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Introduction and Summary .

I
n order to elucidate the relationship between the dielectri c

constant and the structure of solid compounds, it is best

to proceed on a definite plan, for instance based on the

periodic system of the elements . Binary uni-univalent com-

pounds of course constitute the simplest cases, by now th e

dielectric constants of nearly all alkali-halides have bee n

measured by many investigators, and a comprehensive

compilation of data and references is given in LANDOLT-

BÖRNSTEIN'S tables' . In our present work dielectric constant s

of KC1, RbC1, RbBr and RbI at about 70° C . have been
determined ; at lower temperatures these had been deter-

mined earlier by the writer as well as by other investigators
as will be seen from table 3 . The temperature coefficients

have small positive values .

Proceeding next to di-divalent compounds, it is observed

that only very few of these have been investigated earlier .

The dielectric constant of ZnS was extrapolated from infra -
red by LIEBISCH and RUBENS 2 , and the dielectric constant

of MgO was measured by GUNTHERSCHULZE and KELLER S

(see later) . In the present work the determination of dielectric

1 LANDOLT - BORNSTEIN : Tabellen ; Erg. Bd . III ; 194 h-r . p . 1889-98 .
LIEBISCH T. and RUBENS H . : Sitzber . Preuss . Akad . d . Wiss . XLVII I

(1919) .

GÜNTERSCHULZE A . and KELLER F . : ZS . f. . Physik. 76, 82 (1932) .
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constants for the alkaline earths was regarded the mai n

object . Various samples of BeO, MgO, CaO and SrO wer e

investigated . Beryllium compounds were prepared in a pur e

state following a method given by HÖNIGSCHMIED and BIR -

KENBACH, and strontium compounds following a method b y

S. P . L . SØRENSEN .

The alkaline earths are obtained nearly always as fin e

powders consisting of porous particles, hence resort must

be taken to an immersion method . The special type of

immersion method proposed by the writer]. was found

particularly suited for the purpose . According to this method ,

powder and a suitable immersion liquid were mixed an d

boiled for an hour in vacuo in order to remove occluded

air. The mixture was transferred to the dielectric cell which

was heated or cooled to a suitable temperature and then

inserted into a Dewar vessel . During the subsequent slo w

temperature variation, the capacity of the dielectric cell wa s

determined at intervals, and a curve, recording the variatio n

of capacity with temperature, was plotted in a diagram .

Afterwards the mixture was filtered, and the filtrate put int o

the dielectric cell, whereupon the measurements were

repeated, and a new curve plotted in the same diagram .

Where these two curves intersect, i . e . at that temperature ,

the dielectric constants of mixture, liquid and solid are equal ,

and if the dielectric constant of the liquid is known, that of

the solid is hereby determined .

The present dielectric cell was calibrated by the standar d

values of dielectric constant for certain pure liquids deter -

mined by HARTSHORN and OLIVER, and by SUGDEN (see

later) .

Similar methods have been proposed for the purpose o f

Ileaelsom .

	

ZS . pXv sik . Chem. B . 20, 54 (1933) .
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determining the refractive index or the density of a powder ,

but have not met with success, because these properties var y

little with temperature . The dielectric constant of a polar

liquid, however, varies a great deal with temperature, a s

will be seen from the diagram (Fig . 6) in which it is demon-

strated, that the dielectric constant of acetylene tetrachlorid e

varies from 4 .5 to 14 inside the liquid region .

In an older method of STARKE ]. the dielectric constan t

was varied by altering the composition of the immersion

liquid, which in that case was a mixture . The present method ,

however, is considered advantageous not only because it,i s

easier, but also for other reasons . In the present method

the dielectric cell is kept closed during the measurements ,

no moisture or carbon dioxide being allowed in ; that would

hardly be possible by the old method . In the present metho d

the rapidity of measurements is hampered by the slow heat

transfer inside the dielectric cell, in the old method th e

rapidity would be even more hampered by the slow diffusion

of the liquid added into the pores of the particles .

The capacity of the dielectric cell was measured by means

of a resonance apparatus which is described in detail. The

wave-lengths used were 120, 134 and 142 meters . By means

of switches the dielectric cell was substituted by a capacit y

box, which was adjusted until resonance was again obtained .

Then the capacity of the dielectric cell was equal to that o f

the capacity box. The effect on the dielectric constant ,

arising from the electrical conductivity of the cell contents ,

is computed and in actual cases this effect is found to b e

negligible .

Chlorobenzene, ethylene dichloride, acetylene tetra -

chloride and mixtures of benzene with nitrobenzene or ethy l

x STARKE H . : Wied . Ann . 60, 629 (1897) . I~t
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alcohol were used for immersion liquids. As a rule, the

liquids were purified by means of silica gel and distillation .

In the case of acetylene tetrachloride, few and conflicting

data are found in the literature, therefore a number of it s

properties were investigated . Its melting point, determined

in two ways, was found to be - 44° C . From the variation

of boiling point with pressure the latent heat of evaporation

was evaluated. The variation with temperature and frequency

of the dielectric constants of liquid and solid acetylene tetra -

chloride was investigated, the resultant curves being give n

in Fig. 6 . Just below the melting point solid acetylene tetra -

chloride exhibits anomalous dispersion, i . e . the dielectri c

constant varies considerably with frequency as well as with

temperature .

The Apparatus used for Measurin g
Dielectric Constants .

In principle the apparatus was similar to the earlie r

apparatus' used at Universitetets kemiske Laboratorium and

at Landbohøjskolens kemiske Laboratorium, both in Copen-

hagen ; and to the apparatus used in the Physikal .-chem .

Abt . des Chemischen Instituts der Universität Würzburg2 .

A number of improvements, however, have been intro-

duced in the course of time . The present apparatus is shewn

diagramatically in Fig . I . The doublé set of switches S 3 and

S 4 enabled measurements to be performed either by the

substitution method or by the compensation method . When

S 3 was in the upper position marked `in', the adjustable

capacity box C, was thrown into the oscillation circuit o f

HØJENDAHL K . : Studies of Dipole Moment (Dissertation) . Copen-
hagen . (1928) p . 69 .

HØJENDAHL K . : ZS . physik. Chem . B . 20, 55 (1933) .

Studies in the Properties of Ionic Crystals . I . 9
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generator II . When S3 was in the opposite position marke d

`out', C 3 was thrown out and both sides were short-circuite d

to the screen . Similarly when S4 was `in', the capacity C 4

of the dielectric cell was thrown into the oscillation circuit ,

whereas if S4 was `out ' both sides of C 4 were connected t o

the screen .

In the substitution method the two switches were move d

alternately . By this means the unknown capacity C 4 was

replaced by the known adjustable capacity C 3 . The ad-

vantage of this method was, that if C 3 was adjusted to almost

the exact value the interchange could be performed in such

a short time that the frequency of the generator II had no

time to drift . This drift being caused by variation in th e

heating current of the valve or by draughts . In the com-

pensation method the switch S 3 was constantly `in ' , hence

the capacity box C 3 was always part of the circuit . By

moving the switch S 4 the capacity C 4 of the dielectric cell

was thrown either in or out . The increase in capacity ,

following the introduction of C 4, was compensated by

adjusting C 3 until the frequency of generator II was the sam e

as before ; then the capacity C 4 should be equal to the chang e

in C 3 . The compensation method was employed to determine

small capacities, such as those of the empty condenser, it s

parts and the leads . Otherwise the substitution method was

found to be the more advantageous . During the interchange ,

care must be taken that the oscillations are never inter-

rupted. The two switches must therefore not simultaneously

be `out' . In order to . define the capacity of the switch, i t

must always be moved ` in ' or `out' to the limit of impact .

The dielectric cell or substance condenser shewn in

Fig . 2, was essentially the same as that used in Würzburg .

It was in the main symmetrical about an axis of rotation .

Studies in the Properties of Ionic . Crystals . I .
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The outer part U and the inner part I were chromium plated

brass . The earlier silver plating had been mechanically wor n

off. The agate disk A was bolted to the inner part and groun d

to fit closely against the outer part . By means of the nut M

the position of the agate disk

and thereby the position of the

inner part with respect to the

outer part was secured . A well

defined gap, about 3 mm . wide,

was thereby ensured, into whic h

gap the mixture to be investig-

ated was placed .

As earlier the entire conden-

ser was inserted in an unsilvere d

Dewar vessel, but now this vesse l

has an inlet at the bottom through

which hot or cold air could b e

injected in order to obtain a re-

gulated temperature variation of

the condenser . The massive metal

ensured uniform temperature i n

the entire outer part . Difficul-

ties of some importance might Fig . 2. Dielectric Cell .

arise due to the imperfect heat transfer between the inne r

and the outer part of the condenser, therefore the tem-

perature variation must be a slow one . In later experi-

ments the stream of air was stopped, and subsequent

readings made when the temperatures of inner and outer

parts were equal . The temperatures were read on two nero l

or toluene thermometers . - The mutual capacity of tw o

mercury thermometers would cause disturbances . - Thes e

thermometers were calibrated by comparison with standard

a
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thermometers, and in particular by the melting points of ic e

and mercury. The region of temperature considered wa s

from -60° to + 100° C . It was often sufficient to consider

temperatures either above or below room temperature . If

the entire region from -60 to 100° was to be considered,

the condenser was cooled to -60° by means of CO 2 -ether ,

whereupon it was placed in the Dewar vessel and allowe d

to warm slowly up to 0° C., taking about 5 hours to do so .

During that time readings of capacity and temperature wer e

taken at regular intervals . At a temperature just below zer o

it was found expedient to increase the rate of heating b y

injection of hot, dry air ; the dry air was also injected for

the purpose of evaporating and thereby removing any ic e

(rime), before it melts . Liquid water of course, was a danger

to the contents of the condenser . When room temperature

was attained, the research was generally interrupted over

night. During the next day the temperature was graduall y

raised to 100° C ., by further injection of hot air. In order

to investigate higher temperatures the condenser was heate d

on a gas burner to 150° C ., and placed in the Dewar vesse l

and allowed to cool slowly . Moderately low temperature s

were obtained by means of common salt and ice, or better

still, by placing the condenser in a dessicator in the ope n

air on a cold winter night . Compressed air was procured

from the plant of the college ; it was dried through calcium

chloride and heated in an electric oven .

As will be seen from Fig . 2 the condenser was suspended

in the `nokait' lid by means of three bolts of German silve r

(small thermal conductivity). One of these bolts was con-

nected to one terminal and formed one lead . The second

lead is directly visible in the figure ; it consisted of bushin g

and plug, because the connected parts must be able to turn

independently . The plug, which was perforated to take th e

thermometer, was connected to the second terminal . The

`nokait' lid fitted against the Dewar vessel, but it did no t

rest on it . It rested on a metal box, (not visible in the Fig . 2)

forming a metal shield round the condenser. In this box

the Dewar vessel was seated on a `suberite ' ring . The entire

box with all could be tipped round a horizontal axis . In

this way the terminal plugs of the condenser or dielectri c

cell could be removed from the corresponding bushings i n

the shield of generator II, whereupon the dielectric cell coul d

be lifted out of the Dewar vessel and box . By turning the

nut M with respect to the outer part U the condenser or

dielectric cell could be taken into three pieces, namely 1) th e

nut M with nokait lid and terminals, 2) the outer part U and

3) the inner part .l with agate disk and bushing. The dielectric

cell was closed by the opposite operation ; but care must b e

taken that the different holes for the thermometers are in

alignment . This was ensured by means of a rod of dimen-

sions similar to those of the thermometers .

The adjustable capacity box C 3 was built similar

to a resistance box, from a set of six `Baltic' air block con-

densers and a small variable condenser . It is, however, far

more difficult to ensure independent additivity of capacities

than of resistances . In order to secure additivity each com-

ponent condenser was enclosed in a separate metal box .

These boxes were connected together and connected to on e

terminal of the capacity box . One side of each componen t

condenser was always connected to the box . The second

side was brought through an opening in the box, and con-

nected to a bushing in the ebonite top plate . By means of a

special double plug or bridge, connection could be made,

either to bushings connected to the second terminal in which
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case the capacity considered was `in', or connection coul d

be made to bushings connected to the first terminal in whic h

case the condenser considered was short circuited and `out' .

In the above manner a capacity box which can be accurately

set and read can be constructed from ordinary commercial

radio articles . The entire capacity box was surrounded by

a separate metal shield connected to the other shields o f

the apparatus .

The generators I and II were built from commercia l

radio articles when these were still abundant . Some parts

were taken over from an older apparatus . The circuits will

be seen from the diagram (Fig . 1) . The valves were 'Tele-

funken R .E. 134' . The coils were `Reactone Low Loss' . The

variable condenser C 22 in generator II was an adjustabl e

'Torotor' condenser . In generator I a system of `Baltic' block

condensers was used for capacity. They could be thrown

`in' and `out' from the outside in a similar way to those o f

the capacity box .

By this means it was ensured that the measurements wer e

performed not at any frequency, but at a number of definite

frequencies. The frequencies most often used correspond t o

the wave-lengths 120 m ., 134 m., and 142 m . l .

Each generator was placed in a separate box . Such a

box consisted of front plate, bottom plate and framework

of ebonite . The framework was rigidly bolted together by

means of corners of brass plate . On top, bottom and three

sides zinc plates were bolted on . The front plate was covere d

by a window fitted with brass network . The zinc plates

and the brass network formed a closed Faraday cage o r

shield, which was connected to the shields mentioned before .

The wave meter was kindly lent to me by Mr . J . P . CHRISTENSEN, Te-
lephone and Telegraph Department of the TechnicalHighschool, Copenhagen .

If need be, the zinc plates could be removed to give acces s
to the interior . Valves, coils etc . were mounted on th e
bottom plate . The front plate contained a number of control

knobs, allowing the generator to be operated from the outside .

The leads were all placed in the space between bottom an d

front plate, and hence they were all visible as soon as th e
zinc plates were removed . The leads were made of thick

wire soldered on and drawn as far as possible straight

through the intervening space from one support to another .

The leads must be rigid and as remote as possible from

everything else, in order that mechanical vibrations shal l

cause the smallest possible capacity or frequency changes
(quivering) .

The frequency of the electric oscillation set up in a

generator depends largely on the effective capacity and

inductance of the dominant oscillatory circuit, which in this
case was placed in the anode circuit . In the case of generator

II this dominant circuit was composed of a coil with 35

windings and the capacities C Z and C 3 (or C2 and C4) in
series . The use of capacities in series instead of in paralle l

gives the possibility of generating a larger variety of fre-

quencies by means of the same condensers .

Auxiliaries . The two generators were coupled together

by means of a link circuit, and the interference note set up

was eventually made audible by means of a commercia l

radio receiver with loud speaker (Unica) . If the frequencie s

of the two generators are close, an audible note will be

heard in the loud speaker . The closer the frequencies, the

more bass the note . The note will eventually be so bas s

that it becomes inaudible over a narrow interval . The two

borders of this interval were used in the measurements i n

a manner similar to the borders of the sound minimum
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employed in the telephone-bridge method for determinatio n

of resistances. The procedure in the substitution metho d

was then the following : A definite frequency or wave-length ,

say 142 m. was set up in generator I by throwing the 100 cm .

condenser in the oscillation circuit of this generator . With

the dielectric cell C4 in, and the capacity box C 3 out of the

oscillation circuit of generator II, the condenser C2 was

adjusted to one of the borders of the silent interval . C4 was

then replaced by C 3 which was adjusted to the two border s

of the silent interval . The settings of these were read . After-

wards the procedure was repeated with C 2 set on the second

border of the silent interval . The mean value of these four

readings on the capacity box C 3 measured the capacity of

the dielectric cell C 4 .

The heating current for generators and receiver wa s

supplied by an accumulator battery. The anode current for

the receiver was taken from a high tension battery ; that for

the generators from a stabilizer (Fig . 3) the most important

part of which was a discharge potential divider from

ill!
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G .m.b.H . Stabilovolt . The potential across the divider is

nearly independent of the current passing through . This

was combined with an iron-in-hydrogen resistance Fe . ,

having just the opposite character in so far as the potentia l

increases steeply with the current . The combination of thes e

suppressed slow variations in the potential of the tow n

supply to such an extent that the potential variations of th e

stabilized potential were found not to exceed 3 per cent . of

those of the supply . In order to suppress oscillations as well ,

a filter chain consisting of chokes L and block condensers

K were also introduced . The stabilizer was mounted in a

box similar to those of the generators .

Calibration of the Apparatus .

The calibration of the adjustable capacity bo x

was undertaken in a manner similar to the calibration of

weights . The different block condensers A, B, etc . were ex-

pressed in terms of the degrees on the scale of the variabl e

condenser . An unknown capacity x was measured by two

different combinations of component condensers . For

instance :

x = C+ F-}-14 .8 = C-}-88 . 1

from which was found :

	

F = 73.3 degrees on scale

Similar equations were written down for other combina-

tions . The different values varied due to the experimenta l

error, which was up to 3 degrees on the scale, but ther e

was no definite trend . As a mean value of 9 determinations

it was found : F = 71 .2 degrees on scale . In a similar

manner the difference E-F was found from 10 deter-

minations to be 72 .9 and hence E was equivalent to 144 . 1

Vidensk .Selsk . Matli: fys . Medd .XVI,2•
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degrees on the scale and so on. That no definite trend was

observed is a proof that the component capacities wer e

independently additive within the experimental error .

Furthermore by means of the standard instruments of th e

electrical laboratory of Nordisk Kabelfabrik the corre-

sponding capacities were expressed in cm .' . As a result the

following values for the different component condensers wer e

obtained :

Table 1 .

degrees on scale capacity in cm .

A	 1093 .0 222 .2 .

B	 1065 .0 219 . 2

C	 564 .5 115 . 6

D	 288 .0 62 .1

E	 144 .1 32 . 8

F	 71 .2 13 .9

1° equals

	

0 .205 cm.

The calibration of the dielectric cell was under -

taken to determine the true capacity of the cell . The apparent

capacity of the cell was considered to consist of two parts ,

namely the true capacity which varied proportional to th e

dielectric constant of the contents, and the lead capacit y

which was constant . Four independent determinations wer e

made :

1) By direct measurement of lead capacity . The capacity

of the dielectric cell filled with air including leads to the

switch S4 was measured by the compensation method . It

was found to be equivalent to 223 .3 degrees on the scale or

45 .7 cm . Afterwards the outer part was removed, i . e . it was

I therefore wish to express my thanks to Mr . J . MOLLERHØJ .

screwed out of the nut M. The capacity of what was left

was considered to be that of the leads . It was found to b e

equivalent to 102 .2 degrees on the scale or 20.9 cm. The

difference of 121 .1 degrees on the scale or 24 .8 cm . was

the true capacity of the dielectric cell .

2) Using benzene as a standard liquid . The purification

of standard liquids is considered later . The capacity of th e

dielectric cell with benzene, leads included, by the com-

pensation method was equivalent to 373 .3 degrees on the

scale at 17° C . According to the most accurate determinatio n

of HARTSHORN and OLIVER' , the dielectric constant o f

benzene at 20° C . is 2 .282, and at 17° C . it is 2 .288 . From

this and the foregoing measurement on air one unit of

dielectric constant was found to correspond to :

373.3-223 . 32 .288_1 .001 = 116 .6 degrees on the scale .

3) Using chlorobenzene as a standard liquid . By now

the most accurate value of the dielectric constant of chloro-

beniene is presumably that of SUGDEN 2 , i . e . 6 25 = 5 .612,

whereas ULICH and NESPITAL 3 found e 2 5 = 5 .605 and

6 25 = 5 .685 . With the same temperature coefficient th e

SUGDEN value becomes 5 .690 at 20° C., which was taken

as a standard value. The capacity of the cell with chloro-

benzene at 20° C . measured by the compensation metho d

was found to be equivalent to 779 .8 degrees on the scale .

In a manner similar to that given for benzene it was foun d

that one unit of dielectric constant corresponds to 118 . 7

degrees on the scale .

HARTSHORN L. and OLIVER D . A . : National Physical Laboratory.
Collected Researches Vol . 22, p . 342 (1930) .

I SUGDEN S . : J . Chem . Soc . (1933) p . 773 .

ULICH H. and NESPITAL W. : ZS. physik . Chem . B . 16, 229 (1932) .

