nuclear particles and meson fields may
be used only to calculate, in conformity with the corre-
spondence prescription, the probabilities of the various
transition processes involving energies of the mesons not
large compared with their rest-energy.

As regards the determination of such transition pro-
babilities, it should be observed that, for purposes of prac-
tical calculations, it would in most cases be more advan-
tageous to apply the procedure of successive approximations
described to the Hamiltonian (56) expressed in terms of
the old variables, since the operator of interaction between
nuclear particles and meson fields involved in this Hamil-

tonian has a much simpler form. If the use of the original

* It will be noticed that the existence of the universal length ry
would deprive of any well-defined meaning all potentials of direct inter-
action between three or more nuclear particles, which, as shown by the
precedmg discussion, become 1mp0rtant only for distances of the order

Cf. 19d)
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variables is thus adopted,—as has naturally been the case
in all calculations hitherto carried out,—it is obviously
permissible to add to the Hamiltonian of the unperturbed
nuclear system the interaction potential 2/ -+ 9/7”, since
this operator does not give any contribution to the matrix
_elements contained in the expression of the transition pro-
babilities. From the character of the processes involved, it
is clear that results obtained in this way should be entirely
equivalent to those of calculations using the transformed
variables, in spite of the widely different forms of the inter-
action operator in the two cases. In fact, the probabilities

of such processes are proportional to the square of the
ig -

matrix elements of the operator ¢ " for initial and final
states of the whole system, consisting of some stationary
state of the unperturbed nuclear system and (at least for
one of the two states) one or more meson wave-packets
at large distances from the nucleus. If we use the new
variables, and if we also apply the transformation < to
the scheme of -repfesentation, we should, according to the
conclusions of Section 3, take as wave-functions describing
the initial and final states the same functions in the new
representation as in the old. Strictly speaking, we have
therefore to do with different states in the two cases, but
the difference is van_ish‘irjgly small for the kind of states
concerned, ‘since the tran'sformatioﬁ of modifies only the
form of the meson field components in the neighbourhood
of the nuclear particles. -

As an illustraﬁo_n of this point, let us consider the inter-
action between meson fields and a siﬁgle nuélear‘ ;;articlé ;
the interaction operators occurring in the two forms of the
Hamiltonian are, according to (56) and (86),
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. ®(old vards QO + W SR IR : ]
o (98)
(new var.) EEL 1in field components,

i "I Q%’/;;]—!— e + f terins of higher order[

where 22 is given by ‘(67)”a'nd‘ :
T e
0, = S{—K N div '+ S rot U— P grad ‘l’} do. (99)

A striking difference between these operators ‘is that all
velocity-independent terms of first order in the field com-
ponents have disappeared from the operator corresponding
to the use of the new variables. This indicates that the
velocity-independent interaction ©; in the old variables ac-
tually gives only velocity-dependent contributions to the
probabilities of emission or absorption of single mesons by
a nuclear particle. In this simple case, the equivalence of

the two modes of caleculation of these probabilities is rea-
]

dily verified as follows. Observing that ©, = e [ &, @7[;],

we may write

Q = ®+é [@7{" @ﬂ‘k_*_ @7[,-]+{terms Of'higher} (100)

order.

The probability per unit time of a process of emission or
absorption of a single ‘meson is in first approximation pro-
portional to the square of the same matrix element of either
® or Q, corresponding to two states of the same unper-
turbed energy e/ + ;. Now, according to (100), such
matrix elements are actually equal to the approximation

considered, since the corresponding matrix element of

7o AT (Tt T = Fok T K}

is zero.
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We should ﬁnally like to point out that the use of the
transformed variables brings considerable simplification in
the discussion of the processes due to. the interaction of
meson fields and nuclear particles with electromagnetic
fields or with electrons and neutrinos. To such problems,
which include “optical” properties of nuclei and P-disinte-
gration, we shall come back in later papers.
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Part Ill.

~ Stationary states of the deuteron.

We shall now apply the potential of interaction between
nuclear particles 2),+ 22, derived from the special form
of meson theory proposed in this paper, to the study of
the stationary states of the simplest nuclear system, the
deuteron. In this discussion, the velocity-dependent coupling
will be. treated as a perturbation. We therefore begin by
recalling the main features of the solution of the problem
for a potential of the form 2/, as given by KeMMER'®),
and derive from it a rough fixation of the numerical
values of the constants |g,| and |g,|. We then estimate
the influence of the perturbation potential 2£], on the
binding energy and eigenfunction of the ground state and,
finally, apply the last result to the calculation of the
electric quadrupole moment of the deuteron in this state.