2 *
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4) The above calibrations were carried out by the com-

pensation method, the great majority of the measurements ,

however, were carried out by the substitution method . The

dielectric constants measured were as a rule larger than that

of chlorobenzene. Therefore a calibration was also carried

out by the substitution method, using chlorobenzene and

ethylene dichloride as standard liquids . Measurements on

these two liquids were in fact carried out repeatedly durin g

the entire series of measurements, in order to control th e

constancy of the true capacity of the dielectric cell . The

following 16 readings referred to 20° C. were obtained on

chlorobenzene in the course of time :

607 .4 ; 609 .1 ; 608.4 ; 611 .9 ; 616 .8 ; 616 .9 ; 600 .0 ; 600 .8 ;

604.5 ; 605 .2 ; 606.3 ; 606 .3 ; 605 .9 ; 611 .0 ; 608 .3 and 605 .3 .

all in degrees on the scale of the capacity box . It is seen

that definite changes occur, which are somewhat larger tha n

the hap-hazard error . The reason is the following :

The mixture of powder and liquid was sometimes s o

tough, that a certain violence was necessary in order t o

close the dielectric cell . On one occasion, towards the en d

of the series of researches, the pressure was so large, that

a bit of the agate disk was broken off. The agate disk was

mended by means of dental cement in a manner simila r

to the filling of a tooth . The change in capacity following

this mishap, however, was not the largest . Other changes

were caused by the giving way of the tin packings between

the inner part I and the agate disk A, and by wear and tear

on the different parts, which necessitated readjustment of

the screws bearing against the upper surface of the agate disk .

Originally it was the intention to use the individual

measurements on chlorobenzene to correct for these changes

in the true capacity of the dielectric cell . This, however ,

was abandoned, since it was found that the dielectric con-

stants of solids could not for other reasons be reproduce d
to more than 2-5 per cent . Hence the mean value of 607 . 7
at 20° C . was considered the standard reading for chloro-

benzene .

In a similar manner the value of 1175 .2 at 20° C. was

obtained as an average of eight measurements on ethylene
dichloride . The most accurate value of the dielectric con-

stant of this compound as determined by SUGDEN : loc . Cit .
is : e = 10.36 at 25° C., whereas IJLICx and NESPITAL : Ioe .
cit. found e = 10 .24 at 25° C. and e = 10 .50 at 20°C .
Hence the value e = 10 .62 was taken as the standard valu e
at 20° C. according to SUGDEN .

The difference in dielectric constant

1.0 .62 - 5 .69 = 4.93

corresponds to the difference in readings

1175 .2 -607 .7 = 567 .5 .

The true capacity i . e . the number of degrees on the scal e

corresponding to one unit on dielectric constant therefor e
becomes :

As this value was obtained from repeated measurements b y

the more accurate substitution method it was taken as th e
standard value . The agreement with values obtained in

other ways showed, that it was essentially correct and further -

more that linear inter- and extrapolation was allowable .

By such extrapolation the reading corresponding to zer o

567. 5
4.93 = 115 .2 degrees on the scal e

or 115.2X 0 .205 = 23 .6 cm .



Nr . 2 . KRISTIAN HOJENDAØL :22
Studies in the Properties of Ionic Crystals . I .

	

2 3

dielectric constant was found to be -48

degrees on the scale . This was the differ-

ence in capacities of leads leading to C 3

and C 4 , it includes the capacity of the capa -

city box with all block condensers out, and

the scale of the variable condenser at zero .

Fig . 4. Purification

of Lief. by means

	

GRIMM H . G . and WOLFF H . : ZS . angew. Chem .

of Silica Gel .

	

41, 98 (1928) .

other. When the silica gel in the upper column was satur-

ated, and the column therefore removed in order to refil l
it, the lower column was raised to the top and the refilled
column attached below. In this manner a good purification
could be obtained by means of the smallest amount o f
silica gel .

The liquids were afterwards distilled in the same distilla-

tion apparatus as used by LANNUNG 1 in his research on the
solubilities of alkali-halides in alcohols and acetone . The
apparatus is described and a figure is given by LANNUNG .

The liquid containers were also those constructed by LAN-

NUNG . They were stored in the dark and served their pur -
pose well .

Nitrobenzene was distilled twice in a cheaper apparatu s
by slow surface evaporation in a vacuum of 20 mm . Hg .

The pure liquids were ' characterized by the following
constants :

Benzene melting point 5 .10° C .
Nitrobenzene melting point 5.76° C.
Chlorobenzene refractive index nD = 1 .5224 at 23 .6° C .

Ethylene dichloride refractive index nD = 1 .4427 at 23 .4° C .

Ethyl alcohol was purified by the method of LUND and
BJERRUM 2 using magnesium and iodine . When it was due

to be used the ethyl alcohol was distilled directly from th e
magnesium ethylate .

Various properties of acetylene tetrachlorid e

were given special attention. Thus the refractive index for
the D line was found to be 1 .4937 at 22.0° C . 3 .

x LANNUNG A . : ZS . physik . Chem . A . 161, 256 (1932) .
LUND H . and BJERRUM J . : Her . D . Chem . Ges . 64, 210 (1931) .

a This value supercedes the value nD _ 1 .4988 at 23° C. given b y
the writer in Kemisk . 16, 54 (1935) .

Immersion Liquids .

In addition to the standard liquids men-

tioned above namely chlorobenzene an d

ethylene dichloride, we used acetylene tetra -

chloride and mixtures of benzene with nitro -

benzene or ethyl alcohol as immersion li-

quids. These mixtures were used in order t o

evade an eventual decomposition of ethylen e

dichloride by the reactive compounds Sr O

and CaO .

Of the above liquids, benzene, chloro-

benzene, ethylene dichloride, acetylene te-

trachloride and nitrobenzene were purifie d

by practically the same method . They wer e

allowed to ooze through silica gel as pro -

posed by GRIMM and WOLFF 1 . By selective

adsorption more polar impurities such a s

water were retained on the gel . The adsorp-

tion apparatus was built from standar d

grounded parts (Normal Schliff), see Fig . 4 .

It was found convenient to have two co-

lumns (Hempel columns) one on top of the
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The melting point from the fusion curve is - 43° C .

(thermometers calibrated by means of melting points o f

mercury and ice), but owing to the small heat of fusio n

and the slight heat conductivity of acetylene tetrachlorid e

the melting point as determined from the fusion curve, i . e .

temperature	 time curve, is not very definite . A more

definite value of - 44.5° C. is found from the variation o f

dielectric constant with temperature as will be considere d

later . The above values of the melting point agree well with

that determined by TIMMERMANS 1 , namely - 43.8° C., but

not with that found by HERZ and RATHMANN 2 , namely

- 36° C . The latent heat of vaporization of acetylene tetra -

chloride can be determined from the variation of boiling

point with pressure . The above distillation apparatus use d

for the purification of the liquids was employed for the

measurements . It was connected to a mercury-gauge . B y

the adjustment of the taps leading to the vacuum of a wate r

jet aspirator and to dry air at atmospheric pressure, variou s

pressures could be maintained, and the corresponding values

of pressure and boiling point could be determined . Such

values are plotted in diagram 5 . Two samples were investi-

gated. The crosses + + -i- refer to a purified sample and th e

circles to a still further purified sample . This second sample

was the middle fraction obtained during the distillation o f

the first one . It is seen that there is no marked difference

between the data obtained for the two samples, whic h

indicates that these were sufficiently purified . The triangles

represent earlier data of HERZ and RATHMANN 3 , and the

diamond data of WALDEN and SW1NNE 4 . In order to deter -

' BEILSTEIN : Handbuch org . Chem. Ergbd. I . p . 25 .
2 HERZ W. and RATHMANN W . : Chem . Zeitung, 37 ; 621 (1913) .
3 HERZ W . and RATHMANN W . : Chem . Zeitung . 36, 1417 (1912) .
4 WALDEN P. and SWINNE R . : ZS . physik . Chem. 82, 281 (1913) .
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mine the latent heat of vaporization, Briggsian logarithm s

of pressure are plotted as ordinates against the reciprocal s

of the absolute temperatures as abcisses . The X's are the

values obtained from the first sample and the filled circle s

those obtained from the second sample . The data can be

'0.00027

	

28

	

29

	

30

Fig. 5 . Vapour Pressure of Acetylene Tetrachloride .

represented by a straight line within the experimental error ,

hence they can be expressed by the following "August "

equation :

A

	

237 5
log l o p = -

T
+ B = - 7, + 8.655 ;

According to the Clausius-Clapeyron relation the latent hea t

of evaporation is equal to :

A X R 2375 X 1 .986

I
=	 	 = 10850 callMol .

log e

	

0 .4343

This is the value for a range of temperature around 70° C . ;
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HERZ and RATHMANN loc . Cit . found 9134 callMol at about

140°C .

The dielectric constant of acetylene tetra-

chloride in the liquid state was determined by the sub-

stitution method, whereas the dielectric constant in the solid

state up to a value of about nine was determined by the

compensation method. The measurements were performe d

in the following manner . Acetylene tetrachloride was free d

from air by boiling in vacuo, whereupon it was placed i n

the dielectric cell which afterwards was cooled to - 70° C .

in carbon dioxide-ether . The cooled dielectric cell was place d

in the Dewar vessel of the measuring apparatus, and mea-

surements were carried out during the gradual warming o f

the dielectric cell ; later on the temperature was raised by

injection of hot air . Close to the melting point the dielectri c

constant of the solid increases rapidly with temperature ,

and therefore in the present research with time . Hence the

readings were taken by setting the condensers C 2 and C 3 at

definite positions . In a short time the entire scale of note s

was heard, and the temperatures corresponding to the tw o

borders of the silent interval were read on the thermometers .

The mean value of these readings gives the temperatur e

corresponding to the setting of the condenser . Four series

of measurements were carried out . In diagram 6 the

resultant dielectric constants are plotted as ordinates agains t

the (corrected) temperatures as abcisses . Data at 142 in .

wave-length are denoted by triangles, those at 134 in . wave-

length by X's, and those at 120 m . wave-length by circles .

Note that the dielectric constant varies considerably with

temperature, and somewhat with frequency . The pointed

maximum represents the melting point of - 44 .5° C . The

decrease of the dielectric constant of the liquid with rise of

I	 1	 1	 1	 I	 I

70 80 90 700 770 120 730 740 750°C

Temperature
Fig . 6. Dielectric Constant of Acetylene Tetrachloride.

temperature is considerable . Furthermore the liquid region

is wide, ranging from - 44 .5° C . to 146° C . As a consequence

14
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of this the region of dielectric constant encompassed by

liquid acetylene tetrachloride is unusually large, ranging

from 14 down to 4 .5 . This great range makes acetylen e

tetrachloride especially suited as an immersion liquid fo r

the present powder method . At and above room temperatur e

the data at different wave-lengths fall practically on a single

curve, i . e . there is no dispersion . At low temperatures ther e

seems to be a slight dispersion also in the liquid, but hardly

outside the experimental error . The divergency of the

different points would seem to indicate an experimental error

of about one per cent . This, however, is not the total error ;

there are systematic errors as well which will be considered

later . The total error is presumably of the order two per

cent. at room temperature, and up to five per cent . at the

highest and lowest temperatures . Within this error th e

dielectric constant of liquid acetylene tetrachloride, at leas t

below 100° C ., can be expressed by the following empirical

equation :

E = 9.7-7 .7x10 - 2 t-}-3 .4x10 - 4 t 2 ;

where t is the temperature in degrees Centigrade .

The dielectric constant of acetylene tetrachloride has bee n

determined earlier by WALDEN and WERNER', who found

the value 8 .15 at room temperature (about 16°) . In dia-

gram 6 this is denoted by a diamond, lying somewhat below

the data of the writer. The temperature given by WALDE N

and WERNER, however, is not well defined . A determination

has also been carried out by SAYCE and BRISCOE 2 , who

found a value of 7 .83 at 25° C. This is denoted in diagram 6

by a square lying close below the data of the writer . The

WALDEN P . and WERNER O . : ZS . physik. Chem. 111, 469 (1924) .

2 SAYCE L . A . and BRISCOE H . V. A. : Journ . Chem. Soc . 2626 (1926) .

difference is of the same order of magnitude as our ex-

perimental error .

The dielectric constant changes abruptly on fusion fo r

many polar compounds . In the present case, however, : this

change is not so abrupt as is generally found . It looks like

a continuous transition existing between the dielectric con-

stant of the solid and that of the liquid . The slope of th e

curve for the dielectric constant of the solid in vicinity of

the melting point is steep, but it is not perpendicular . It

furthermore depends on the frequency or wave-length in

such a manner that the shorter wave gives the steeper slope .

This behaviour can be explained by a theory outlined

by DEBYE' . According to this theory a polar molecule in a

crystal lattice can occasionally turn round and take u p

another orientation . The number of molecules oriented in

a given direction is determined by the BOLTZMANN distri-

bution law, in virtue of which the orientation is affected b y

an external field. The induced moment obtained by orienta-

tion of dipoles depends on frequency or wave-length, becaus e

at thé longer wave the molecule gets more time to await a n

opportunity for turning round . It depends on temperature ,

because , it is the thermal energy of the molecules which

overcomes the potential barriers involved in turning the mole -

cule with respect to the surrounding molecules .

Experimental results similar to the above have been

obtained by many investigators . Notably ERRERA 2 , and

SMYTH and HITCHCOCIi3 . It is found from the work of SMYT H

and HITCHCOCK in particular, that traces of impurities have

I DEBYE P . : Polare Molekeln, (Polar Molecules) . Hirzel. Leipzig (1929) .

Paragraph 21 . pp . 118-124 .
2 ERRERA J . : Journ . de Physique et . le Radium. (6) 5, 304 (1924) .

8 SMYTH C . P . and HITCHCOCK C . S . : Journ . Amer . Chem. Soc . 54 ,

4631(1932) .
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a considerable influence on the shape of the curve . This

influence is such that the purer sample shows a more abrup t

change in dielectric constant on fusion . As an explanation

it is suggested that the molecules turned by the field in

particular are those situated at places in the crystal wher e

the continuity of the lattice is disturbed, for instance by th e

presence of foreign molecules .

Preparation and Analysis of solid Compounds .

KC1 (KAHLBAUM zur Analyse) was dried . RbCl, RbB r

and RbI were those samples, which we had used earlier ,

recovered by recrystallization from water and dried' . They

were prepared following a method by LANNUNG 2 .

The beryllium compounds were prepared in a pure stat e

following the method given by HONIGSCHMIED and BIRKEN -

BACH 3 . Commercial Be(OH) 2 was dissolved in acetic aci d

and the basic acetate formed was recrystallized twice i n

SOXHLET ' S apparatus from pure acetic acid . The crystals of

basic beryllium acetate were placed in a tube of hard glas s

which was inserted into a larger glass tube placed in an

electric oven. The basic acetate was sublimed from th e

narrow tube into the wider one at a vacuum of 10 mm . Hg

in a stream of pure air . The sublimate was found to be fre e

from iron. It was decomposed by nitric acid . From the

beryllium nitrate, pure beryllium carbonate was prepare d

by precipitation with pure ammonium carbonate . By ignition

of the hydroxide, the nitrate or the carbonate, different

samples of beryllium oxide were obtained .

MgO (KAHLBAUM zur Analyse) was analysed . A trace of

1 HOJENDARL K . : ZS . physik . Chem . B, 20, 61 (1933) .
2

LANNUNG A . : ZS . physik . Chem. A, 161, 259 (1932) .
8 HÖNIGSCHMIIED O . and BIRKENBACH L . : Ber. D . chem . Ges . 55, 6 (1922) .

carbonate and as much as 0 .01 per mille chloride was

found, but nothing else . The magnesium oxide was ignited .

In one case the nitrate was formed by dissolving the oxid e
in nitrid acid . By ignition of the nitrate a special sampl e

of magnesium oxide was obtained .

CaCO 3 (MERCK pro Analysi) was analysed. No barium

was found by the finest test of SØRENSEN (see later) . A slight

precipitate with CaSO 4 solution revealed a trace of stron-

tium. A minute trace of iron and a minute trace of chlorid e

were found, but nothing else . Calcium oxide was obtaine d

by ignition.

SrO ` KAHLBAUM', which had been ignited for four hours

at 1000-1100° C ., was analysed . Traces of Cl-and Fe++ +

were found. The dry residue of soluble sulphates amounte d
to 2 .16 per cent . 2 .8 per cent . CO 2 was found' . By spectra l

analysis about 1 per cent . Ca and rather less Ba were

estimated to be present . Two series of measurements wer e

carried out on the above SrO, whereas the subsequent tw o

series were carried out on SrO purified following the method

of SØRiNSEN 2 . By this method iron and other metals were

removed by heating an aqueous solution of strontium

chloride and hydroxide with chlorine and filtering the ferri c
hydroxide formed. If large amounts of barium had been

present, they could have been precipitated as barium

chloride by addition of hydrogen chloride in the cold . In

order to remove all other metals but barium, calcium, an d

lead, the sulphate was precipitated and washed. The

sulphate was decomposed by ammonium carbonate and the
carbonate by nitric acid . Barium was removed by fractional

I am indebted to Dr . K . J . PEDERSEN for using his apparatus whic h
is described in : Journ . Amer . Chem . Soc . 53, 20 (1931) .

2
SØRENSEN S . P. L . : ZS: anorg . Chem. 11, 375 (1896) .
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precipitation of the sulphate from the nitrate solution . The

remaining strontium nitrate solution was dried, and the

residue repeatedly extracted with alcohol . Calcium nitrate ,

being considerably more soluble than strontium nitrate, wa s

removed, and we were left with pure strontium nitrate . From

this the carbonate was obtained by precipitation with am-

monium carbonate, Different samples of strontium oxid e

were obtained by ignition of nitrate, carbonate, or hydroxid e

(obtained from oxide) .

The pure strontium nitrate was analysed for barium an d

calcium by the finest tests given by SØRENSEN . No pre-

cipitate of barium chromate was visible after two days ,

which shows that the product contained less than 0 .2 per

mille barium. A slight precipitate of CaNH 4AsO 4 showed

the presence of about 3 per mille calcium. On ignition

strontium oxide was found to corrode the platinum crucible .

The ignited product was gray, due to the platinum content ,

which was found to be about one per mille .

The ignition of the different compounds was performe d

in two electric furnaces . The first of these was a crucibl e

furnace from Heraeus in which a temperature of 1000° C .

could be attained . The second furnace was procured for

the purpose . It was built by SIEVERTS in Stockholm an d

fitted with `Globar' heating elements of carborundum . In

this furnace a temperature of 1400° C . could be attained.

The temperature was measured by means of a platinum -

platinum-rhodium thermo-couple . The crucibles were gener -

ally of platinum except in the case of magnesium oxid e

where a magnesium oxide crucible of course was used . In

order to avoid the formation of hydroxide or carbonate ,

due to the moisture and carbon dioxide in the air, an d

furthermore to prevent the formation of strontium peroxide,

due to oxygen, a stream of pure nitrogen was conducte d
through the furnace until it was so cold that the crucibl e
could be removed and placed in a dessicator .

Preparation of the Mixture of Powder

and Immersion Liquid .

The ignited product was pulverized in a porcelain
mortar. In the cases of calcium- and strontium oxide th e

mortar was placed in a manipulation chamber through
which a stream of pure air was conducted . This chamber

was similar to those in which balances are sheltered. Three

openings, closed by shutters, are just large enough to allo w

a hand to be put into the chamber to perform the mani-

pulation without introducing sensible amounts of moistur e
and carbon dioxide. The same chamber was also used fo r

some of the following operations where moisture and carbo n
dioxide should likewise be avoided .

The powdered product was placed in a flask, belonging

to the Intermixture apparatus (Fig . 7). This was built similar

to a vacuum distillation apparatus from standard groun d
parts - GREINER and FRIEDRICI Normalschliff . - It con-

sisted of a round flask heated on an electric air bath . This

was surmounted by an empty HEMPEL column, which served

to catch the splashes - contrary to ordinary practic e

bumping is wanted. The column. was attached to an Asher

condenser, in the thermometer joint of which the leg of a
tap-funnel was inserted. Through this tap-funnel the im-

mersion liquid was introduced . The condenser was attache d

to a receiver, which in turn was connected to a water-jet
aspirator . By tilting the apparatus the condenser could act

as a reflux condenser .
Vidensk.Selsk . Math .-fys . Medd . XVI, 2.
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The procedure was as follows : The powder - in parti-

cular the alkali-halides which were not dried in other way s

- was dried by heating to about 200° C . in the highest

Fig . 7 . Intermixture Apparatus.

Electric AfrBath

vacuum attainable i . e . some 20 mm . Hg. After cooling the

liquid was added, and the mixture boiled in vacuo -

bumping - for two hours . By this operation occluded air

should as far as possible have been removed from the

powder. Finally the superfluos liquid was distilled off into

the receiver, and pure air was allowed in . In the cases of

strontium and calcium oxide, the immersion liquid was in

most cases a mixture of nitrobenzene in benzene . To avoid

heating the oxides with the less resistant nitrobenzene, the

oxide was mixed with benzene in the above manner, an d

nitrobenzene was subsequently added . It was found necessary

to allow the mixture to stand for some time, preferably ove r

night, so that nitrobenzene might diffuse into the pores o f

the oxide .

The flask containing the mixture was placed in the mani -

pulation chamber, and there the contents were poured int o

the outer part of the dielectric cell . The powder was allowed

to precipitate to a certain degree, in so far this could b e

accomplished in a reasonable time, and the surplus liquid

was drained off by means of. a special pipette, having a plate

of ebonite fixed on . By means of a libella this plate was

placed level with the brim of the outer part of the dielectri c

cell, and by suction the liquid above a certain level was

removed . The liquid drained off was employed later on .

The inner part of the dielectric cell, filled to the defined

height, contained 35 cubic centimeters of the mixture . The

mixture was stirred, and the inner part of the dielectric cel l

was introduced . This was rocked and turned until the ground

parts fitted together, and the nut M (see Fig . 2) could b e

screwed into the proper position . In order that the dielectric

cell could be closed properly without violence, the fractio n

of solid powder must not exceed 30 per cent by volum e

of the mixture . This fraction of solid in the mixture wa s

determined as follows : The amount of solid substance was

originally weighed in the flask, and subsequently the liqui d

was added and mixed with the powder, whereupon th e

contents were poured into the dielectric cell . Here the powder

precipitated, and the surplus liquid was drained off . It is

now assumed that the total amount of solid was transferre d

into the dielectric cell, and knowing the density of the soli d

and the volume of the dielectric cell i . e . 35 cubic centimeter ,

3 *

<~.
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the percentage by volume of solid in the mixture could b e

calculated . This percentage is not very definite, however ,

even if the solid could be quantitatively transferred, becaus e

the solid precipitated in the dielectric cell to an unknown

extent .

Determination of the Dielectric Constan t

of Solids .

The dielectric cell was cooled as described on page 12 ,

and then inserted into the Dewar vessel . During the sub-

sequent slow rise in temperature, readings were carried ou t

by the substitution method as described on page 10 . The

readings on the scale of the variable condenser in the

capacity box were plotted against the corresponding reading s

on the thermometers . Such plots are given in the followin g

diagrams .

The key is as follows :

C,

	

i . e . the triangles denote measurements on

the mixture at a wave-length of 120 meters ;

+	 + i . e . the crosses, the same at a wave-length

of 134 meters ;

q

		

q i . e . the squares, the same at a wave-lengt h

of 142 meters .

Curves, usually straight lines, have been drawn through th e

points of each set . Various combinations of block condenser s

were generally used, each combination giving a separat e

curve in the diagram . Such a curve for instance is denote d

A + F, which means that, besides the variable condenser ,

the block condensers A and F were in the circuit.

After these measurements were finished the contents o f

the dielectric cell were filtered on a dry filter . The filtrate ,

together with the liquid drained off by the pipette (see

page 35), was placed in the dielectric cell, and the capacitie s

and temperatures were measured exactly as above . The

readings have again been plotted in the diagram .

The key is as follows :

0 i . e . circles, denote measurements on th e

filtrate or the pure liquid at a wave-length

of 120 meters ;

x

	

X i . e . X's, the same at a wave-length of 134

meters ;

<> i . e . diamonds, the same at a wave-length o f

142 meters .

	

-

Curves (straight lines) have again been drawn through th e

points of . each set . Where the corresponding curves fo r

mixture and filtrate intersect, the dielectric constants of soli d
and liquid are equal . As described, the determination wa s

made with the use of a single combination of block con-

densers only ; by. considering more combinations of bloc k

condensers, the accuracy was improved in the followin g

manner : In a separate part of the diagram, the differences

between corresponding readings on the scale for liquid an d

mixture, have been plotted against the readings on th e

thermometers . The temperature at which this difference was

zero, records a much more accurate value of the intersectio n

temperature, and the corresponding reading on the scale was

found from the curve for the liquid (or . mixture) . The

dielectric constant was then calculated in the followin g

manner : To the reading on the scale of the variable con -

denser was added, 1) the value of the block condensers i n

scale degrees (see page 18), and 2) the value 48, representin g

the lead capacity (see page 22) . The total, expressed in scale

degrees, was divided by 115 .2 (see page 21), whereby th e

dielectric constant of liquid and solid at the temperature of
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intersection was determined . Above zero the thermometers

gave the temperature in degrees centigrade with sufficien t

accuracy, but below zero a correction was found to be

necessary. This correction was based on the melting point s

of ice and mercury. In the tables the corrected temperature s

are quoted either in brackets or in a special column .

Data for alkali halides are given in diagram 8 and

in table 2 . The key is explained in the foregoing pages .

Table 2 .

Vol .
..p p

o Condenser

	

I I

Origin per Liquid
readings 'E p

cent m
solid

vari-
able fixed total q

KCI Kahlbaum 19 .2 C 6 1-1 5 C1 120 77 .5 79 .5 480 .1 559 .6 4 .86

„ zur Anal . same 120 80 .0 4 .8 551 .3 556 .1 4 .83

sample 134 80 .0 5 .8 551 .3 557 .1 4 .84

RbC1 purified 8 .6 CsH5 Cl 120 68 .7 23 551 574 4 .9 9

same sample 134 68 .9 22 551 573 4 .97

RbBr ' purified 19 .9 I CsH 5Cl 120 52 .0 55 551 606 5 .26

salve sample 134 51 .2 55 551 606 5 .2 6

RbI purified 17 .7
1

CsH5 Cl 120 77 .5 12 551 563 4 .89

same sample 134 75 .8 14 551 565 4 .90

The dielectric constant of KGI has been accurately

determined by EUCKEN and BÜCHNER' whose measurement s

were carried out on plates cut from large single crystals .

They found a value of 4 .68 at 20° C . with a temperatur e

coefficient E T = 30 .3 x 10- 0. This determination is con -
d

sidered the most accurate, and my determination above i s

only to be considered as a test of the total error involve d

1 EUCEEN A . and BÜCHNF.ß A . : ZS . physik . Chem- B, 27, 321 (1934) .
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in the present method . According to EUCKEN and BUCHNE R

the dielectric constant at 80° C . will be 4 .77 which is about

1 .5 per cent . smaller than the above values.

The dielectric constants of rubidium halides have like -

wise been determined earlier, and the different data hav e

been compared in table 3 .

Table 3 .

New
At

Old At Temper-
Dielectric constant

dielectric
tem-

dielectric
tem-

ature
at room temper-

constant
pera-

constant
pera-

coefficient
ature found by

ture ture other investigators

RbCI

	

4 .98 69 4 .78 1 6 X 10- 4 5.20 1 ; 4.95 2 ; 4.68 '

RbBr

	

5 .26 52 5 .16 4 -14 3X10-4 4 .70 1 ; 4.87 2 ;

RbI

	

4 .90 { 77 4 .51 4 12 13X10- 4 4 .81 1 ; 5 :58 2 ;

1 ERRERA J. : ZS . Elektrochemie. 36, 818 (1930) .
2 KynocouLos S . : ZS . f. Physik . 63, 849 (1930) . -

ScI4UPr P . : ZS . f. Physik . 76, 100 . (1932) .
' HØJENDAHL K. : ZS . Physik. Chem . B . 20, 63 (1933).

There is fair agreement between my old and new value s

when it is remembered that there is a temperature differenc e

of about sixty degrees. Old and new values are employe d

for the determination of temperature coefficients 1
d e

e d T

which, however, cannot be considered accurate, becaus e

the error on the individual measurements is 2 per cent ,

giving rise to an error of some 50 per cent . on the tempera -

ture coefficient. The agreement between the data of the

different investigators is not particularly good . I am aware

that the plate method as developed by EUCKEN and BÜCHNE R

is capable of greater accuracy than the powder methods ,

granted of course that sufficiently large crystals can b e

obtained. This is presumably the case with the alkali -

halides, and therefore I suggest that any further measure-

ments on these should be carried out by the plate method .

But there are many cases where large single crystals canno t

be obtained, and here the powder method in its presen t

form will be of value . Such for instance is the case with

most oxides .

B eO . Six mixtures of BeO of different origins and with

different immersion liquids were investigated . For one of

these mixtures the actual readings have been plotted into

a diagram, Fig . 9. The diagrams for the other mixtures wer e

Differences
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similar, and therefore they have been left out in order t o

save space, and only the intersection temperatures and the

corresponding condenser readings are given in table 4 . The

sample considered in the diagram is the third one in th e

table. The key is largely as given earlier ; `pure' means puri-

fied as described on page 30 ; the ignition temperature i s

given in degrees Centigrade, and the duration of the ignition

was some hours .

Table 4 .

Igni- vol .
Intersectio n

tio n
Origin temp- per

I
Liquid = Temp-

Condenser `

era-
cent reading ?,

	

°

ture
solid era -

ture v
8vart

e
-

abl fixed tota l

BeOI Be(OH )2 950 C 2 H 4 C1 2 120 79 8 900 908 7 .8 t

Merck „ same sample 134 84 - 16 900 884 7 .6F

BeOII BeCO 3 950 4 .5

	

C 2 H 4C12 120 82 -14 900 886 7 .7(

pure „ same sample 134 79 3 900 903 7 .89

BeOu i BeCO 3 950 4 .2 C 2H 2 C1 4 120 36 21 828 849 7 . 3

pure „ same sample 134 36 26 828 854 7 .4]
„ same sample 142 36 26 828 854 1 7 .4:

BeOiv Be(NO3)2 950 7 .8 C 2 H2 C14 120 35 32 828 860 7 .41

pure „ same sample 134 36 29 828 857 7.4 ,

- 40Beall BeCO 3 1400 13 .6

	

C 6 H5C1 120 (_

48)

130 684 814 7 .0 1

BeOvi same as BeOv C 2 H 4 C1 2 134 83 55 828 883 7 .6

In diagram 10 the dielectric constants have been plotte d

against the corresponding temperatures . It will be observed

that the dielectric constant increases with temperature, whils t

no definite variation with frequency or ignition temperatur e

is evident . It may be remarked that the greatest deviation ,

i . e . the highest value of the dielectric constant was found

for the less pure sample at 120 meters wave-length, but the

corresponding value for 134 meters wave-length does not

deviate, and hence we are not allowed to infer that impuritie s

cause an increase in the dielectric constant . The value of

the temperature coefficient is : E T = 7 x
10-4'

as deter -

mined from the slope of the line drawn in the diagram ,

Fig. 10 .

8. 0

7. 9

7. 8

7. 7

7. 6

7. 5

7. 4

7. 3

7. 2

7. 7

7. 0
-50 -40 -30 -20 -70 0 70 20 30 40 50 60 70 80 90°C

Temperature
Fig . 10 . Dielectric Constant of BeO .

Data for MgO are given in table 5 . In the case of the

third sample the actual measurements are plotted into dia -

gram 11 . The key is as above.

It is observed that the dielectric constants obtained diffe r

somewhat, and the agreement becomes still worse if th e

value 8 .2 found by GUNTHERSCHULZE and KELLER' is com-

pared with the above values . It is possible, that the dielectri c

constant of MgO depends on the manner of preparation, o r

GONTHERSCHULZE A . and KELLER F . : ZS. f. Physik . 75, 82 (1932) .
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Table 5 .

Igni -
tion

Vol Ø Intersection

3
Origin temp-

Per
Liquid Condenser :.

era-
cent Temp-

readin g
solid era

vab
lari` fixed tota l

titre
ture 3

MgOl Mg(NO3) 2 960 6 .8 lCH4ClJl2O 43 .3 30 1045 1075 9 .3 3

same sample 134 45 .8 21 1045 1066 9 .2 5

MgO t7 Kahlbautn 950 (6)

	

C,2H 4 CI,120 32.5 93 1045 1138 9 .8 7

„ z . Analyse „ same sample 134 33.0 99 1045 1144 9 .9l

MgOtu Kahlbaum 1400 18 .5 C2H 4 Clo 134 35 .1 79 1045 1124 9 .7€

z . Analyse

to be more precise on the size and regularity of the individua l

crystals, but this is not very likely in view of the smal l

deviations encountered in the case of BeO . It will b e

necessary to carry out further measurements before thi s

problem can be settled . Quite recently it has become possibl e

to obtain large single crystals of MgO . It would be valuabl e

if the dielectric constant of such crystalline MgO could b e

determined . Meanwhile I consider 9 .8 the most likely valu e

for the dielectric constant of MgO .

Data for CaO are given in table 6 . The key is simila r

to that used in the foregoing cases, but now the immersion

liquid is a mixture, and hence the table has been extende d

by the introduction of separate columns for the two liquids ,

and a column recording the percentage by weight of liquid II

in the liquid mixture . Diagram 12 records two sets of mea-

surements, made on two samples of the same mixture . The

data of the first sample are denoted in the usual manner ,

whilst the. data of the second sample are surrounded b y

circles, and lines are dotted . As it is not known in wha t

proportion the powder distributes itself in the two samples ,

44
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the percentage by volume of solid in the mixture have bee n

left out . They are presumably about 27 per cent . in both

cases .

Table 6 .

Per cent
by weigh t

of I I

CaO i

CaOI I

Ca0i11

CaOiv

Intersection

Wave -
length Temperature Condenser reading

Dielectri c
constant

read

	

I correct
11

vari -
able fixed I tota l

CaOi 134 18 - 22 175 1212 1387 12 .04

	

.

CaOIt 134 13 13 3 1429 1432 12 .4 4

CaOui. 120 9 .8 9 .8 74 1285 1359 11 .80

134 10 .7 10 .7 68 1.285 1353 11 .74

Ca01V 120 15 .0 15 .0 49 1285 1334 11 .5 8

134 15 .0 15 .0 49 1285 1334 11 .58

The data for the second sample are considered less safe

because of a mishap ; on closing the dielectric cell a bit o f

the agate disk was broken off. The mixture was then poured

back into the flask and stored in a dessicator, whilst th e

agate disk was mended by means of dental cement . The

effective capacity of the mended cell was checked as men-

tioned on page 20, whereupon the mixture was intro-

duced anew, and measurements carried out . Owing to this

~ `

	 i\ `	 d	 i	 i	 1

Differences -20 -70 0 70 20

Fig. 12 . CaO in Mixture of 45 .0 °/o C 6 H 5 NO2 and C6H6 .

CaCO3

CaCO3

CaCO a

CaCO 3

Origin
Ignitio n
temp-

erature

1300

130 0

1300

1300

vol .
per
cent
soli d

30

same mixture as CaOi n

Liqui d

C 6 H6

C6H 6

C6H6

C 6 H 5 NO 2

C2H 50H

C 6 H 5N O 2

Liqui d
II

40 .2

45 : 0
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mishap the percentages have not been quoted . Leaving this

second sample out of consideration, the mean value

11 .8 ± 0 .3 is regarded as the best value of the dielectri c

constant at 10° C . of CaO prepared by igniting pure CaCO 3

at 1300° C .

The electrical conductivity of the filtrate was determined .

0.7 x 1 .0 -8 mho's was found for the first sample, and

60 x 10_8 mho's was found for the second sample . The

considerably larger conductivity in the latter case was du e

to the presence of alcohol . According to the calculations

in the appended paper, the conductivity causes an error

which can be shown to be negligible, even in the case of

the second sample . The residue of CaO' obtained by the

filtration was analysed for carbonate - due to air, and fo r

nitrate - formed by decomposition of nitrobenzene . The

residue was placed in the distilling flask of the apparatus

(Fig . 7), and heated in vacuo to dryness, whereupon the dry

residue was weighed in the flask . Afterwards an absorption

system was connected to the outlet, the Hempel column wa s

removed, and the apparatus was reconnected in such a wa y

that the leg of the tap-funnel came close to the bottom o f

the flask. A sufficient amount of dilute hydrochloric aci d

was introduced, and a stream of C0 2-free air was injected

through the tap-funnel . This air bubbled through the boiling

solution in the flask, and drove the carbon dioxide into the

absorption system ; the absorbed carbon dioxide was the n

weighed. The contents of CO 2 in the different samples wer e

as follows : in CaO 1 1 .5 per mille, in CaOi1 1 .5 per

mille, in CaO
ill

1 .1 per mille . The solution in the flask

was tested for nitrate or nitrite by means of concentrated

sulphuric acid and ferrous sulphate, but no reaction wa s

detected .

Studies in the Properties of Ionic Crystals . I .
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Data for Sr 0 are given in table 7 : The key is the sam e

as for CaO .

Table 7 .

Origin
Ignitio n
temp -

erature

Vol .
pe r
cen t
solid

Liquid '

	

Liquid
I

	

II

Per cen t
by weight

of I 1

SrOi "Kahlbaiun" 11 .5 C 6 H 6 C 3 I-I 5 N0 2 40 .3

SrOü "Kahlbauln" 15 .4 C 6 H 6 C6 H 5 NO 2 47 . 4

SrOnr Sr(N03)3 1350 13 .4 C 6 H6 C 6 -15 N0 2 49 . 7

SrOw Sr(OH)2 1350 21 .5 C 6 H 6 C 6 H5 NO 2 44 .8

Intersectio n

Wave -
length Temperature Condenser reading

Dielectric
constant

read I correct van- fixed tota labl e

SrOi 134 18.5 - 23
,

	

179 1212 1391 12 .0 8

SrO7i 134 25 25 39 1356 1395 12 .1 2

SrQttt 134 10 10

	

118 1429 1547 13 .43

SrOrv 134 - 7

	

--10 86 1429 1515 13 .1 6

The readings are in the cases of
SrO1I1

and SrO14 given

in the diagrams 13 and 14 . The above samples of Sr(NO 3 ),,,
and Sr(OH) 2 were purified following SORENSEN ' S . method
(see page 31) . It will be seen that the values found for th e
dielectric constant are considerably higher in the case of

the purified SrO than in the case of SrO "Kahlbaum" . This

discrepancy is explicable when it is borne in mind that ,

according to the analysis described on page 31, SrO " Kahl -
baum" contains a large percentage of impurities, whereas ,

according to the analysis described on page 32, the purified
V idensk. Sekk . Math :fvs . Medd . X V I, 2 .

	

4
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SrO contains only 3 per mille Ca and 1 per mille Pt . These

data refer to the fresh SrO ; after the measurements, however ,

the residual SrO was analysed for CO B -- and NO 3 - in

the same manner as described in the case of CaO ; 1 per

Differences 0 70 20 30 40 50 60

Fig . 14 . SrO in Mixture of 44 .8 °/o C 6 H S NO 3 in C 6H 6.

mille CO 3 and a faint trace of nitrate were found. The con-

ductivity of the filtrate from SrOn, was 1 x 10-8 mho ' s . I t

is evident that the purified strontium oxide is considerabl y

purer than the "Kahibaum" product, and hence the mean

value of the two determinations on the purified compound ,

i, e . 13 .3 ± 0 .3 at 0° C. is regarded the most likely dielectri c

constant of strontium oxide .

A few, mainly preliminary, measurements have bee n

4 *

~	
1	

I	 I1	 I	 I	 I	 I	

Differences 0 70 20 30 40

Fig . 13 . SrO in Mixture of 49 .7 °/o C6H 5 N02 in C6H 6 .
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omitted, either because of too far an extrapolation, or

because of discrepancies which presumably were caused

by air bubbles .

Conclusion .

The dielectric constants of the alkaline earths have bee n

collected in the following table :

Table 8 .

Temperature
Dielectri c
constant

Error Differenc e

BeO 20° C . 7 .35 0 .2
2 .4 5

MgO 3ö C . 9 .8 0 .5
2 .0

CaO 10° C . 11 .8 0 .3
1 . 5

SrO 0° C . 13 .3 0 .3

It will be observed that the dielectric constant increases

steadily down the series, but the differences becom e

smaller ; those between the values for consecutive member s

decreasing by 0 .5 . Assuming this relationship to hold fo r

the difference between SrO and BaO as well, we may fore -

shadow a value of 14 .3 for the dielectric constant of BaO .

As regards the experimental procedure, the presen t

immersion method, which depends on the variation with

temperature of the dielectric constant of a polar liquid, ha s

proved efficient. It is presumably the method to be use d

in the case of a powder consisting of porous particles . If

single crystals of a reasonable size could be obtained, th e

plate method would be more accurate ; and this method ,

using a compressed slug, may also be advantageous in the

case of an extremely reactive compound such as barium

oxide, for which it is difficult to find a sufficiently resistan t
immersion liquid .

Inability to reproduce the dimensions of the dielectri c
cell is probably the more important source of error ; the
order of magnitude being 2 per cent . as found on page 20 .

In order to reduce this error, a new dielectric cell has been
constructed, but it is premature to judge how far this ne w
cell is preferable to the old one, and further particulars are
therefore postponed . The errors due to setting and readin g

scales of condehsers in the apparatus are less important
and have been largely eliminated by repetition . It is
questionable whether the use of the capacity box in plac e
of a variable precision condenser is advantageous or not .