1. Stationary states of the deuteron as determined
by the static potential. 4
Let us first consider the stationary states of the deu-
teron as determined by the static potential 2,. Following
KeEMMER'®, we describe these “states, in the frame of
reference in which the centre of gravity is at rest, by_ihe
proper solutions of the equation '
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l??gfadJrﬁMcw » (r)} t.(z) = Ev, (2), (top)

—> —»N —>Pp . . —
where x = x —ax are the relative coordinates®, r = I |
> —>N —>P

a=a —a , P =—;J:—{j+p: and Moo My oo M. As shown |
by KEMMER, the non-trivial proper solutions reduce to three
types, which he denotes by Ia, 15 and IIb, @ and b
referring to the even or odd character of the eigenfunc-
tions. In the non-relativistic approiimation, types I and I
correspond respectively to the tfi-plet and to the singlet
system; in this approximation, each state is characterized
not only by- the energy E and total angular mementum
J» but further by the orbital momentum I, and we have

for type la: ‘ l=j+1,
for types 1b and I1b: I=j..

The _rad-ial part of the “large” (i.e. velocity-independent)
components of the proper solutions is in all cases deter-
mined by a SCHRODINGER equation

—Kr

{h2(dﬁ 1(1+1)

g e )+r +E}R,(r)=o, (102)

where

; 4 2 2
for type Ta: = [1—2(—'-1)11_———_(9‘1;"2),-

Co 2 5 9

. . — (1 o1yt 919
for type Ib: = [1—2(—1)'"] et (103)
- '.‘ — 2 2

for type lI1b: T = [2(=1)Y= 1] _&ﬁfl&_

4T
In the present paper, we shall confine ourselves to a
provisory survey. A more exact treatment of the equation

* Quantities- ‘referf‘i»ng to the two particles of the deuteron are
distingniskied by the upper indices N and P.
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(102) is being carried out by Dr. L. HuLTHEN, who will
also apply his results to a discussion of the problems
here treated. '

As regards the description of the ground state and. of
the excited 'S state revealed by scattering experiments, we
may, if we assume that the proper energy of the latter is
approximately zero, use the available results of numerical
integrations*) of the equation (102) for S states and
E<0. These, results may to a fair approximation be

summarized®® in the formula

T lE|
7o = 1697 +|/ AL (104)

where M, represents the mass of the meson. For the two
S-states concerned, which are of types Ia and I1b with
j =1 and j = 0 respectively, we therefore get

3(g2+92 lEo
4mhe 169 M Mcz’

(105)

|Ey| o 0.0023 Mc* denoting the binding energy of the
ground state. From (105) we_find

2
O l {Eol _ . :
i e i l/ 5 M 0.027, (106)

—independent (to the approximation used) of the value

of the meson mass,—and further

2 M '
9s .. m ‘
e 0.56 oM + 0.009, (107)
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showing that |g,| is essentially determined by the value

of the meson mass only. We get

for 35 = 10° ZTmhe — 2065
. (108)

; ) \
m__ 1 9y _
for M~ 207 4mhc 0.037.

The numerical values (106) and (108) provide the justi-
fication of the general slatement on p. 32, that the mean
distance between any paii‘ of particles in stationary states
of nuclet is large compared with the. critical distance r,
defined by (51). In fact, such mean distances will of
course be at least of the order of magnitude k. This may
in particular be seen for the ground state of the deuteron
by using for the radial wave-function the approximate

analytical representation given by WiLson®:

(313 xKr
B = /5 T
M, 1 :
o = 2.13, for ﬂ* = E, (‘109)
with
- _m =
oa = 3.3, for M 20"

The 16 components of the eigenfunction of any station-

ary state of (101), characterized by the eigenvalues of

P
P3>

written, with reference to the. table on p. 52 and formu-

of; p¥, of, may to the first order in the velocities be

laec (6) to (14) in KeEmMMER's paper, in the form

© W
Y=Y+Y, (110)

where the velocity-independent term
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¥=5, s )
= 2 A P N - 111)-
o 1 0o 1 ZoPo] (

and the first order term
(e}
Y — SP;’,I Spf,—lchc,sv?apf’_lspy,l 2N P (112)

the upper sign corresponding to type I, the lower to
type II; Z is symmetrical with respect to Uf , crN for
type I, antisymmetr'ical for type II. We shall, in the follow-
ing, only use the explicit expression of the Z and z for
states of type Ia and j =1 given by the formulae (113)
and (114) on p. 61. In these formulae, ng) are the nor-

malized Legendre functions

Y;m) 1_ fme Py, (cos ),

Vam
pm . (19

2041 (I—m)! 1 .~ ,3d 9 1\l
m(®) = V (H—m)'2 1'( =) dx‘*’"(x v

and the numerical factors have been chosen so as to
normalize the total eigenfunction to unity, provided the
radial factor R; is normalized in the usual way.
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2. Fi.r-ét order perturbation of the ground state
by the non-static potential.