The capacity box has the advantage that it can be built in
the laboratory workshop from commercial condensers, an d
alfo ones eyes are not strained by reading scales . The dis -
advantage lies in the complication involved in the calcula-

tion and representation of data . A larger capacity of th e

variable condenser or a smaller capacity of the dielectric
cell would be preferable in order that one combination of
fixed condensers might suffice for the determination of th e
point of intersection . The substitution method enables

accurate measurements to be made even when the fre-

quencies of the generators are drifting . At present method s
for maintaining the frequency are known ; still, the use of

the substitution method enabled us to build an accurate
apparatus at comparatively small expense .
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Appendix .
Estimation of the Error caused b y

the Electrical Conductivity of the Contents of th e
Dielectric Cell .

In the case of a circuit as complicated as that of generator

II in Fig. 1, it is not feasible to calculate exactly the effec t

on the dielectric constant determination arising from the

electrical conductivity of the medium . In the present

instance, however, we only want to know, whether such an

effect may be neglected or not, and for that purpose w e

can simplify the problem considerably . We will therefor e

consider the simple circuit formed from a coil With th e

inductance L in series with a leaky condenser with capacit y

C and resistance R. In this circuit a sinusoidal potential i s

induced, and we are going to determine the conditions for

resonance .

Similar problems have, of course, been treated in th e

literature previously, and the present calculation is base d

on that given by JAEGER in the Handbuch der Physik l .

The induced potential V gives rise to a current i which

results in a potential v across the leaky condenser and a

potential v, across the inductance. The leaky condenser is

considered to be composed of a capacity C and a resistanc e

R in parallel, consequently the current can be written a s

the sum of two parts ; one, a conduction current through

the resistance and the other a displacement current throug h

the condenser :
(1 )

The induced potential V is counterbalanced by the potential s

1 Handbuch der Physik . 16, chapter. 7 by JAEGER W . pp. 201-224 .

(1927) .

v and vl, the latter being given by the usual expression .

Hence :

V

	

L
dt

-I-- v ;

or eliminating

V = LC
d2

2
+ Ldv

-I-v ;dt

	

R dt

'This equation will be simplified in the manner propose d

by JAEGER ûsing a new unit of time defined by :

/ 1
z = wot where wo =

i/
LC;

	

(4)

The modified equation then becomes :

v dtv 1

dr2 + R

Putting R 1/fL = a ; v = x ; and V = p (r) ;

	

(6 )

the standard form of JAEGER ' S equation (10) is obtained ,

i . e .

d2x

	

dx

	

_
dz 2 + 2 a d z + x- p (z) ;

and from now on the treatment is concordant with his .

JAEGER'S equation numbers are given at the front of th e

equations .

The sinosoidal potential induced in the circuit is :

V = p (7,) = A sin (Y.r, + (Y) ;

where'A is the amplitude ; the phase; and z

	

" the
w o

pulsatance (on the new unit of time) . The advent of thi s

U

	

dv
~ = R +C

(2)

( 3 )

Ldv ,

C dz
- - U ; (5)

(10) (7)

(8)
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potential gives rise initially to complicated fluctuations o f

current and potentials in the circuit, but these are eventuall y

damped, and the remaining potential across the condenser

becomes a sinusoidal potential which can be written :

A
(50) v = .x = 1V sin (xz + + x) ;

	

1-

	

N

	

(9)

where N is the ratio between the amplitude values of V

and v . The expressions (8) and (9) are inserted in equation .

(7), and at the times ' = - d and i = - ---+ two expres-

sions for the difference in phase are derived :

taux =

	

a' 2 ; and si

	

r.

	

nx = - 2 ax

	

(10)

On elimination of x is obtained :

(51)
A;2 =

( 1 -x2) 2 -I-4a 2x. 2 ;

	

(11)

Resonance, i . e . a maximum value of v for a given value

of V, will be obtained when N and also N2 attain minimum

values with respect to x, a being maintained constant . From

the differentiation

2

(57)

	

d((N))
= 0 ; it is found : x 71 , = 1/1-2 a2 ;

	

(12)

In the substitution method the leaky condenser with

resistance R and capacity C was replaced by a perfect con-

denser of immense resistance and with capacity C 1 , the latter

condenser being adjusted until the pulsatance w I =
LCD

was the same as that of the damped circuit . This is deter-

mined by the above resonance value xm or, reverting to

the usual unit of time, by z en coo . Hence :

w ~
x rn

	

w o

Considering the definition of w l given above and of wo given

by equation (4), and introducing the value of a from

equation (6) :

Eliminating L by means of the relation (4) : LC =

obtain :

1

2 R 2 G 2 w~ '

For practical purposes this expression is modified b y

the introduction of the dielectric constant e in place of th e

capacity C ; the specific electrical conductivity 1 in mho' s

in place of the resistance R, and the wave-length i in cm .

in place of the pulsatance w . Thus the relative error in th e

dielectric constant ; arising from the conductivity of the cel l

contents is determined as :

dE

	

18001 2 ,1 2

For correction purposes this expression is only strictly

applicable to the idealized circuit considered, but it wil l

give us the order of magnitude of any such error in ou r

experimental circuit, and we shall see that a small con-

ductivity has negligeable effect on our results .

As an illustration, consider the case of CaO in a mixtur e

of benzene and ethyl alcohol for which the measured con-

ductivity was by far the greatest, i . e. I 6 X 10 -' mho's ;

e = 12.2, and 26 = 13400 cm .

1

(13)

(14)

CO
O

we

(15)
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1800x6 2 x 10-14 x (1 .34) 2 x108
=8x10-4.(17)

E

	

(12.2) 2

Even in this exceptional case the error is negligible, althoug h

we are close to the limit .

Substances with larger conductivities should not in m y

opinion be measured by the interference note method, bu t

by a bridge method .

The conductivities of the liquids (filtrates) were deter -

mined by means of direct current from an accumulator

battery which passed through resistances, a conductivit y

cell and a galvanometer . The method was calibrated by

means of conductivity water of known conductivity .

The conductivity was only measured when it was anti-

cipated to be great . Thus from earlier measurements I knew

the conductivity of chlorobenzene saturated with alkali

halide to be of the order 10 -10 mho's, and therefore th e

conductivity of these solutions were not measured. Similarly

it was argued that BeO and MgO are chemically so resistan t

that any considerable rise in conductivity of the immersio n

liquid was not to be anticipated .

A similar circuit having capacities in parallel was con -

sidered by SUGDEN 1 who found the following expression

for the deviation of a leaky condenser :

C - Cobs (1-	
1	 C_

R2 0)2,
C 2 Ca

,

The capacity of the dielectric cell C is smaller than the mea -

sured value C obs by a magnitude similar to that found above .

1 SUGDEN S . : Jours . Chem . Soc : (1933) p . 774.

(18)
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introduction.

T
w o classes of insulators have structures sufficiently

simple to be amenable to theoretical treatment . The

dilute gas, and to a certain extent the dilute solution (i n

non-polar solvents) fall in the first class. The dielectri c

constant and related properties of gases and dilute solutions

were considered by DEBYE' in his theory of dipole moments .

Ionic crystals form the second class ; a theory of ionic

crystals was worked out by BoRN and co-workers in a

number of papers . A survey is given in the Handbuch der

Physik 2. In these papers a number of relations between

measurable properties were derived ; at present a relatio n

between the dielectric constant, the refractive index and th e

wave. length of the absorption or reflection maximum in th e

far infra-red (residual ray) interests us . Such a relation was

first derived by DEHLINGER3 , and afterwards developed by

BoRN 4 and by HECKMANN 5 . Further contributions to th e

theory and to the experimental data were given by ERRERA 6

and by EUCKEN and BUCHNER 7 .

DLaYE P : Polar Molecules . Chemical Catalogue Company . New York .
„ Polare Molekelu . Hirzel . Leipzig . (1929))

BORN M . and BOLLNOW O . F . : Hdb . d . Physik . 24, 370 (1927) .

BORN M. and GÖPPERT-MAYER M . : Hdb . d. Physik . (2 Anil .) 24,
11 (1933) . -

8 DEHLINGER W. : Physik . ZS . 15, 276 (1910 .

4 BORN M . : Physik . ZS . 19, 539 (1918) .
HECKMANN G . > ZS . f. Kristall . 61, 250 (1925) .

' ERRERA J . : ZS . Elektrochemie, 36, 818 (1930) .

' EUCKEN A. and BUCHNER A . : ZS . Physik . Chem . B . 27, 321 (1935) .
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As emphasized by HECKMANN in particular, the above

relation is subject to an inherent uncertainty originating i n

the `Lorentz force' . It is the object of the present exposition

to investigate from a theoretical, as well as from an ex-

perimental point of view, this uncertainty or deviation of

the Lorentz force . In addition a further relation (also subjec t

to the uncertainty of the Lorentz force) will be derived, con-

necting the dielectric constant, the refractive index and the

compressibility' . A test of the theory and an evaluation o f

the deviations due to the Lorentz force can be made b y

means of this latter relation in particular, because of the

large amount of experimental data available .

The theory is rendered as simply as possible ; this

simplicity is achieved by making at the start such assump-

tions as earlier investigators have been obliged to make in

the course of their calculations . This also implies the ad -

vantage that the limitation of the deduction is clearly seen .

The following are the necessary preliminary assumption s

and restrictions .

1) The ions must be arranged in a regular diagonal Iattice .

The NaCl, CsCl, ZnS and CaF2 lattices are the only ones

complying with this requirement .

2) The charge of an ion must be a whole multiple of the

electronic charge . This means that there must be no sharin g

of electrons between the ions .

3) The lattice shall be perfect and the ions devoid of therma l

motion. Actually the latter is not the case even at th e

absolute zero of temperature, but the amplitudes are gener -

ally small .

1 An approach was made by the writer in 'Leipziger Vorträge' (1929 )

p . 114, or in English : `The dipole moment and chemical structure' (1931 )

p . 108, both edited by P . DEBYE .

4) The forces between the ions can be separated into tw o
types. a) the electrostatic force which follows Coulomb' s

law, and b) a short range intrinsic repulsive force which
keeps the ions apart .

5) This intrinsic repulsive force is assumed to be central, an d

this implies that the electron cloud of the ion has spherica l
symmetry .

6) Since the intrinsic repulsive forces are short range, only

such forces between neighbours and eventually betwee n

next neighbours need consideration .

7) Dissipative forces are disregarded, i . e . the damping of the

ionic motion is neglected .

8) Classical mechanics and not quantum mechanics ar e
employed .

By means of the above restrictions and assumptions an

idealized state is defined for which certain relations can b e
derived. These relations, however, will only hold with

approximation to the actual ionic crystal . The theory may

be refined by omitting certain of the restrictions, but as long

as the uncertainty of the Lorentz force remains, much bette r

agreement cannot be expected .

Induced Moments and Polarizabilities .

If the ionic lattice as considered above is placed in a n

electric field it will suffer deformation arising from two
different causes .

The first effect to be considered takes place inside eac h
ion. The applied field causes the électrons in the ion to be
displaced relative . to the nucleus . By the displacement forces
between electrons and nucleus corne into play, which

eventually will balance the external force. The displacemen t
Vi densk. Selsh . Math-lys . Medd . WI ,1, 2 .

	

5
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of charges gives rise to an electric moment, the " charge -

centre" of the electrons no longer being situated at th e

nucleus . The displacement of the charge-centre relative to

the nucleus multiplied by the total charge of the electrons

is defined as the electric moment induced in the ion i n

question . It is an assumption verified by experiment, tha t

for the small field strengths commonly used, the displace-

ment, and thereby the induced moment, is proportional to

I the strength of the electric field of force . Hence we will

write :
fu, .

= l a
+

and p,1. = la -

	

(1 )

for the moments induced in cation and anion respectively ,

aÎ and a gi, are the constant "internal or electronic polariza-

bilities" of the ions . The total electronic moment of the

molecule G z, H1 , is the sum :

ur = I al, = I (uaÎ + va,) ;

The second effect consists of a deformation of the lattic e

itself . The ion considered as an entirety is a charged body .

Owing to the action of the electric field, positive ions retir e

from negative ions on one side, whilst approaching them o n

the other side and vice versa. Due to the change in distanc e

forces of the types considered in assumption 4) come int o

play. These forces will eventually balance the external force .

The electric moment arising when the ion of charge + v e

is displaced the distance s is :

Fr, a = ves ;

Again the displacement and the induced moment is assumed

to be proportional to the force . This is so much more likely

because the same forces come into action when the body

is externally deformed, and then the deformation is know n

to be proportional to the force applied . The reason for th e

proportionality is considered ôn pages 106 and 109, it i s

found to be valid for small displacements only . Hence for

ordinary small displacements we have :

where (. is the constant "atomic polarizability"1 . The

moment induced in the molecule Gu HD is the sum of thos e

of the constituent ions. Hence :

,tL,I = I a_i = I (ua{ -7- va_,t ) ;

By superposition of the two types of moment the total

moment induced in a molecule is obtained :

P' _ P't;'+ fu:t = I ('E + a.l}>

	

( 6)

This is only allowable if these moments are independent o f

each other, which is only true to a certain degree . The

considerations on pages 124-28 have some bearing on thi s
question .

By the ionic shift considered above it is mainly th e

distances between unlike ions that are altered. In some

cases, however, the distances between like ions are changed

as well . This means that the dimensions of the crystal ar e

altered by i:he field, or from the converse point of view, tha t

the crystal is piezoelectric . Piezoelectricity in itself is an

important property, the theory of which has been elucidate d

by BORN and HECIiMANN . To the present exposition it means

1 This mode of designation was proposed by L . EBERT : ZS . physik .
Chem . 113, 1 (1924) .

(2)

(3)

(4)

(5 )

5''
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a complication, which, however, can be eliminated by a

simple experimental artifice .

If the electric field applied is alternating, the values o f

the polarizabilities aE and a i will vary with the frequenc y

or wave-length of the electric field . The variation is due to

the inertia of the electrons, the ions or the entire crystal .

The inertia of the vibrating parts depends mainly on thei r

masses which are very different in magnitude, thus the mas s

of an ion is some thousand times as large as that of th e

electron, and the parts vibrating in the piezoelectric crysta l

contain a huge number of ions . Due to these great differences

in mass and inertia, the natural frequencies of the differen t

vibrations are widely separated in the spectrum .

In the vicinity of the natural frequency, the polarizability

or the dielectric constant or the refractive index (these ar e

related as' will be shown later) vary much to both sides ;

and at a frequency which is. considerably higher than th e

natural frequency in question, the corresponding part of th e

polarizability vanishes . The shape of the dispersion curve

in the vicinity of the natural frequency of the ionic vibration

will be considered in details on pages 78-90 .

The lowest natural frequencies are those of the vibration s

arising in piezoelectric crystals . It is well known that piezo-

electric quartz crystals are employed in the broadcasting.

stations for adjusting the frequency. The natural acoustic

frequencies depend on the rigidity and the size of the crystal ,

they are often close to the ordinary radio frequencies of 10 ' .

At frequencies considerably higher than this the acousti c

vibrations vanish, for instance this is the case at a frequency

of 108 . At such a frequency we are also far from the natural

frequency of the vibration of positive and negative ions i n

the crystal. This natural frequency which manifests itself

in the residual ray is of the order 10 13 . The dispersion i s
only great close to the natural frequencies. If therefore the

dielectric constant of a piezoelectric crystal (which shall b e
large) is measured at a suitable frequency of the order 10 8
or wave-length of some meters, the effect of piezoelectricit y
will be eliminated . This means that the dimensions o f
the crystal and furthermore the distances between like ion s
are not altered during the vibration . It is this value of th e
dielectric constant which has . to be introduced in the
following formulae . It is evident that this is not necessarily
the same as the static value which means that the dielectri c
constant of piezoelectric crystals shows dispersion at radi o
frequencies . This is probably one of the reasons why the
dielectric constants of solids hitherto have not been deter -
mined with conformity .

At a sufficiently high frequency a s vanishes and only c

is left . al, has remained nearly constant throughout the entir e
range of frequency encountered so far, its natural frequenc y
being situated in the ultra-violet region . In the visible region
there is a sensible dispersion known of old, but aE deter-

mined in the near infra-red at a frequency of 1014 is con-
sidered a good representative of the static value .

The Lorentz Force .

We require to find the electric force I which acts on th e
charges inside the body. The electric force, however, i s

defined as the force exerted on a unit charge of electricit y
situated in empty space ; hence to measure the electric forc e
inside a' body, we must make a small cavity surrounding
the point at which the unit charge is placed. It is now
observed that the force obtained depends on the shape of
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the cavity . For a continuum or an isotropic body it is reason -

able to assume that a spherical cavity gives the correct valu e

of the force . Seen from the centre the sphere is isotropic

i . e . it has the same properties in all directions which is no t

the case with any other surface. Furthermore the force at

the centre does no t

depend on the dimens-

ions of the spherica l

cavity. This is most

easily realized by an

argument given by

N . Bolin :

Consider a spher-

ical shell, for instanc e

one molecule thick ,

cut out of the bulk of

polarized substance .

(Fig . 1) . In each mole-

cule a moment is in-

duced which can be considered as two charges at a small

distance s . As the centres of the molecules lie on the sur -

face of a sphere it is seen that the positive and the negative

charges respectively lie on two spheres mutually displace d

the distance s. Both of these spheres surround the measuring

charge placed at the centre of the first sphere . Now in the

interior of a sphere with evenly distributed charge the forc e

is zero, hence it will be realized that this also is the case at

the centre of a spherical polarized shell .

Similar considerations can also be applied to the regular

crystals . If an arbitrary ion in the lattice is considered the

"central ion", it is seen that the surrounding substance can

be divided up into concentric shells, each shell containing

a number of four or more ions all having the same distance

from the central ion . The ions in such a shell have like

chargés, and they are regularly and to a certain extent also

evenly distributed on a sphere . By the action of a homo-

geneous field of force the ions are displaced, furthermor e

dipoles are induced in them . We remark however, that the

different charges still form regular polyhedra having th e

"central ion" pretty close to the centre . Now the electric

force close to the centre of a regular configuration of charges

is not quite zero, but it is negligibly small . Later, on page. 109

this will be shewn to be the case for certain importan t

-regular configurations .

In this manner it is realized that we are not altering

sensibly the force on the central ion, if shell by shell we

remove the surrounding ions, thus forming a spherica l

cavitÿ around the central ion . This is the basis of th e

classical theories of CLAUS IUS-MOSOTTI and LORENZ-LoRENT Z

as given by DEBYE 1 .

HECIIMANN 2 , however, discards the above argument for

the following reason : The ion is an extended structure, the

distance between the nucleus and one of the outer electron s

is comparable to the distance between the ions . The nuclei

of the neighbouring ions form a regular polyhedron around

the nucleus of the central ion which even if displace d

remains close to the centre . Hence the argument is valid a s

regards the nuclei . The outer electrons in the central ion

however, are often remote from the nucleus and thereby als o

from the centre of the polyhedron of neighbouring ions .

Therefore the above argument is not valid as regards th e

electrons. This can also be expressed in another manner :

' DEBYE P . : Polare Molekeln . p . A .

' HECKMANN G . : ZS. f. Kristal . 61, 253 (1925) .

Fig . 1 .
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The field of force due to the neighbouring ions is inhomo-

geneous . We are not allowed to consider the strength of th e

field where the electrons move to be given by the value at

the centre of the polyhedron i . e . close to the nucleus . That

there is a deviation is evident, the question is, how grea t

is it, and on what does it depend? To evaluate the deviatio n

from theory alone is not feasible as it would require an

intimate knowledge of the distribution and motion of elec-

trons in the ions . What is attempted is an empirical investi-

gation regarding the manner in which the deviation varie s

from compound to compound, especially in the system o f

alkali-halides . We should expect the deviation to depend o n

the dimensions of the ions and on their internal polariza-

bilities . On page 122 in table 7 we find that actually it depend s

mainly on the internal polarizability of the anion . As a

measure of the deviation the proportionality factor ,B pro -

posed by HECKMANN can be employed (see later) .

ONSAGER ' likewise discards the classical theory of CLAU -

slus-MOSOTTI, his problem however, is a different one . H e

computes the action of a dipole molecule on its surrounding s

and vice versa, and concludes that the strength of the electri c

field due to the surroundings must not in general be average d

into the familiar Lorentz force . In the present theory dipole s

are not considered, hence the problem treated by ONSAGER

does not appear .

We are now changing from an atomic to a continuous

viewpoint, and will calculate how the strength of the field

of force inside a spherical cavity of macroscopic dimension s

depends on the induced moment .

Inside the body there are equal amounts of positive and

negative electricity in any space element, hence uncom -

ONSacER L. : J . Amer . Chem. Soc . 58, 1486 (1936) .

pensated charges will appear on interfaces only . To deter -

mine the density of charge on such an interface, two
cylinders are cut out of the bulk - of polarized substance (see
Fig . 2). They . are bounded by the same cylinder surfac e
which is a tube of force. The only difference is that in on e

case the flat ends are perpendicular to the lines of force
forming its curved surface ,

and in the other, cases the

flat ends are inclined to them

at an angle O . Since they have

the same diameter and height

d, their volumes will be the

same and equal to Ad wher e

A is the area of cross sectio n

perpendicular to the lines of

force . All the electric moment s

induced in the constituent

molecules are parallel to th e

lines of force and consequently they are simply additive .

Considering expression (6) the moment of one cubic centi-

meter becomes :

	

UµNdINd
a -}a ;

	

rM

	

M (~ A)

	

( )

where dis the density ; M the molecular weight ; N Avogadr o ' s
number ; it the moment induced in one molecule ; I the

strength of the electric force ; aE the electronic polarizability
and aA the atomic polarizability . The total moment of each
cylinder becomes the same, and each is equal to UAd . The
cylindrical bounding surfaces are not charged, since the y
arc parallel to the lines of force and thereby to the induce d

moments . The only uncompensated charges are to be found

Fig. 2.
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on their end surfaces . As the distances between corresponding

charges are always d, it is seen that the total charges on the

end surface in both cases becomes UA . The area of the

inclined end is sin :, and the density of charge therefore

becomes : Usin &. The area of the perpendicular end is A ,

hence the density of charge

becomes U .

The induced moment s

and polarizabilities are not

directly measurable . What

can be measured is the di-

electric constant and the re -

fractive index . The dielectric

constant is generally mea -

sured by means of a con -

denser which can be use d

as a convenient mental pic -

ture in the following deduc -

tion (see Fig. 3). The metal plates are charged with elec -

tricity of density Q . Thereby a homogeneous field of force

is set up which induces the moment U in each cubi c

centimeter of the dielectric placed between the plates . As

argued above, the interface between metal plate an d

dielectric is charged with electricity of density U . These

charges are very close to those of the plates themselves an d

of opposite sign. Seen from the outside there are no charges

within the bulk, and so from the outside the condense r

behaves like an empty condenser charged with electricity

of density Q-U. This also holds with regard to the potential .

For the condenser the potential is proportional to this

apparent charge, and the dielectric constant e of the dielectri c

is the ratio between the amount of electricity required to

give the condenser a certain potential, when the dielectri c

fills it, and the amount to give it the same potential whe n

empty. Hence :

	 Qs =
Q - U '

This is how the polarization manifests itself outside th e

dielectric .

To evaluate the field of force at a point within th e

dielectric in addition to the force arising from externa l

charges Q and from polarization charges on the external

surface of the dielectric U, we have forces due to th e

polarization charges on the walls of the spherical cavity .

The forces due to the molecules removed from the cavit y

were discussed on p . 70-72 . To evaluate the forces from

the spherical cavity the surface of the sphere is divided up

in rings, the boundaries of such a ring being given by th e

angles 6 and 6 + d e see Fig. 3 . The area of this ring

surface is :

2rcrcos 0rd 6 ;

As considered earlier the density of charge on an incline d

surface is Usin 6 . Each element of the ring reacts upon the

measuring unit at the centre with a Coulomb force, and th e

components of this force in the direction of the externa l

field, when added together give the force arising from the

ring, i . e .

2 rcr 2cos6 d6 Usin6 sin6
= 27r Usin 2 6 cos 6 d6 ;

The total force due to the charges on the sphere is foun d

by integration over the total surface of the sphere .

Q

	 +-E- ++++-~- + + U
	 Q

Fig . 3 -

(8)

r2
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2

22-tU sin 2 Bd (sin B) = 2 7c U
n_
2

n
+ -

sln 3 H

3

7T
+ -

2 43
=

	

U ; (9)

Hence :

M

	

e- 1
a1,+

	

=at

	

4rr.Nd

	

(12)

1+
3

(E -1)
~

This is the classical Lorentz force, but according to

HECKMANN it is not necessarily the force acting on the elec-

trons in an ion. The uncertainty may be expressed by multi-

plying the Lorentz force by a proportionality factor ß . This

,B is an average value regarding the different electrons an d

nuclei . It is doubtful whether ß is independent of frequency,

any change will probably affect ar and as to different

degrees . The assumption that ß is independent of frequency

is presumably equivalent to HECKMANN ' S l assumption that

p i = /32 = ß, at all events it leads to the same result .

Adding • to this modified Lorentz force, the forces arisin g

from the true charge density Q on the plates and the polar-

ization charge density U on the dielectric interface, we get

for the total strength of the inner field of force :

I = 4rr(Q-U)+ 43~ ;

	

(10)

Using (8) to eliminate Q we obtain :

/ E

	

\1

	

1 -}- -(E-1 )

I = 4TrUI E-
1
-1-~3 ) = 4rrU

	

e-1

	

' (1 0

This gives an expression for the ratio U /1, the same ratio

can be found from equation (7) :

U

	

E-1

	

Na
r

4rr f1 - -+ ~ (E-1)

	

M

HECKMANN G . : ZS . f. Kristal, 61, 254 middle of the page (1925) .

Two important cases are to be considered :

When ß = 1 ; the classical CLAUSlus-MosoTTI equation i s

obtained :

3M e - 1

4 T N d E. -}- 2

and when ß = 0, i . e . no Lorentz force whatever, we get :

M
a7i~-a:l =

4rr.NtS (
s-1) ;

	

(14)

MAXWELL ' , in his work on the electromagnetic theory of

light, deduced the relation :

l1 2 = e ;

	

(15)

between the refractive index n and the dielectric constant E .

The relation has been verified by many investigators ,

notably by DxuDE 2 , but n and E must be measured at

the saine frequency, and the damping must be negligible .

If MAXWELL ' S relation is introduced in equation (12) the

following expression is derived :

M

	

n2_ 1

,p

	

_ = a 1,+ a { at high frequency = aE ; (16)
4rrNd 1

+( 712 - 1)

If ß is equal to unity the familiar LORENZ-LORENTZ ex -

MAXWELL J . C . : Treatice ou Electricity and Magnetism . 2, 396 (1881) .

DRUD.E P . : ZS . physik . Chem . 23, 267 (1897) .

a In Fysisk Tidsskrift (1936) 86, the writer has given a simple der-
ivation of Maxwell 's relation based on Drnde ' s first method .

I
E +a ;

(13)
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pression results . The refractive index is generally measured

at the frequency of visible light, and as argued on page 69 .

a ø vanishes at such a frequency, when only aI , remains .

Now in the visible region there is sensible dispersion of n

and aE , we therefore extrapolate them to zero frequency .

Plotting n against the square of frequency, we expect an d

find an almost straight line. Instead of extrapolating, we ma y

use directly the value of n in the near infra-red, where it

has become almost constant . Hence if (16) represents the

value of a 1, when n is measured at a suitable infra-red

frequency, and (12) the value of aE+ a_i when E is measured

at a frequency considerably lower than the natural frequenc y

of the atomic vibration, the value of aA can be obtained b y

subtracting (16) from (12) .

4 7rN

E1 71 2 - 1

1-T
3

(n 2 -1)[ 1 +7__ 1 )
M _

	

E - n2
(18)

~a TN~
{1±(e-1)

1
l-+

	

-(n2 --1)1 ;

From Which again two important values are derived namely :

9M

	

E

	

l2 2
for,3 = 1 ;

aA

	

4 77; NCf

	

(e + 2) (n2 + 2) , (19)

(20)for

	

0 ;and

	

ß =

	

a l
= 4 Te WI

(E.- n 2 ) ;

Dispersion in the Infra-Red Region .

As stated on page (68) the shape of the dispersion curve

in the vicinity of the natural frequency of the ionic -vibration

will be given a special consideration . For the sake of sim-

plicity the NaCl, CsCl and ZnS lattices only will be explicitly

considered, but the CaF 2 lattice can be considered in a

similar though more complicated manner .

Owing to the action of the alternating electric field, th e

ions are forced into vibrations ; besides this `forced ' vibration

we must also consider the `free ' vibration which in fac t

constitutes the thermal motion of the ions . There is on e

principal' difference between this forced vibration and th e

thermal motion, which is not encountered in the simple cas e

of forced and free vibration of one single particle . The

thermal motion is disorderly, i . e . the single ions are vibratin g

independently in every direction, whereas the forced vibra-

tion is orderly, because it is regulated by the external field .

The ions must move in the direction of the field and with

the same frequency. The wave-length of the residual ra y

is of the order 10 -i cm., whereas the distance between

neighbouring ions is of the order 10 -8 cm., it will thus be

realized that the force and thereby the displacements of the

ions is uniform in large sections of the crystal . This means

in fact that by the `forced' vibration the entire lattice o f

positive ions vibrates with regard to the entire lattice o f

negative ions . The disorderly thermal motion has a muc h

larger probability or entropy than has the the orderly forced

vibration, consequently the radiant energy causing the forced

vibration will steadily be transformed into heat energy . The

rate at which this transformation proceeds determines the

damping or absorption coefficient of the crystalline sub -

stance . In classical theory the damping is described by

introducing, in the equation of motion of the ion, a dissipa -

tive force proportional to the velocity of the ion ; but on the

quantum theory the energy transfer must take place i n

quanta, and as far as I know an adequate mechanism o f
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the damping process has not been described . It is realized ,

that further assumptions and unknown quantities must b e

introduced should the damping be considered . Therefore i n

accordance with DEHLINGER, BORN and HECKMANN, we have

introduced the assumption 7) to the effect that "dissipative

forces are disregarded, i . e . the damping of the ionic motion

is neglected" and also assumption 3) that "the ions shal l

be devoid of thermal motion" . I am not sure to what exten t

this latter assumption is necessary for the present, but if i t

is introduced now the problem becomes very simple ; we

are in fact left with the forced vibration of the lattice of

positive ions with regard to the lattice of negative ions . It

is found convenient to consider the simple-harmonic vibra-

tion of the ions as the primary motion, and afterwards to

discuss the forces acting on the ions .

Consider an ion of charge + ve and mass m i performing

a simple-harmonic vibration of frequency w . The displace-

ment at time t is :

s i = at cos (wt) ;

	

(21)

where a l is the amplitude . An ion of opposite charge - v e

with mass in2 will perform a similar vibration with the sam e

frequency, the opposite phase and with the amplitude a2 .

The restoring force necessary for maintaining the vibration

is equal to the acceleration multiplied by the mass .

d 2

Inl
(ttl

	

- 111 1 a l w 2 cos (w t) ;

This force must result from the other forces acting o n

the ion . These may be separated into : a) the intrinsic

repulsive force which according to assumption (5) is a

central force depending solely on the distance between the

(nuclei of the) ions . The change in this force we will for

the present assume to be proportional to the relative dis -

placement of the ions, this assumption is proved later o n

page (110) . The proportionality factor we term K .

K(s l - s 2) = K (al + a2) cos (w 0 ;

	

(23)

b) the total electrostatic force due to the action of the inner

field of force on the ion . As considered on page (75) this

force is composed by external and internal forces . Since th e

restoring force and the intrinsic repulsive force both var y

with cos(wt) the electrostatic force must also vary wit h

cos(wt) i . e ., it must he in phase with the motion of the ion ;

if damping be present this will no longer be the case .

It is to be remarked that the calculation on page (76)

of the strength of the inner field of force is only valid whe n

the damping is negligible . U being the moment of one cubi c

centimeter of the dielectric, is necessarily in phase with th e

motion of the charged particles (ions or electrons) composin g

the dielectric, but if damping be present it is not in phase

with Q which expresses the external force .

As a consequence of what has been said, the electrostati c

force on the ion can be written :

vel cos (cot) ;

	

(24)

where I stands for the amplitude value of the strength o f

the inner field . The factor cos(wt) which appears in all

terms can be omitted and hence the total balance of forces

becomes :

-m l al w 2 = vel-K(a l + a2)

	

(25)

The expression for the oppositely charged ion is similar .

Only mea l has to be replaced by m 2a2 . It is seen that th e
Vidensk . Selsk . Math .-fys. Medd . XVI, 3 .

	

6

(22)
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(]n l + m2 ) v L e2 1

	

1
()" _

ni l 717 2

	

aAo

	

IX
9

'

right hand side of the equation is unaltered, consequentl y

meal must be equal to ]n .a2 . This means that the centre o f

gravity is not moved during the vibration . It follows that :

]n2
al =

	

(a l a2) ;
ml + ni 2

Introducing this in equation (25) and rearranging :

	 117 1 ms

	

s(al + a 2) [i_
ml

+
m2

co = vel ;

	

(27)

According to equation (3) the moment EGA , obtained by

displacing the ions in a molecule, is equal to the charge ve

multiplied by the relative displacement of the ions . Further-

more it follows from equation (5) that this induced momènt

is proportional to the strength of the inner field of force ,

the constant proportionality factor being a 1 . Hence :

al + a2 _ Y e (al + a2)

	

P,A = aA

	

(28)
I

	

vel

	

vel

	

ve '

Introducing this in equation (27) ;

mi n1 2 w 2 _ v 1 e2
K-

m l + 771 2,

	

a A

K can be evaluated by extrapolating to low frequencies .

(Not always zero frequency as the complication due t o

acoustic vibrations may then arise.) The term containing

w 2 rapidly becomes negligible and we have :

vL e 2
;a A

o

where a 4 is the constant value of the ionic polarizabilit y

holding at low frequency . This value of K is introduced :

Here the frequency w is expressed by the atomic polariza-

bilities aAo and a 1 . These are not directly measurable quanti -

ties, but by means of equation (18) they can be expressed

in terms of dielectric constants and refractive indices . It wil l

be convenient first to reduce the difference :

a

~ 4	

1V1
d 1+ 3-

	

(n 2 - 1
Ao

	

1

This is introduced into equation (31) .

Certain reductions are made .
N

is the mass of one molecule

which is also expressed by m l+]n2, these terms therefor e

cancel out . Furthermore
e

is equal to
M

where F is one
111

	

1

Faraday, and Ml the atomic weight (gram-atom) of the ion .

It is also found expedient to replace the frequency by the
2 Tr cwave-length ) =	 where, c is the velocity of light .co

As a result of these changes the following general ex -

pression is obtained :

(26)

(29)

K=

(31 )

to :

cc lo a 4

	

M

	

[e0-n2 ] [E - n2 ]

l

1

	

1

	

4	 N
1+ 3 (712

	 -
-

	 1) _ [

E-EO

J (32)

l

2

[e)2
= (m l + m2) v2e2 47CNd 1+ 3 (n2-1)

1
-EO

1
7171 ]n 2

	

M

	

[E~ - n 2 ] [e - n2]

	

(33)
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2 C2 1Y11 M2 [co - R 2 ~	 [e - r2 2
'

y 2 lå2 d 1+
3

(11 2 -1) [E - EOl

It will be convenient to recall the symbols not stated above :

v is the valency : å the density ; n the constant refractive

index (in the near infra-red) ; eo the constant dielectric con -

stant for long waves (not always infinitely long waves) ; e

the variable dielectric `constant ' at the wave-length L ß is

a parameter (see page 76). The above expression (34) is a

very general one, dependent as it is on two independent

variables namely e and O .

Certain characteristic wave-lengths will now be deduced

by ascribing characteristic values to e and ß . In the first

place the wave-length corresponding to e equals infinity an d

ß equals zero is determined :

= ZC2mlm2 r e _n 2] ;
B

	

y 2F2a I 0

This is the same relation as derived by BoRN 1 . This BOR N

wave-length will be used for reference .

If e is equal to infinity and ß equal to unity an ex-

pression similar to that of DEHLINGER 2 is obtained :

2

	

2	 g~
D ~B (R2+2)2 '

The more general case of e equal to infinity and ß arbitrary

leads to the same relation as derived by HECKMANN 3 :

' BORN M . and BoLLNOW O. F . : Handbuch d . Physik . 24, 390 (1927)

Eq . 43' .

DEHLINGER W . : Physik . ZS . 15, 276 (1914) .

HECKMANN G . : ZS . Kristall . 61, 265 (1925) .

12 = ~2	 1

	

(37)H

	

8 [1+3 (n 2
-1)12 ,

In the second place the wave-lengths corresponding t o

e equals zero are considered. Again we have one character -

istic wave-length for ß equals zero ;

2, 2 _ ~2 11
-

B E0 '

and another for ß equals unity :

=~2r~
•

	

9
E

	

I3 o (72 2 +2) 2 '

In the third place we will consider the wave-lengths

corresponding to e equal to unity . This means that the

dielectric constant and the refractive index are equal to

those of the vacuum and practically to those of air . At such

a wave-length the radiation therefore passes unrefracted ,

and, as will he seen shortly, unreflected through the powde r

in air. Hence, this corresponds to the CHRISTIANSEN 1 wave-

length L which for a number of compounds has bee n

measured by BOWLING BARNES and BONNER 2 . As before w e

have one theoretical wave-length for ß equals zero :

= ~2
n2 - 1

B

and another for ß equals unity :

% 2 = - - (34)

(35)

(36)

(38)

(39)

=
2 2 - 1

	

9
Eo - l (n 2 + 2) 2 '

Eo -1 '
(40)

(41)

CHRISTIANSEN C . : Ann . d . Physik . 23, 298 (1884) .

' BOWLING BARNES R . and BONNER L . G . : Physical Rev . 49, 732 (1936) .
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Absorption and Reflection in th e
Infra-Red Region .

In principle the dielectric constant is a measurabl e

quantity, still measurements in the infra-red region are no t

practicable . Of related properties the coefficient of absorp-

tion and the reflection ratio are those more frequently

measured .

In our assumption (7) we have neglected the damping

and thereby also the absorption . The occurrence of

sensible absorption shows that this assumption can only b e

approximately correct. In the cases of slight damping th e

absorption maximum is situated close to the wave-length at

which e becomes infinite, which means that %A has to be

compared with 2,B or 7, D .

The relation between the reflection ratio R, and the

dielectric constant e or the corresponding refractive index

n is, in the case of perpendicular incidense and no damping ,

given by FRESNEL ' S 1 formula :

[71+ 1 z
R = l + 1

Generally the negative sign has to be used, but if e is nega-

tive and consequently n imaginary the positive sign must

be employed in order that a real value of R, namely unity ,

may be obtained . This means that the reflection is total fo r

all negative values of E . Now e has negative values within

a certain region of wave-length ; the wave-lengths cones -

1- This formula was derived by FRESNEL : OEuvres, tom 1, pp 441 . o n

the basis of the undulatory theory . It has since been derived on th e

basis of Maxwell's electromagnetic wave theory, see for instance : KöNIG W .

in Handbuch d . Physik . Bd . 20, p 200 and 214 . It is found as the solutio n

of a second order equation, whence the sign + appears .

ponding to values of e of zero and minus infinity are the

border values of the region inside which reflection is total .

The variation of the reflection ratio with wave-length i s

probably demonstrated better if a special case, for instanc e

NaCl, is considered in a diagram. In Fig: 4 the circles an d

	 l -- :l~	 ~•J	 I	 I	 I	 i	 1	 1	
70 204R 30 Z ‘,40 50 60 70 80 90 700 770 720 730,a

Wave-Length

Fig .

the unbroken curve represent the experimental reflectio n

curve determined by RUBENS ' . The triangles give the

reflection measured by CZERNY 2 and CARTWRIGHT and

CZERNY 3 . The Christiansen wave-length as determined b y
BOWLING BARNES and BONNER 1 . C . 1S also shown in th e

diagram. Two theoretical reflection curves are drawn . The

dotted curve is obtained when ß is put equal to zero an d

i RUBENS H . : Sitzber. Preuss . Akad . d . Wiss. II (1915) .
z CZERNY M . : ZS. f. Physik . 65, 600 (1930) .

CARTWRIGHT C . H . and CZERNY M . : ZS . f. Physik . 85, 269 (1933) .
CARTWRIGHT C . H . and CZERNY M . : ZS . f. Physik . 90, 457 (1934).

(42)
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the dot and dash curve is obtained when ß is equal t o

unity. The curves are obtained using e as a parameter .

From FRESNEL'S relation (4.2) the reflection ratio R cor -

responding to a selected value of s is calculated, and fro m

equation (34) the wave-length corresponding to the sam e

value of s is determined . HECI{MANN described the theo-

retical reflection curve as resembling the profile of a tabl e

mountain. Outside the region of total reflection the reflection

ratio decreases steeply .

The experimental data agree far better with the dotted

curve than with the dot and dash curve . This shows that

ß must be close to zero. The experimental curve in so far

as such can be drawn, has no `edges' and lies altogether

below the theoretical curve for ß equals zero . This may b e

due to many causes : In the first place the measurements

were performed necessarily using a rather inhomogeneou s

radiation (wide slit) . In the second place the theoretica l

curve must vary from the experimental because the theo-

retical treatment does not take into account higher harmoni c

vibrations . And in the third place, if damping be considered

the theoretical curve will be still further altered .