The non-static potential may, according to (85), be

written as'
“SNP —>PN
2, = (x"+") (X=X ) grad g,
. .1 (116)
~>NP ~>P N —N —>N —>P N P\ N
X :fo Pa — glqz(c +ioc Ao nga)

Since this operator is invariant for rotations and for reflect-
ions with respect to the origin of the relative space coordi-

nates, the matrix element
(8192, a) = \¥3 20,%, 4y

1s 20 only if the states A and B have the same gquantum

numbers j and m and the same even or odd character

(@

a or b. Taking account of the symmetr} properties of ¥
&3]

and ¥ with respect to the spin coordinates p, and o, of

neutron and proton, it is easily seen that, to the first
order in the welocities, we then have

(1) (1) {0
(B 22,| 4) = \vv YA¢10+§Y§3%?n?Adv, (17)

if the states 4 and B belong to the same type I or 1],

while no intercombinations between states of types 15 and
(0) (1)
Il b ocecur. Since, for a given type, ¥ and Y are of different

symmetry with respect to the py’s and oy’s, we have

©) —»>nNpl) 0 —>pN(l)-

X ¥, = —WRX ¥

A
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(0
observing further that Y corresponds to the eigenvalue 1

N P
of p;.ps, and that

—>N N, —P —>P(——->N—>P>*
’

c +ic Ao =0 o o
we get
(0) (1)
S\PE%?AdU
() ; 2 _ ’ N—»py | (D
= QS ‘V;<TATP)p;V?Pgrad Q{’%—%‘f‘ (? —g )}‘I’Adu

or, using the expressions (111), (112),

{0) (L
g Y20 Y dv

(118)

— 2 563 o 09 (337

Taking now as state A the ground state and as state

B any other state combining with it, i.e. a state of type
Ia and energy E, with j =1, and I =0 or 2, we may
easily from (117), (118) calcualate the corresponding matrix
elements with the help of the representation (113), (114);
since these matrix elements must ob‘viously"be independent
of m, it is only hecessary to carry out the ealculation for
an arbitrarily chosen value of m. The result is

(E,1=:0|224110)

9 +” .
s (V) 4313 494D (1 1)
A ’ ’ 3 ?
)

B 1=2]20)

(119)

—_ (]
_ 2V2(ylgg+f1m_(¥ﬂ)2Mcz,@S () )
r) 0 A

V]

4 he M ¥ \ dr \dr
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The displacement of the ground level due to the poten-
tial 27, is thus in first approximation, if we use for R, the
expression (109),

E

AE, = — 5919 — flf2 (

41 he 2

2 L ‘uo .
Hm) .McZ.‘iS DT (e ) dae
0 (120)
5 M,,)\? Y(x+2)
5g19.—hle (_m_)_Mcz_q @
M

4w he 2(a+1)*

Assurﬁing_*M % and « = 2.13, we find, according to

(108) and (54),
IAEOI o 0.01- BHEAL ppo (121)

V41 ke

the double sign, corresponding to the two possible choices
of the sign of f;:g,. We thus see that if, for instance, the

EITESAP is of the same order of magnitude'as L' gl
4The Vamhe

i.e., according to (106), = 0.16, the displacement |AE,]| is

quite considerable, being in fact more than % of the whole
binding energy | E,|.

factor

This circumstance would make a more rigorous treat-
ment appear desirable, but one Should not forget that the
existence of a universal length r; might introduce just in
the determination of AE,—in contrast to effects depending
on the static potential only—a (juite appreciable modifi-
cation. Although it is difficult to estimate the nature of such
a modification, one might presume that one could get an
idea of it simply by extending in (120) the integration over

~ x only, from x7, to infinity. According to (97) and (108), this
would reduce the value of AE, hy about a factor 2. It may
be observed that a similar modification would leave the mean



:I)Enyl:O;

On the Field Theory of Nuclear Forces. 65

value of the static potential practically unchanged; with
reference to the formulae (129), (130) below for the qua-
drupole moment of the deuteron, it will be seen that also
this quantity is not éppreciably affected by the modification
just discussed.

At any rate, it is easily seen that even such a large
correction as (121) to the binding energy E, would not
essentially modify the numerical values of the constants
lg:| and |g,|, and ‘weuld therefore not impose any essen-
tial limitation on the choice of the constant f,.

The perturbed eigenfunction @ —0;j=1,m Of the
ground state may be written
i(!)
N\ (E1=0]20

j=tm = Vg rejo1,m ™+ E,—E Yer-0j~1,mdE

0
300
(B, 1= 21%10)
+ E,—E Ye1-2;fm1,m 9E,

0

all states of types I a other than the ground state belonging,
in our case, to the continuous spectrum. In the calculation
of the electric quadrupole moment to the first order, only
the last integral will give a contribution.