Reflection curves similar to the above have been deter-

mined for more compounds, but since the representation b y

curves takes too much space, characteristic wave-lengths ar e

quoted in table (3) . As there are no distinguishable `edges '

on the experimental curves some other characteristic point s

must be chosen for representation . The values taken are th e

wave-length ),M corresponding to maximum of reflection and

those corresponding to the half height of the reflectio n

mountain. The latter are those at which the reflection ratio

is the mean of the maximum value and the value re-

presenting the level to the same side of the mountain . It

will be seen from Fig . 4 that the `half height' wave-lengths

are well defined, and furthermore that each of these is close

to an `edge' on the theoretical curve . being close to 7, B ,

and 2. N close to .t I . The breadth of the experimental mountain

as measured between the `half height' wave-lengths is thu s

equal to the breadth of the theoretical mountain as measure d

between the ` edges ' .

From the present theory, which neglects the influence o f

damping, it follows that the reflection is total in a region ,

and consequently no single maximum value is obtained . In

order to derive a theoretical maximum value one mus t

introduce a slight damping, i . e . a dissipative force . This

means a great complication, because the simple expression

of FRESNEL (42) and even the generalized equations o f

CLAUSIUS-MOSOTTI and LORENZ-LORENTZ (12) and (16) ar e

only valid in so far as the damping may be neglected .

The wave-length of the reflection maximum has been

computed by FÖRSTERLING', whose expression, using our

symbols, can be written :

1

	

1

	

F 2 d 2

tiF

_
'1 B+ 212 2 7T,c2 Mi M2 ;

which can be reduced to :

	

2,2

	

2112

	

F

	

B
E'o + 1t2

(43)

2n2

	

9

	

( )= tiB so+l22 (712+2)2 ,

	

44

Values of îF and ~ G are quoted in table 3 .

FöesTERLING K . : Ann . d . Physik . 61, 577 (1920) .

This holds for ß = 0 ; the corresponding expression fo r

ß

	

1 is :
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HAVELOCK ]. derived an expression different from that

of FORSTERLING . According to O . FUCHS and K . L. WOLF 2

Havelock 's expression is the more accurate one . The cal-

culations of FORSTERLING and HAVELOCK were carried out

on the classical theory of absorption ; but as remarked

on page (79) the very basis of this theory is invalid, an d

therefore neither of the two expressions are considered safe .

Our only purpose in quoting FORSTERLING wave-lengths i s

to obtain a comparison with HECKMANN 'S data .

It is found that the equations (34) to (44) may also be

applied to the CaF 2 lattice if v2 is replaced by the product

v l v 2 of the valencies of the ions. Hence for CaF3 v 2 is put

equal to 2 .

Experimental Test.

Experimental data used in the formulae are given i n

table 1 in which M1 and M2 are the atomic weights of the

ions ; eo is the dielectric constant for long waves . The density

cS is quoted, and the refractive index n is extrapolated t o

the near infra-red, using data from LANDOLT-BÖRNSTEINS

tables 3 . In a few cases n 2 is quoted from the paper o f

EUCKEN and BÜCHNER (cited next page) all data applies t o

room temperature .

In table 2 theoretical wave-lengths as given by the ex-

pressions (35) and (36) are compared to the wave-lengt h

of the absorption maximum ; note that the experimental

wave-length in all cases but one is situated between the tw o

I HAVELOCK T . H . : Proc . Roy. Soc . London . A . 105, 488 (1924) .

FUCHS O. and WOLF K . L. : ZS. f . Physik. 46, 506 (1928) .
8 LANDOLT-BöRNSTEIN : Tabellen . Tables 81 and 170 in the Erg . Bd.

I, II and III in particular .

Table 1 . Experimental Data used in the Formulae .

I Nl1

	

I

	

M2

	

( v

	

I S

	

I

	

so n n ..

LiF

	

. . . . 6.94 19 .0 1 2.64 9.27 E . B . 1 .39 1 .92 E . B .

NaF . . . . 23.0 19.0 1 2.80 6 .0

	

K . 1 .32 1 .7 4
NaCl . . . 23 .0 35.46 1 2.16 5.62 E . B . 1 .50 2 .2 5
NaBr . . . 23 .0 79.9 1 3.20 5.99 E . 1 .62 2 .6 2
Nal

	

. . . . 23.0 126.9 1 3.67 6.60 E . 1 .71

	

i 2 .91

KCI

	

. . . . 39 .1 35.46 1 1 .99 4.68 E . B . 1 .46

	

~ 2.1 3
KBr . . . . 39 .1 79 .9 1 2 .74 4.78 E . 1 .53 2.3 3
KI	 39 .1 126.9 1 3.12 4.94 E . 1 .64 2 .6 9

RbCI . . . 85.4 35.46 1 2.76 5 .0

	

A . 1 .48 2 .1 9
RbBr . . . 85.4 79 .9 1 3.36 5.0

	

A . 1 .53 2 .33
RbI

	

. . . . 85 .4 126 .9 1 3.55 5.0

	

A .

	

~ 1 .62 2 .63

CsCI . . . . 132 .8 35 .46 1 I

	

3 .98 7.20 H i 1 .61 2.60
CsBr . . . 132 .8 79 .9 1 4.45 6 .51 H l 1 .67 2 .7 8
Csl	 132 .8 126.9 1 4.51 5.65 H I 1 .74 3 .0 3

NH 4 C1 : : 18 .04 35.46 1 1 .53 6.96 J . 1 .62 2 .63

TICL . . . . 204 .4 35.46 1 7.02 31.9

	

E . B . 2 .26 5.10 E . B .

TIBr . . . . 204 .4 79 .9 1 7 .54 29.8

	

E. B . 2 .33 5.41 E. B.

AgCI . . . . 107 .9 35.46 1 5.56 12 .3

	

E. B . 2 .02 4.04 E . B .
AgBr . . . 107.9 79.9 1 6.4 13 .1

	

E. B . 2.15 4.62 E . B

BeO . . . . 9 .02 16.0 2 3.00 7.35 H 2 1 .72 2 .9 5
MgO . . . . 24.32 16.0 2 3.65 9 .8

	

H2 1 .72 2 .95
CaO . . . . 40 .08 16 .0 2 3 .4 11.8

	

H 2 1 .81 3 .28
SrO

	

. . . . 87 .63 16 .0 2 5 .0 13 .3

	

H~ 1 .82 3 .31
ZnS . . 65.38 32.06 2 4.06 8 .3

	

L. R . 2.25 5.07

CaF~

	

. . . 40.08 19.0 2-1 3.18 8.43 E . K . 1 .411 1 .9 9
SrF2

	

. . . 87.63 19.0 2

	

1 4 .28 7.69 E. K . 1 .441 2 .08

BaF2 . . . 137.36

	

19.0 2-1 4.89 7.33 E . K . 1 .444 ~

	

2.09

The dielectric constants were measured by :

E .

	

ERRERA J . : ZS . Elektrochemie . 36, 818 (1930) .

E . K . ERRERA J . and KETELAAR H . : J . Phys . et Radium . (7) 3, 240 (1932) ,

E . B . EUCKEN A . and BUCHNER A . : ZS . physik. Ch . B . 27, 321 (1935) .

H1 HOJENDAHL K . : ZS . physik . Ch . B . 20, 63 (1933) .

H2

	

„

	

, This work.

J. JAEGER R . : Ann. d . Physik . (4) 53, 409 (1917) .

L . R . LIERISCH TH . and RUBENS H . : Sitzber . Preuss . Akad . Wiss . XLVII I

(1919) .

K. KYRorouLos S . : ZS . f. Physik . 63, 849 (1930) .

A . Average of measurements by ERRERA, KYRorouLos and myself.
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Table 2 . Test on Infra-Red Transmission Data .

Absorption maximum Christiansen wave-lengt h

theoretical
expe r

imental

Art

	

34

theoretical
exper-

imental

A C 13' cAB 2.D ;id-

	

i
A K

LiF . 35 .2 27 .0 32 .6 B I 0 .26 11 .7 J:0 11 .2 B2 0 .11

NaF . . 47 .4 38 .0 40 .6 B I 0 .68

NaCl . 65 .6 46 .3 61 .1 B .C . 0 .18 34 .2 24 .1 32 .0 B 2 0 .1 (
NaBr . 80 .8 52 .5 74 .7 B 1 0 .15 46 .1 29 .9 37

	

B 2 0 .41
NaI . 99 .3 60.7 85 .5 Bl 0.25 58 .0 35 .4 49

	

B2 0 .2 f

KC1 . 77 .6 56.3 70.7 B .C . 0 .26 43 .0 31 .2 37

	

B2 0 .4 å

KBr . . 97 .2 67 .4 88.3 B I 0 .23 57 .7 40 .0 52

	

B 2 0 .2 ;
KI

	

. . . . 110 .0 70 .4 102 .0 B 1 0 .13 72 .0 46 .1 64

	

B 2 0 .2 ;

RbCI . 102 .1 73 .2 84 .8 B l 0 .52 55.7 39 .9 45

	

B 2 0 .6(
RbBr . 135 .3 93 .7 114 .0 B l 0 .42 78 .1 54 .1 65

	

B 2 0 .41
RhI

	

. 156 .0 101 .1 129 .5 BI 0 .38 99 .4 64 .4 73

	

B 2 0 .6'

CsCI . . 136 89 102 .0 B 1 0.63 69 .2 45 .1 50

	

B 2 0 .7:
CsBr . . 173 109 134 .0 B 1 0.49 98 .2 61 .6 60

	

B 2 1 .0 '

T1C1 . . 111 47 45

	

B 2 1 .0 '
T1Br . . , 165 67 64

	

B 2 1 . 0

13e0

	

. . 13.2 8.0 13 .5 T . - 0.03 7 .3 4 .5 8

	

T . - 0 . 1
MgO . . 24 .8 15 .1 14 .2 T . 1 .14 11 .6 7 .1 12 .2 B 2 -0.06
CaO 36 .8 20 .9 22 .1 T . 0 .87 17 .0 9 .6 16

	

T . 0 . 0

Transmission in infra-red was measured by :

B . C . BoWLING BARNES R . and CZERN] M . : ZS . f. Physik. 72, 447 (1931) .
B 1 BOWLING BARNES R . : ZS . f. Physik. 75, 723 (1932) .
B 2

T .

BOWLING BARNES R . and BONNER L. G. : Physical Rev . 49, 73 2

TOLI{snoRF S . : ZS . f. physik . Ch . 132, 161 (1928) .

(1936) .

corresponding theoretical wave-lengths . MgO and BeO are

exceptions, but the discrepancy is not larger than what ma y

be due to experimental error . Hence the two theoretical

values define a region within which the experimental ab -

sorption maximum is found.

The above theoretical wave-lengths A B and An are those

obtained for ß equals unity and zero . It is of interest to see

what value shall be ascribed to ß in order that relation (37)

shall hold with accuracy . For this purpose the wave-lengt h

of the absorption maximum A A is introduced in place o f

. 'H, hence :

1-L- (n-1 )

from which ß can be determined :

By means of this expressions the ßA values in column (5 )

are calculated . Considering the alkali-halides it will b e

realized that the variation of ß i with the inner polarizability

of the anion, so marked in the case of the ß determine d

from the relation between compressibility and dielectric

constant and refractive index, is far less pronounced in the

present case . (Compare p . 122) .

In the second section of tabl e . 2 theoretical wave-lengths

as given by the expressions (40) and (41) are compared t o

the experimental CHRISTIANSEN wave-length . measured by

BOWLING BARNES . This CHRISTIANSEN wave-length con-

stitutes the transmission maximum in the case of a powder ,

hence, such transmission maxima measured by TOLKSDOR F

are also quoted. For MgO BOWLING BARNES found the sam e

maximum as TOLKSDORF . Values of the parameter ß c are

calculated by means of the above formula (45), replacin g

AR/2,A by ~•J/~,o. For thé alkali-halides the agreement in mos t

cases is fair ; note that the absorption curves determined b y

BOWLING BARNES and CZERNY are measured on plates or

)~
a

(45)
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films. For the oxides the agreement between the two different

values of ß is bad . The explanation is presumably the

following . TOLKSDORF actually measured the transmission

minimum, but because the radiation may be scattered owin g

to reflection on the surfaces of the single particles in th e

powder, the transmission minimum and the true absorptio n

maximum are not identical .

The characteristic wave-lengths of each reflection curv e

are quoted in table 3. In. the cases of NaCl, KGl, KBr, KI ,

ZnS and CaF2 it will be noticed that the half height -

maximum - half height' wave-lengths of the experimenta l

reflection curve agree well with the corresponding ` edge -

maximum - edge' wave-lengths of that theoretical curv e

which is obtained using the value ß equals zero (expressions

(35) (43) and (38)) . This also shows that the breadth o f

the experimental reflection mountain is equal to the theo-

retical breadth, which is considered a verification of the

theory. If the theory is correct the absorption maximu m

should be situated close to the larger of the `half heigh t

wave-lengths' . This holds fairly well for NaCl, KCl, KBr and

KI but not at all for LiF.

An empirical value of ß can be evaluated from reflection

data by a method similar to that applied to transmissio n

data. Such a calculation was in fact first undertaken by

HECKMANN' , and his values of ß are quoted in the last

column . Our calculation is performed using equation (45) .

In place of the ratio ~B/~`'3 the ratio 'I'F/2,m is introduced.

According to theory these ratios should be equal, grante d

of course that the FÖRSTERLING expression is sufficiently

accurate. Values of ßR evaluated from reflection data ar e

quoted in the column next to the last . That the experimental

HECEMANN G . : ZS . Kristall . 61, 266 (1925).

Table 3 . Test on Reflection Data .

Theoretical Experimental
Reflection

	

~
.

I3R

	

I

Heck -

mann

~H

~-
0

~

= 1

Edge
(35 )

AB

Max
(43)

AF

Edge
(38 )

~I

Edg e
(36)

'tl)

Max
(44 )

2'G

Edge
(39)

)`E

hal f
height

AL

Max

iM

half
height

iN

LiF

	

.

	

.' . . . 35 .21 20.6 16 .1 27.0 15 .8 12 .3 20 .0 17 .1 14.6 Re . 0 .6 7
NaF

	

. . . . 47 .4 31 .9 38.0 25 .5 35 .8 .

	

Re . B . - 0 :4 0
NaCl

	

. . 65 .6 49 .6 41 .5 46 .3 35 .0 29 .3 66 .5 51 .7 43 .5 C . - 0 .10 - 0.1 5

KC1	 77 .6 62 .0 52 .4 56 .3 44 .5 38 .0 78 62 53

	

C . 0 .00 - 0 .1 6
KBr

	

. . . . 97 .2 78 .6 68 .0 67 .4 55 .0 47 .2 95 83 68

	

R . - 0 .12 - 0.28
KI	 110 .0 92 .0 81 .2 70.4 59 .1 52.0 104 94 85

	

R . - 0 .03 + 0 .09

RbCI

	

. . .

NH 4 C1 .

10 2

78

8 0

58

68

48

7 3

51

57

37

4 8

32 64

7 4

52

Re .

45

	

R .

0 .1 9

0 .2 1

T1Cl

	

. . . . 306 160 122 129 68 52 150 100 65

	

R . . 0 .44 0.64

TIBr . . . . 422 234 ,18 0
i

171 95 73 200 117 95

	

R . .

	

0 .68 0.75

AgCI . . . . 139 98 80 69 149 40 120 90 58

	

R . 0 .091 0.1 9

AgBr

	

. . . 197 142 117 89 65 53 200 110 83

	

R . 0 .241 0 . 1

ZnS

	

. . . . 37 .7 32 .8 29 .4 16 .0 13 .9 12 .5 40 .5 31 .8 27 .5 L.R . 0 .02 0 .1 ~

CaF2 . .' . . 51 .0 31 .5 24 .8 38 .4 23 .7 18 .4 40 32 .8 21

	

K .S . - 0 .1 1

SrF2 . . . . ~1 .5 39 .7 31 .6 45 .2 29 .2 23 .2 40 .7 Re. B . - 0 .07

BaF 2 : . . . 68 .7 45 .8 36 .7 50 .4 33 .6 26 .9 50 .7 Re. B . - 0 ?7

Reflection data were measured by :

C .

	

CzERNY M . : ZS . f. Physik. 65, 600 (1930) .

K. S. KELLNER L. : ZS . f. Physik . 56, 231 (1929) .

R .

	

RUBENS H . : Sitzher . Preuss . Akad . Wiss . II (1915).
L . R . LIEBISCH T . and RUBENS H . : Sitzber. Preuss. Akad . Wiss . XLVII I

(1919) .

Re .

	

REINxOBER O . : ZS . f . Physik . 39, 439 (1926) .

Re . B . REINhoBER O. and BLUTH M . : Ann. d . Physik. (5) 6, 785 (1930) .

error is considerable is appreciated if the ß values fro m

reflection data are compared with those found from trans -

mission data . Especially in the cases of LiF and NaF th e

error must be large . In the case of other alkali-halides ,
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besides a large experimental error there can also be distin-

guished a systematic deviation, in that the ß values foun d

from transmission are as a rule larger than those found fro m

reflection . This systematic deviation is an indication of th e

limitation of the theory .

Although data, more extensive and in some respects more

accurate than those employed by HECKMANN have here been

considered, we are not able to derive further conclusions

than he did. This, however, will be possible by means o f

our second relation, namely that between dielectric constant ,

refractive index and compressibility . Further discussion wil l

therefore be postponed till this relation has been derived

and tested .

The Interionic Forces .

The forces between the ions have hitherto been treated

in a very general manner, the only assumption being, that

for small displacements the force arising shall be pro-

portional to the relative displacements of the ions (strictly

the nuclei) . In order to carry out a theoretical calculation o f

the compressibility, the mathematical form of the potential

between two ions must be considered more specifically . The

calculation is based upon assumptions 4, 5, and 6 on page 65 .

According to assumption 4) the forces between the ions ca n

be separated into two types : a) the electrostatic force which

follows Coulomb 's law, and b) a short range intrinsic

repulsive force which keeps the ions apart . The nature of

and mathematical form of the latter is not quite settled .

BORN and LANDE' , who first encountered the problem ,

considered the potential of intrinsic repulsive force between

two ions to be given by the expression b X r - n , where r is

1 BORN M . and LANDE A . : Verh . D . Physik . Ges . 20, 210 (1918) .

the distance between the ions and b and n are constants for

the same combination of ions . According to modern theor y

the intrinsic force arises from a certain quantum-mechanical

interaction (anti.symmetric coupling) of the electrons in th e

two ions" 2 , and as a consequence an exponential relatio n

is to be expected . BORN and MAYER 3 write this :

7'1 + 1' 9 - 7 '

P
T(B) = b e

where r 1 and r2 are the ionic radii ; r the distance ; equals

0.345 x 10 -$ cm. the same constant for all alkali-halides ,

and b a constant for the same salt . According to PAULING 4

b has to be replaced by a polynomial . In recent papers

which have been obtained since the major part of the present

paper was written, V1TASASTJERNA5' 6, 7 makes efforts to evaluate

this polynomial from experimental data . He finds that th e

dominant terms are those containing r to the sixth or eigth

power .

All investigators agree in considering the intrinsic re-

pulsive force as a short range central force . In the present

exposition it is attempted to make this the only assumption

regarding this force, therefore the potential of the intrinsi c

repulsive force between two ions is considered to be give n

by the TAYLOR series :

9' (r.f o - TL+:9)1+ 2-las . .

	

(46)

Vi<lensk . Selsk . t\lath .-fys .l,iedd . XVI .2 .

1 HEITLER W . and LONDON F . : ZS . f. Physik. 44, 455 (1927) .
' 'LONDON F . : Naturwissenschaften . 17, 516 (1929) .

BoRN M . and MAYER J . E . : ZS . f. Physik . 75, 1 (1932) .
4

PAULING L . : ZS . f. Krist . 67, 377 (1928) .

WASASTJERNA J . A . : S . Sc . Fennica . C. Phys . Mat . VI . 22 (1932) .
<' WASASTJERNA J . A . : S . Sc . Fennica . C . Phys . Mat . VIII . 20 (1935) .

WASASTJERNA J . A . : S. Sc . Fennica . C . Phys . Mat . VIII . 21 (1935) .

7
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where L is the mutual distance, 1 the change in it, and ITL ,

p ' and p" are constants . The TAYLOR series is practicabl e

because 1 as a rule is very small compared to L, whence

only the first few (three) members of the series need con -

sideration .

If now the ionic lattice be deformed, the forces mentione d

come into play . There are two types of deformation of specia l

interest, which will be discussed in the following . The first

type of deformation is the homogeneous contraction resultin g

from a compression of the crystal . The second type of

deformation is the relative displacement of the lattices o f

oppositely charged ions contemplated on page 66 .

The Compressibility of Regular Crystals .

According to restriction 6) on page 65 not only the forces

between neighbours, but also the forces between next neigh -

bours are to be considered . The above TAYLOR series (46)

with the constants TL , y ' and p" is considered to represen t

the potential between neighbour ions . The potential of

intrinsic repulsive forces between next neighbours is con -

sidered to be given by another TAYLOR series :

+2 o Q 1 2

	

- -

where ?p Li , ' and " are new constants . The normal distance

L 1 between next neighbours is different from L, it is actually

equal to oL where o is a constant factor . Hence the change

in distance is equal to ol . There are two different combina-

tions of next neighbours present namely (+ +) and (- -) ,

but as a rule the intrinsic repulsive force between cation s

is negligible and only that between anions needs con -

sideration .

The total potential energy due to intrinsic repulsive force s

between one ion and its neighbours is obtained by multi -

plying expression (46) by the coordination number k, i . e .

the number of neighbours of any one ion . Similarly the

potential energy between one ion and its next neighbours

is obtained by multiplying expression (47) by k l which i s

the number of next neighbours of an ion .

Besides the intrinsic repulsive forces considered, electro-

static forces between ions are also present . The electrostatic

potential energy of two ions of charges ve and v i e at a

distance L is :

vvie 2

L

The electrostatic potential energy of one ion with respect t o

all other ions in the lattice is obtained by multiplying the

above expression by a constant j which is :

-'Lo1° Ll

where L 1 is the distance between the ion considered an d

any other ion, and L o that between neighbour ions . The

summation shall be extended over all ions, counting each

ion once and considering the sign of the ion . l

MADELUNG E . : Physik . ZS. 19, 524 (1918), applied a mathematical

artifice in order to determine the constant j, because a direct summatio n

was not found feasible . - The writer should like to point out that a

direct summation still may be practicable if only it proceeds on a defi-

nite plan : Consider for instance a crystal growing by the successiv e

addition of neutral ionic layers . If now the potential energy of one iou

in the crystal with respect to those in the layer is computed, it will b e

found that this increment of energy decreases rapidly as the crysta l

grows, and hence the total potential energy between one ion and al l

other ions can be evaluated . A profound treatment will be given late r

on pages 133-54.

(47)

(48)

7*
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This is introduced :
°

AØ = k p ' I-I- k t ot(~ ' 1~- k g)' L -{-ko'
L

2

-kp'1-klo~ ' 1 ; lc~p„
;+ klo2~"

;

It is seen that first power terms cancel .

Hence the total potential energy of one ion with respect

to all other ions in the lattice is given by :

Ø = -"1
vi

l
e 2

L

	

L
-}- k yr

	

k i~f'r,

L is the normal i . e. the equilibrium distance between neigh -

bour ions. This means that :

(49)

chi)
d L

	

1 vL2e2 +
k y

'
' -1- k i o 1p ' = 0 ; (50)

9	
„
l

	

(o

	

0 2	
„
l l

AL+ 2/ +Icl\
	 + 02 ''	

2
)

J
I 2 -DI2 ; (51 )AØ =

The change in distance between next neighbours dLi being

odL . By compression the distance between neighbours i s

altered from L to L-1. By this change the potential energy

is altered to :

Ø I -1AØ =
jvvl e 2

L-I
-F- k

ØL as given by expression (49) is subtracted . Furthermore

by means of expression (50 )

-jvv ie 2 is replaced by (kup ' +Icloib ') L 2 ;

Hence an expression for the energy change is obtained :

	 1

	

11	 	 P„
Ø = (kp +ktoip) L2

[L -1-
j -Iccp I

k	 1 2;. 2

kot
2

„ ]
-klov ' 1+ i v 1 2 . . . .

Neglecting the third power terms of 1 the expression :

l

	

2

2 I	
1-L,

reduces to 1-1- L ,

The change in energy is thus proportional to the squar e

of the change in distance between the ions, this means that

HOOKE's law is valid . In case 1 is so large. that third power

terms become significant, Hooaa's law will no longer be

valid . In the following treatment it is found practical t o

make use of the proportionality factor D as a parameter .

A4) is the change in potential energy due to changes, arisin g

from compression, in forces between one ion and all othe r

ions . The energy of N ions is not N times but only 2 times

as great, for in our summation we count each distance twice ,

i . e . count both ba and ab. Hence the energy change to be

ascribed to any one ion is only half of AØ . As the molecul e

(in the cases of the NaCl, CsCl and ZnS lattices) contain s

two ions, ,14) represents the energy change per molecule .

Owing to the change in distance from L to L-l the

volume occupied by a molecule is diminished . In the normal

state this volume is V = BL 3 where the constant B is 2 for

the NaCl lattice, 3V3 for the CsCI lattice and
3~3

for the

ZnS lattice .

	

(52 )

The change due to compression in the volume occupie d

by a molecule is :

„
y, L- p'1-}

2
12 . . . . +

„
OL,-z/i ' ol -F- 7P

0 2 1 2 . . .+ k l
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IV = BL 3 -B (L.-1)3 = B [3 L 2 1-3 Ll 2 + 1 3 ] N 3.BL 2 1 ; (53)

the two latter terms being negligible compared to the first one .

The external pressure p necessary to perform the com -

pression is equal to - a
	 (40 Thus combining (51) and (53) :
a(~JV)

a(dØ)
a(z/Ø)

	

al

	

2D1

a (d V)

	

å(ÅV)

	

BL

åI

from which :
ap

ap	 2 D

ô (!/ V)

	

a(ÅV)

	

9 B2L4 '

a l

x=
V åp

	

2 '

The compressibility is defined as :

1 c5(ilV)

introducing the values of V and
6
(z,IT) , this becomes :

1 9 B 2L 4 9 BL
x

BL3 2D - 2D '

Putting in the value of D, the following general expression

for the compressibility is obtained :

where B is a constant characteristic of the lattice type ; k i s

the number of neighbours of any one ion ; k i the number

of next neighbours ; L the distance between neighbours ; o the

ratio of the distances between neighbours and next neigh -

bours . p ' , p " and 1i ', p" are constants in the TAYLOR series

(46) and (47) .

The second term containing ki in the denominator is

due to forces between next neighbours . As a rule it is con-

siderably smaller than the first one . If it be neglected the

expression reduces to :

9BL	x _
k

(
2p

' +„
/j

\ ;

L

This expression will be used in the following discourse . The

error introduced by disregarding the intrinsic repulsive forc e

between next neighbours will be discussed later .

Relative Displacement of Positive and
negative Ions .

- Although the problem of the interaction of a crystal

lattice with an electric field has been shown on pages 70--

72 to depend on assumptions concerning the Lorentz force ;

nevertheless, the problem can be treated on the same general

lines as the compressibility was in the last section . In addition

the problems of dielectric polarization and compressibilit y

may be linked together .

Consider a regular ionic crystal, and suppose the lattic e

of positive ions as an entirety is displaced with regard t o

the lattice of negative ions . The relative displacement of the

force-centres (not necessarily the nuclei) is s . Next neigh-

bours, always having the same sign, are not displace d

relative to each other . The forces between next neighbour s

(54)

(55)

x = 2 ,

	

~_ „\

	

(2 0 ,

	

o s „

k(L2 + L IH- Ic i	 L~+ L

9B'
(56)

(57)
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therefore are not altered, whence, according to restriction 6) ,

the total change in the potential energy of the intrinsi c

repulsive forces is due to changes in distances betwee n

neighbours. The neighbours of any one ion in a regular

diagonal lattice form either a regular tetrahedron, a regula r

octahedron or a cube .

The octahedric

arrangement which

is found in the NaC l

lattice is considere d

first . In figure 5 th e

central ion is placed

at the origin of Carte-

sian coordinates, and

the neighbour ions ar e

placed on the coordi-

nate axes at the di-

stances L . The poten-

tial energy of the intrinsic repulsive force between the centra l

ion and one of its neighbours is given by the TAYLOR series

(46). We shall now determine the change in this poten -

tial energy and the force which will arise when the cen-

tral ion is displaced the distance s with the component s

x, y and z .

It is found that the first power terms of x, g, z cancel

one another, therefore terms containing x, y, z to the secon d

power are significant . Terms to the third and fourth power

are neglected .

First consider the change 1 in L the distance between th e

central ion and one of its neighbours situated on the X axis .

This change is :

1 = V(+L-x)2-+2-1-z2-L ;

	

(58)

2

	

2

1 = (L+x) I/1 I (L ±x)2 -L ;

The numerator contains y and z to the second power, henc e

third power terms will only be neglected if x in th e

denominator is discarded . Furthermore the reduction

j/1 + = 1 + z is used, the error introduced thereby is i n

the fourth power of y and z, and we get :

1 = (Lsx) (1+ y22L

2

2	 -L ;

In the multiplication the third power term is neglected .

Hence :

(59)

and- neglecting terms to the third and fourth power w e

obtain :

	

1 2 = x2.

	

(60)

These values are introduced into the TAYLOR series (46) ,

whence the potential energy due to one neighbour ion o n

the X axis is found to be :

	

2

	

2

	

PL+I=TL+p'I±x-f-y	 Lz
When we consider both neighbour ions on the X axis, th e

first power terms (having opposite sign) cancel, and we hav e

the change in potential energy due to the displacement :

+ L

Similar expressions are found for the ions on the y and z

2

	

2

Lifix = (Pr yLz+ yii
x2 .

axes . By summation the potential energy change due to al l

six neighbours is :

o

Fig . 5 .

or

1=+x-{-y

2
+z

2

2L '

x 2 ;



Nr . 2 . KRISTIAN HØJENDAHL :106 Studies in the Properties of Ionic Crystals . Il.

	

107

zL214) = p'
2

(x
2 -F

L
2 + 	

) + y,'r
(x2

+
y2

+
Y2) ;

x2 +y 2 +z 2 is equal to s2, hence the above expression

reduces to :

P" I s2

	

(61 )

It is seen that the change in energy z/Ø is proportional t o

the square of the displacement, and furthermore that the

proportionality factor is independent of the direction of th e

displacement . These results are only valid for small dis -

placements . If the displacement is so large that third power

terms become significant, the elastic energy will no longe r

be proportional to the square of the displacement, and th e

proportionality factor no longer the same in all directions .

Just as was the case for compression, HOOKE ' s law will no

longer be valid .

The tetrahedric and cubic arrangements .

In the ZnS lattice the neighbours of , any one ion for m

a regular tetrahedron, in the CsCl lattice they form a cube ,

and in the CaF 2 lattice the F- ions form a cube round the

Ca++ ion, and the Ca++ ions form a tetrahedron round any

F- ion. As shown in figure 6 a regular tetrahedron is forme d

from ions placed at every second corner of a cube . Hence

the cases of the regular tetrahedron and the cube can b e

treated together . Cartesian coordinate axes are placed in the

lattice as shown in the figure . The coordinates of the neigh -

bour ions are X = ±g ; Y = g and Z = ±g . In the case o f

the cubic arrangement all combinations of + and - have t o

be considered, in the case of the tetrahedric arrangement the

combinations (-	 ), (- + +), (+ - +) and (+ + -)

only . The distance L between one corner of the cube an d

the centre, i . e . that between one neighbour ion and th e

central ion in its initial position is L = ß/3g.

Consider as before the central ion to be displaced th e

small distance s . The general case of the ion being displace d

in any direction has

been considered by th e

writer. The calculations

are similar to those re-

garding the octahedron .

Just as was found for th e

octahedron, the change

in potential energy is

proportional to the

square of the displace-

ment and the propor-

tionality factor is inde -

pendent of the direction

of thé displacement in

the crystal. The calculations for the general case, however ,

are lengthy, but they are simplified if the displacement

considered takes place in the direction of one of the axes .

This therefore is considered here . The coordinates of th e

displaced central ion are x, o, o . The change in distance

between the central ion and any one of its neighbour ions is :

1 = V(± g -x)2 -i-g 2 +g2 I/3g;

which can also be written :

2

,-

	

x

	

l

	

x

	

1 = ~l/ 3 p ß/3 ~ % 1 +
	 i	

V3

	

x 2
-V3

g ;

	

I

	

g

	

j/3 ,

[2 r

L

Fig . 6 .

(62)
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This is reduced, firstly by omitting the second term in

the denominator, secondly by the familiar reductio n

V1 +,1 = 1+ -2 , and thirdly by neglecting third power

terms in the multiplication . As a result we obtain :
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Regular arrangements in general .

If we compare these equations with (61) it will be seen

that the different equations can be replaced by :

X

	

X 2

_ ± -=s/ -}-

3 3 V3g '
(63)

)~
-i- p"

1
s2 ,

	

(67 )

and neglecting third power terms :

These values are introduced in the TAYLOR series (46)

representing the potential energy of intrinsic repulsive forces

between the central ion and one of its neighbours ; hence :

r

	

2

'4'41 = TL +Tr, _ 9)'

	

+ 33

	

=~

3

	

~/ g

	

b

By the summation over all neighbour ions the terms con-

taining x to the first power cancel, and for the tetrahedri c

arrangement it is found :

-1 4, =

	

4x2
+

„ 2 x2
3V3g Y 3 ;

It is advantageous to introduce L in place of 1/3g, further -
more x = s .

/14, =
~ [29)'+ y" I s2 ;

	

(65)

Similarly for the cubic arrangement :

/14) =

4

[2LT+

	

s2 ;

	

(66)

where k is the coordination number, i . e . the number of

neighbours surrounding an ion .

//Ø is the energy required in order to displace the centra l

ion the distance s . In displacing the ion we have to wor k

against an elastic force f. This force can be evaluated by

differentiation :

d	
(ds

d?)
- 3 2I + (pi s ;

(G8)
At the present stage it is found expedient to include th e

proof of a statement given earlier . On page (71) i t

was stated that the electrostatic force, close to the centre o f

a regular configuration of ions placed on a spherical surface ,

is negligibly small . The electrostatic potential energy between

two ions of charges ve and vie and distance L apart is :

vvl e2
y'a. - L ,

d9' E
Hence : 9'= dL

	

1,22
and (p" = L3e 2

- Thus : 2I + p" - 0 ;

If this is introduced in equation (68), it is seen that th e

force near the centre of the configuration becomes zer o

independent of direction of displacement . This of cours e

(64)

(69)
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only holds for small displacements, since it is subject t o

the same restriction, as the entire calculation above, namel y

that the cube of the displacement shall be small compare d

to the square of it . We have demonstrated the correctnes s

of our assumption in the cases of the octahedron, tetrahedro n

and cube, but in all probability it will hold for other regular

configurations . (Regular is to be taken in the crystallographic

sense of the word .) For the limiting case of the evenly charge d

spherical surface our assumption is valid for all displace-

ments smaller than the radius .
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the electrons in the ion are shifted with regard to the nucleus .

The intrinsic repulsive force between two ions, however, is

dependent not only on the relative distances of the nuclei ,

but also and probably more on the location and motion o f

the electronic systems in the two ions . Hence it will b e

realized that the above equation (70) is not absolutely exact ,
still we will use it for the present. A modified expressio n

will be derived later on pages 124-28 ,

The constant K can be determined by means of equation

(30) . In this way the field constants cp' and p" may be

expressed in terms of the atomic polarizability a r1o . Hence :

A Relation between Compressibility and
2 y' v2 e

a
Atomic Polarizability .

	

K P
„

=

	

(71) .3 L a~ o

Equation (68) as derived considers elastic forces betwee n

neighbour ions only . In the case considered on page 103 wher e

the lattices of positive and negative ions are relatively dis -

placed, the contribution of force due to ions at greater

distances than L is negligible, and f can be considered the

total elastic force exerted on one ion by the entire lattice .

This force was also considered on page 81 ; there it was

assumed that the force was proportional to the relative dis -

placement of the ions ; Now we have actually found, tha t

this assumption holds good, and furthermore that the pro-

portionality factor, which was then termed K, has the value :

The same function of p ' and p " also appears in th e

equations (56) and (57) . At present we will consider

equation (57) . It may be rearranged as follows :

K = 3

2

L
y' +

~„J

= 3 BL

	

(72)

Putting the two values of K equal it is seen that a simpl e

relation between the compressibility x and the atomic

polarizability a Ap can be derived. Hence :

K = 3 1 2L ~--

3 BL aA o
v2 e2 (73 )x =-(70)

There is one objection to be made : the relative displacement

considered in defining K was that of the nuclei, whereas th e

displacement s in the above calculations is that of the force-

centres of intrinsic repulsive forces . By action of the field

Experimental Test .

With a view to numerical calculation, the value of a 4 o

from expression (18) is introduced :
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3 BL	 M Eo - 12E

	

(74)
4 TC

N[l+0l)]{l+n2_1 '
_ ve

	

) 1

It is not necessary to consider both L and 8 as these ar e

related . The volume occupied by a molecule can be ex -

pressed both by

	

and by BL3 (this is the definition of B) .

Either L or b, N and M can be eliminated, the latter i s

found the more advantageous . Hence :

3 B2L4

	

Eo - 712

	

'

	

(75)
4

	

e2 .

	

l

	

lz

	

~zv

	

t1+3 (Eo -1)1 1 +--
3

(n2 -1)
l

It is convenient to unite such magnitudes as are constant

for the same valency and lattice type into one numerica l

constant .

(why the number 3 is replaced by the number 9 will appear

later) .

Two limiting values of ß in particular are to be con -

sidered. First ß equals unity which gives :

CL 4

	

[e 0 -I2 ]

	

_ 3CL4 [Eo-n2 ]

1

	

3

	

[l+(0-1)][l+(nl)]

	

[Eo+ 2] [n 2 +2]

E0-1 - 71 2 	 1

	

CL4Pfi•

	

(77)
_ Eo--r . 2

	

n -f- 2

The latter transformation is convenient because in the thesis

on dipole moment s , there was calculated a table of th e

familiar polarization and refraction functions :

1
HOJENDAHL K . : Studies of Dipole-Moment. Copenhagen (1928) p . 152 .

E-1

	

n 2
PI =

P-PE ; P = E+2 ; and pE
= n2 +2 '

The last calculation also explains why the particular value

of C was chosen .

The second limiting value of the compressibility obtaine d

for ß equals zero is :

z 2 = 3 CL4 [

In table 5 columns 4 and 5 such limiting values of the

compressibility are compared with the experimental com-

pressibility quoted in column 6 . The data are mainly recent

ones by BRIDGMAN (marked B.) and by SLATER (marked

S.) ; in a few cases earlier data of RICHARDS and JONE S

(marked R . J .) are employed. As the different investigator s

Used different units, the data from LANDOLT-BÖRNSTEIN ' S

tables are quoted, and further references are also give n

there 1 .

Experimental data used in the formulae are collected i n

table 4 . v is the valency ; L the distance between neighbour

ions, the values quoted are taken for the most part from a

survey by EwAiD 2 supplemented by recent data from LAN-

DOLT-BÖRNSTEIN's tables 3 . The dielectric constant so, and

the square of the refractive index n2 are transferred from

table 1 . The few values not given there, if marked by E .

were measured by ERRERA 4 , and if marked by E, B . were

measured by EUCKEN and BtiCHNER 5 .

The above theoretical values of z (77) and (78) are the

1 LANDOLT-BÖRNSTEIN : Tabellen . Ergbd. I and III ; table 26 p .
2 Handbuch d . Physik. Bd . 24 ., 334-5 and 339, by P . P . EWALn .

LANDOLT-BÖRNSTEIN ; Tabellen . Ergbd. I, II, III ; table 155 d .
4 ERRERA J . : ZS . Elektrochemie 36, 818 (1930) .
s

EUCEEN A . and BUCHNER A . : ZS . physik . Ch . (B) 27, 321 (1934) .

Vidensk . Selsk. Math .-t}s. Medd . XVI, 2 .

	

8

9B 2
li =

4 7r,v2 e 2 '

r. l = CL4

(78)-722 ] ;
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limiting values corresponding to ß equals unity or zero . It

is also of interest to sec what value must be ascribed to ß

in order that equation (75) shall hold with accuracy . To

derive this value, x in equation (75) is put equal to the

experimental value x 3. Dividing equation (78) by equation

(75) the constant C, the distance L and the term 0 - n2

cancel, and we have :

[1+(E_1)][1+(n2-1)] = x3 ;

	

(79)

This is a quadratic equation the solution of which is :

	

4(a

	

1)(n2 -13-1)	 3(E
O

ß- n 2 -2) LA/1 {-

0	

(80)
2 (co -1) (n2 -I)

	

(E () + n2 - 2)2

The positive sign in front of the surd always leads to

numerically large negative values of ß . In tables 2 and 3

we found from transmission and reflection data that ß a s

a rule is positive or eventually has a small negative value .