D. Kgl. Danske Vidensk. Selskab, Math.-fys. Medd. XV1I, 8. 5

1 (122)
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3. Electric quadrupole moment of the ground state.

The quantity defined as “electric quadrupole moment”
of the normal state of a nucleus in interaction with an
external electric field is®®

o3 Ty IH—]
\ 2 o - (123)
- S I CDEaxI» m=j | l}/f) 2,0 (COS 6) r? do.

Qg,, ; S(D}'E" im=; (3 cos?8—1) r? D dv

According to (122), this gives for the ground state of the
deuteron, in first approxnnatlon,

o

=

)

Q= \ dE
’ ’ 2)/2 (24
;?o,1=0;j=1,m=1\FE [=2;j=1,m=1 V“’Pao(cos 8) r*dv -+ conj.

Since tlhe first order of magnitude in the velocities of the
nuclear particles is about the same numerically as that of

G . :
———, we should also take account of any
4 he .
quadrupole monient of second order in.the velocities which

the parameter

could be present in the unperturbed system; it is imme-
diately seen, however, from (110) to (113), that in our case
such a quadrupole moment

zyz

reduces, to the order of magnitude indicated, to

P, ,(cos &) % do

©, I 2)/2 2 5
gl |-

7 3+3
oo /5

5,0 (cos €) rido,

which wvanishes because
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z. P N
P _N|79309;
03 O3

is independent of the angular variables.
Since, according to (113), (114) the product

*
YE,1=0;j=1,m=1-YE, 1=2;j=1,m=1
reduces, - after summation over the spin coordinates and

integration over the angle e, to

. R R(F
2 V5 (cos 8)- R

the expression (124) takes the Simple form

Y2 [(0|r E1=2) (5,1=2(26]0) yeonj | al
5 E,—E » (125)
where ’
O|r|E, 1=2) = S R (R () 2dr.  (126)
0 - R

With the same notation, the integral occurring in the ex-
pression (119) of (E, I = 2 |2£)| 0) may be written

=)

de(d 1 unyy _ﬁﬁp 1 a'<p> (E)y*
Sdr<dr+l><R0R )dr»—%( ot SRVRRS dr
0 L]

(127)
. . .. do Eye -
if account is taken of “the fact that b R, R, = (.
r=90

Taking now the radial wave-functions real, we thus get

Q — 5' L e . M Mc

(128)

K

T R e
— -
L]

|Ey|+E |
5¥
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An estimation of the order of magnitude of § may be
obtained by writing, on account of the completeness of the
. . (E)
system of eigenfunctions Rs,

8
5

4 he M E%

glgg+fL[g.(Mm>2. ZWC2 1 0
M) |E,|+E, x*

e <KI' + 3+ —i\ i 0) , (129)
Kr/l

E,, being some eigenvalue, for which it is natural to assume
the value corresponding to the maximum of the numerator
of the integral in (128). Using (109) we find

W

. 3 * ’
e-Kr<Kr+3+§—r>‘O) = %Se“(qﬂ)x <x+3+§)x2dx l
. L (130)

(0

_é.d3(q2+4d+5)m27 J
2 (1) o

The value of E,, was estimated by taking for R the
BESSEL function [/kr J,,, (kr) <with k= —% Vﬁ‘) corresponding
to a complete neglect of the static potential. It was found

that the maximum of the numerator of the integral in
(128), calculated in this way, lies at about k,, o 1.3x, or

AIIH 2 &
E, oo 1.7 Mc?

M (131)
oo 0.017 Mc?.
For the absolute value of (), we therefore get
'Q(C\DO_G‘ (I_lﬂi .iz’ (132)
Vamhe | ¥ ,
S Eh g1 .
; : e e 0.16,
or, if we assume l/41rhc vl/41Tﬁc
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Ileo.l-g—z-matﬂo—”cmz- . (133)

The only meaning of this rough calculation is to show
that the value of (, on the present theory, may well be
of the order of magnitude indicated by the provisory em-

pirical results®-1%;

the theory may of course be fitted
to account for any sign of the quadrupole moment, prac-
tically without influence on its absolute value. We see at
any rale that, while the existence of a -quadrupole moment
is of fundamental importance in pointing to a relatively
large contribution of directional couplings to the interaction
between nuclear particles, the incorporation of such an effect |
in the meson theory does not involve any considerable
restriction in the choice of the formalism.

We should like to express our deep gratitude to Professor
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also for the constant inspiration derived from the many
discussions and conversations at the Institute. We extend
our best thanks to, Dr. L. HuLTHEN,; who kindly checked
our calculations on the deuteron. One of us desires also
" to thank the Belgian American Educational Foundation for
a.grant which enabled him to visit several American Univer-
sities and there in particular enjoy valuable discussions on
the subject of the present paper. ‘
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