Therefore the negative sign in front of the surd is the only

one considered, and values of ß obtained in this manner

are quoted in table 5 column 7 .

The variation in ß is compared with the variation in

some other properties ; for instance with d, in column 8 ,

which is the distance of free space between the anions . If

these are considered as spheres of radius r and the distanc e

between the centres of the anions is oL where o is a factor ,

which is constant to the lattice type (see p . 98) we have :

	

d = oL-2r

	

(81 )

In the case of the NaCl lattice o is 1/2 ; in the case of the

2
CsCI lattice it is

	

Values of the. ionic radii are given

later in table 7 .
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Table 4 . Experimental Data used in the Formulae.

Lat -
tice " L'10$ e in so n2 PE

2

3

LiF	 NaCl 1 2 .07 9 .27 1J2 0.235 0 .500 2 .4 5
LiCI	 „ 1 2 .57 11 .05 E . 2 .75 0 .368 0 .401 2 .7 7
LiBr	 „ 1 2 .74 12 .1

	

E . 3 .16 0 .419 0 .369 2 .9 8
LiI . . . :	 „ 1 3 .03 11 .03 E . 3 .80 0 .483 0 288 2 .41
NaF	 „ 1 2.31 6 .0 1 .74 0 .198 0 .427 1 .4 2
NaCl	 - . „ 1 2 .81 5 .62 2 .25 0 .294 0 .313 1 .1 2
NaBr	 „ 1 2.97 5 .99 2 .62 0 .351 0 .274 1 .1 2
NaI	 „ 1 3 .23 6 .60 2 .91 0 .389 0 .260 1 .23

KF

	

• „ 1 2 .66

	

6 .05 E . 1 .85 0.221 0 .407 1 .40
KCI	 „ 1 3 .14

	

;

	

4 .68 2 .13 0+274 0 .277 0 .8 5
KI3r	 „ 1 3 .29

	

4 .78 2 .33 0.307 0 .249 0 .8 2
K I	 „ 1 3 .53

	

4 .94 2 .69 0 .360 0 .208 0 .7 5
RbF	 „ 1 2 .82

	

5 .91 E . 1 .93 0 .237 0 .383 1 .3 3
RbC1	 „ 1 3 .27

	

5 .0 2 .19 0 .284 0 .287 0 .9 3
RbBr	 „ 1 3 .42

	

5 .0 2 .33 0 .307 0 .274 0 .8 9
RYA	 „ 1 3 .66

	

5 .0 2 .63 0 .352 0 .219 0 .7 9
AgCI	 „ 1 2 .77

	

12.3 4 .04 0 .503 0 .288 2 .7 5
AgBr	 „ 1 2 .88

	

13 .1 4 .62 0 .547 0 .254 2.8 3
MgO	 „ 2 2 .10 9 .8 2 .95 0 .394 0 .352 2 .2 8
CaO'	 „ 2 2 .40 11 .8 3 .28 0 .432 0 .353 2 .8 6
SrO	 „ 2 2 .57 13 .3 3 .31 0 .435 0 .366 3 .3 3
CsCI	 CsCI Î

	

1 3 .56 7.20 2 .60 0 .348 0 .327 1 .5 3
CsB r	 3 .71 6 .51 2 .78 0 .372 0 .275 1 .2 4„ 1
CsI	 „ 1 3 .95 5 .65 3 .03 0 .404 0 .204 0 .8 7

NH4 C1	 „ 1 3 .34

	

6 .96 2 .62 0.351 0 .314 1 .45
TIC1	 3 .33

	

31 .9 5 .10 0 .578 0 .334 8 .90
T1Br	 „ 1 3 .44

	

29 .8 5 .41 0 .595 0 .311 8 .1 3

CuCI	 ZnS 1 2 .34

	

10 .0

	

E . B . 3 .57 0 .461 0 .289 2 .1 4
CuBr	 1 2 .46

	

8 .0

	

E . B . 4 .08 ' 0 .507 0 .193 1 .3 1

Zn S	 „ 2 2 .33

	

8 .3 5 .07 0 .576 0 .133 1 .0 8

BeO	 ZnO 2 1 .65

	

7 .35 2 .95 0.394 0 .285 1 .47
CaF2	 CaF2 2-1 2 .36

	

8 .43 1 .99 0 .248 0.465 2 .1 5
SrF 2	 „

	

. 2-1 2 .50

	

7.69 2 .08 0.265 0.426 1 .87
BaF2	 „ 2-1 2 .69

	

7 .33 2 .09 0 .266 0 .412 1 .75

8 *
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Table 5 . Comparison between Theoretical an d

Experimental Compressibility .

theoretical experimental

B G zl

	

z~

	

z3 d

all x 10 6

	

cm2fkg. x 10 cm .

LiF . . 12 .3 1 .13

	

5 .5 1 .50

	

S . 0 .73 0 .2 7

LiCI 2 .16

	

14 .9 3 .34

	

S . 0 .66 0 .0 1
.

LiBr
71

71 2 .56

	

20 .7 4.23

	

S . 0 .64 0 .04

LiI

	

. . 2 .99

	

25 .0 5 .889

	

13 . 0 .54 0 .1 1

NaF . . . . 1 .50

	

5 .0 2 .07

	

B . 0 .65 0 .61

NaCl

	

. . . 2 .40

	

8 .6 4 .182

	

B . 0 .47 0 .37

NaBr . . . 2 .63

	

10 .7 4 .98

	

S . 0 .44 0 .28

NaI	 „ 3 .48

	

16 .5 6 .936

	

B . 0 .45 0 .1 7

KF . . 2 .51

	

8 .6 3 .25

	

S . 0 .71 1 .1 0

KC1 . . „ 3 .32

	

10 .2 5 .53

	

S . 0.46 0 .82

KBr . 3 .60

	

11 .9 6 .56

	

S . 0 .42 0 .7 3

KI . . 3 .98

	

14.4 8 .37

	

S . 0 .34 0 .5 9

RbF : . . . 2.99

	

10. 4

RbC1 . . . . 4.04

	

13.1 6 .52

	

B . 0 .51 1 .00

RbBr . . . 4.61

	

15 .0 7 .78

	

S . 0.45 0.92

RbI	 4 .83

	

17 .4 9 .39

	

S . 0 .39 0 .78

AgCI . . . . 2 .09

	

19 .9 2 .4

	

R . J . 0 .89 0 .3 0

AgBr . . 2 .16

	

24.0 2 .7

	

R . J . 0.85 0 .1 5

MgO . . . . 3 .08 0 .211

	

1 .37 0 .5904 B . 0 .32 0.3 3

CaO

	

. . . . 0 .360

	

2 .93 4 .57

	

B . - 0 .09 0 .7 6

SrO

	

. . . . 0 .492

	

4 .47

CsCl
8

7 .30 3 .84

	

18 .0 5.829

	

B . 0 .63 0 .49
. . . .

303
CsBr

	

. . . 3 .81

	

17 .2 6 .918

	

B . 0 .50 0 .3 6

CsI	 I 1
3 .63

	

15 .5 8 .403

	

B . 0.33 0 .1 6

NH4 C1 . . 2 .86

	

13 .1 5 .9

	

B . 0 .41 0 .24

TIC].

	

. 53
3 .00

	

80 .0 4 .8

	

R . J . 0 .74 0 .2 3

T1Br . . . . 3 .18

	

83 .1 5 .2

	

R . J . 0 .71 0 .05

CuC1
16

29 .21 2 .53

	

18 .7 2 .463

	

B . 1 .02 0 .2 0
303

CuBr 2 :06

	

14.0

	

2 .87

	

B . 0 .75 0 .1 0

ZnS 7 .30 0 .286

	

2 .32

	

1 .281

	

B . 0 .18 0 .32

Beo 0 .154

	

0 .79

CaF2 . . . .
16

7 .30 1 .05

	

4.87

	

1 .206

	

B . 0 .87 0 .0 7

30 3
SrF.2

	

. . . . 1 .21

	

5 .33

	

1 .58

	

B . 0 .75 0.23

!An F . 1 .58

	

6 .68

	

2.07

	

B . 0 .74 0 .45

Discussion .

It will be seen that the experimental compressibility has

a value whicl.i in nearly all cases lies between the two

corresponding theoretical values . The only exceptions are

CuC1 and CaO .

In the case of CuCl the experimental value is so close

to the region of the theoretical values, that it is safe to sa y

that here the experimental value is equal to the theoretica l

value obtained when ß is equal to unity, i . e . when the entir e

LORENTZ force is taken to be present .

The value found for CaO is far outside the region of th e

theoretical values . It is very hard at first sight to understan d

why CaO alone should show this large discrepancy . An

explanation however, is found when the original paper o f

BRIDGMAN is consulted l . Some parts of interest are quoted

verbatim : About MgO BRIDGMAN writes :

"I was most fortunate to obtain a water-clear trans -

parent crystal of artificial origin'' . . . . For this the com. -

pressibility at 30° and pressure zero was found to b e

5 .904x10 -7 .

(This is . the experimental compressibility quoted in table 5

column 6 . )

"Before the sample of clear crystal MgO was obtained ,

measurements had been carried through in the regular way

on a compressed slug of powdered MgO, made from Kahl-

baum 's MgO, zur Analyse . . . . The absolute value of the

compressibility was of the order of twice that of the crystal ,

however . "

It was now found by BRIDGMAN that although the slug had

been compressed by an immense pressure it was still porous .

BRIDGMANN P . W . : Proc . Amer . Acad . 67, 345 (1932) .
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Due to the pores and to the irregular "amorphous " arrange-

ment of the ions in the slug, the compressibility is consider -

ably larger in the slug than in the crystal . About CaO

BRIDGMAN writes :

"The compressibility of CaO appears not to have bee n

determined previously . The enormously greater value than

for MgO is noteworthy and would seem to demand ex-

planation . The crystal structure of MgO and CaO is th e

same and of the NaCl type. It is highly probable that if

clear crystallized CaO could be obtained the same difference s

as compared with the compressed slug would be found a s

were shown by MgO . "

The quotation leaves little to be added. The experimental

compressibility of CaO quoted in table 5 column 6 is tha t

of the slug. This is probably more than twice as large a s

that of crystalline CaO . It is to the crystalline state however ,

that our relations should be applied . Hence, if the true

compressibility be only 2 .78 x 10 -6, namely half the com-

pressibility of the slug, it enters into the region of the theo-

retical values, and the discrepancy of CaO has disappeared .

The above quotation indicates what is the greates t

difficulty at present attached to the measurements of com-

pressibility of oxides . It is not in the experimental procedure ,

although the difficulties overcome by BRIDGMAN undoubtedly

are numerous, but it is in the provision of large and perfec t

crystals, where the difficulty lies .

The same remarks can also be applied to the dielectri c

constants of oxides. Here the experimental difficulties ar e

admittedly smaller, and discrepancies of the above magni-

tude are not found. Still the discrepancies of dielectric con-

stants are considerable and hardly due to experimenta l

error . In the cases of three different samples of MgO powder

of different origins I found the dielectric constants to be :

9 .9 ; 9.3 and 9 .8 respectively, whereas GÜNTHERSCHULZE and

KELLER 1 found the value 8 .2 . This means a discrepancy of

about 20 per cent . To elucidate the problem of relative error s

in dielectric constants of oxides, it would be valuable if the

dielectric constant of clear crystalline MgO were measure d

using EUCKEN and BÜCHNER'S method, which presumably

would be the most accurate one in this case .

If the theories of CLAUSIUS-MOSOTTI and LORENZ -

LORENTZ were absolutely true, and the other assumptions

we have introduced were also strictly permissible, the ex-

perimental compressibility should be given by equation (77) ,

i . e . it should be equal to xi . Actually a deviation is found .

As a measure of this deviation the factor ß was introduced .

This factor which represents the virtual fraction of the

LORENTZ force has been calculated by means of equation(80)

and is given in table 5 column 7 .

It is interesting to compare the present values of ßK as

obtained from compressibility with those earlier value s

obtained from infra-red data . This comparison is made in

table 6 .

The values of ß,, from absorption agree well with th e

corresponding values of ß K from compressibility in the case s

of the Rb and Cs-halides, whilst PA is somewhat smaller

than ßK in the cases of the Li, Na and K-halides . The value s

of ßc from the CHRISTIANSEN wave-length on the averag e

agree with the corresponding values of ßK from com-

pressibility ; still large values of ß c are often larger, and

small values smaller, than the corresponding values of ß K ;

but this may well be due to experimental error . It appear s

on the whole that the haphazard error on the ß values from

GÜNTHEnsCHuLZE A. and KELLER F . : ZS . f. Physik. 75, 82 (1932) .
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Table 6. Comparison between ß values of different

origin .

Compress -
ibility

PK

LiF	 0 .73 0 .26 0 .15 0 .6 7

NaF	 0 .65 0 .68 - 0.40

NaCl	 0 .47 0 .18 0 .16 -0.1 0

NaBr	 0 .44 0 .15 0 .4 5

Nal	 0 .45 0 .25 0 .29

KC1	 0 .46 0 .26 0 .43 0.0 0

KBr	 0 .42 0 .23 0 .25 - 0 .1 2

KI	 0 .34 0.13 0 .22 -0.0 3

RbCI	 0 .51 0 .52 0.60 0 .1 9

RbBr	 0 .45 0 .42 0 .45

RbI	 0.39 0 .38 0 .6 7

CsC1	 0 .63 0 .63 0 .7 2

CsBr	 0 .50 0 .49 1 .0 7

NH 9C1 . . 0 .41 0 .2 1

T1C1	 0 .74 1 .07 0 .44

T1Br . . . :	 0 .71 1 .07 0 .6 8

AgCI	 0 .89 0 .09

AgBr	 0 .85 0 .24

MgO	 0 .32 1 .14 - 0 .06

0 .0 2
ZnS :	 0 .1 8

CaF2	 0 .87 - 0 .1 1

SrF2	 0 .75 - 0 .0 7

BaF2	 0 .74 -0 .27

infra-red measurements is considerable and larger than th e

error on the ßK values from compressibility . The values of

ßR from reflection are definitely smaller than the other values

of ß ; this deviation, however, may well be due to assump-

tions involved in FÖRSTERLING ' S relation .

On the whole we may conclude, that the values of ßK ,

ßA and ßc agree inside the experimental error, and hence

the deviation from a simple relationship may solely b e

ascribed to the uncertainty of the LORENTZ force: Whether

the deviation actually is due to this one cause is another

question .

A question of interest is, whether it is possible to find

regularity in the variation of ß with the periodical syste m

of elements, and whether this variation can be related to

other properties of the ions or of the lattice . Important

properties of the ions are : the charge ; the size as expresse d

by the ionic radius, and the inner polarisability as expresse d

by the molar refraction of the ion . In order that propertie s

other than those considered shall not complicate the matter ,

it is desirable that the ions all should have similar electronic

structures . This is achieved in the case of the alkali-halides ,

because then all component ions have similar noble ga s

structures with two s . and six p. electrons in the outer

electron shell . In this case the charge on the ions is alway s

the' same, namely plus or minus one electronic charge .

Furthermore the ionic radius and the inner polarizabilit y

are related, because they are both dependent on the dimen-

sions of the outer electronic orbit, or in modern language

on the distribution of electrons in the outer shell .

In table 7 values of ß, as found from compressibility and

dielectric constant, are compared with the ionic radii give n

by GOLDSCHMIDT 1 , and with the " molar" refraction of th e

ion as given by FAJANS and Joos 2 . A twofold variation is o f

course to be considered, one with the cation, and one wit h

the anion . It is perceived that the variation of P K is not

GOLDSCHMIDT V . M . : Ber. ll . chem. Ges . 60, 1270 (1927) .
FAJANS K. and Joos G . : ZS . f. Physik . 23, 20 (1924) .

Absorption Christianse n

ßC

Reflectio n

P RßA
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completely haphazard, but a regular variation is found . The

variation with size and polarizability of the anion (the catio n

being maintained constant) is the larger and is one way only ,

i . e . /3 K always decreases with increasing size and refraction

of the anion. The variation with the cation is not so large ,

apparently ßK is a minimum for the sodium or potassium ion .

In the ß values obtained from absorption, transmission

or reflection measurements, similar regularities can only just

be traced, but no more than that . The experimental error is

probably so large that any regularities are masked .

Table 7 . Variation of ßK in the System o f

Alkali-Halides .

F GI B r

Radius -± 1 .33

	

1 .81

	

1 .96

	

2 .20
P +

E

1

Li

	

. . 0 .78 0.73

	

0 .66

	

0 .64

	

0 .54 0 .2 0

Na 0.98 0 .65

	

0 .47

	

0 .44

	

0 .45 0 .5 0

K . . . . 1 .33 0 .71

	

0 .46

	

0 .42

	

0.34 2 .2 3

Rb . . 1 .49 0 .51

	

0 .45

	

0 .39 3 .5 8

Cs . . 1 .65 .0 .63

	

0 .50

	

0 .33 6 .2 4

PL -* 2 .50

	

9 .00

	

12 .67

	

19 .24F-Refraction

Besides the influence of these ionic properties, influences

due to the nature of the lattice must also be considered . One

of these is important. By the reduction of expression (56)

to give (57) the intrinsic repulsive forces between next-

neighbours were neglected . In doing this a systematic error

is introduced in the calculation which followed, and this

also affects ßK . The repulsion between next-neighbours

depends largely on the degree of contact between them. We

have introduced the free distance d quoted in the last colum n

of table 5 as a measure of the degree of contact betwee n

anions. Contact between cations is not found. If there is n o

contact, i . e . if the free distance is large, the repulsio n

between next-neighbours is presumably negligible. This will

be seen if the values of ßK found for RbCl, RbBr and RbI

are compared with those found for CsCl, CsBr and CsI .

These salts crystallize in two different lattice-structures ,

having largely different distances between anions, which

distances however, are all so large that no contact occurs .

As will be seen from table 7 this sudden change in distance s

between anions is not followed by any large change in ßK .

The closest contact is found for LiCI, LiBr and LiI, it seem s

likely that the remarkable increase in ßK found for thes e

compounds is probably caused by the effect of anions in

contact. The effect of repulsion between anions will be such

that the compressibility is diminished . According to equatio n

(15) a decrease in r. all other things being equal will manifest

itself as an increase in ß .

This probably explains the peculiar variation of ßK with

size and polarizability of the cation . It is likely that ß always

decreases with decreasing size and polarizability of the

cation ; in the case of the lithium salts, however, this decreas e

is more than compensated by the increase due to anio n

contact .

The effect of other changes in the nature of the ions can

he estimated if salts other than the alkali-halides are com-

pared with them . The effect of valency for instance ; i s

estimated if values of ßK for the oxides of the metals of th e

second group are compared with those of the alkali-halides .
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Now it must be borne in mind that in the calculation of ßK

the valency has already been taken into account, and s o

thé present estimation is to some extent a proof of the

relationship. The value of ßK for MgO is 0.31, which is

somewhat smaller than that for NaCl namely 0 .47, with

which it is reasonable to compare it, since the O-- ion

has a refraction similar to that of the Cl- ion. The experi-

mental error in the value of ßK for CaO is too large for a

test. The small value of ßK for ZnS is probably caused by

the large polarizability of the S -- ion, furthermore th e

Zn + + ion has not noble gas structure . Otherwise it is found

that salts whose cations have not noble gas structure, exhibit ,

comparatively large values of ßK . Such for instance is the

case of the Cu +, Ag + and Tl + chlorides and bromides. The

ionic radii of these cations are comparable with those o f

the alkali ions, whereas the refractions are considerably

larger. Hence it is argued, that the internal polarizability

rather than the ionic radius has the principal influence on P .
This influence can be generalized as follows : "ß increase s

with increasing internal polarizability or refrac -

tion of the cation, and decreases with increasin g

refraction of the anion!" So far the relationship i s

empirical . In this respect and in others, it is similar to th e

relationship holding for the variation of the molar refractio n

of salts as dealt with by FAJANS and Joos l .

The Force-Centre of the Intrinsi c

Repulsive Force .

The deviation from equation (77) is not to be ascribed

to the uncertainty of the LORENTZ force alone, the irrelevanc e

FAJANS K. and .Toos G . : ZS. f. Physik . 23, 1 (1924) .

of some other assumption involved in the treatment ma y

also contribute .

A possible cause of discrepancy has been introduced b y

the assumption that the nucleus is the force-centre of the

polarized ion . This assumption was introduced in order t o

derive expression (70), but an objection was made then . In

view of the theory of HEITLER and LONDON ' it is eviden t

that the above assumption cannot be correct . The intrinsic

repulsive force is caused by an interaction of the electron s

rather than of the nuclei, it must therefore depend on th e

relative location of the electrons rather than on that of th e

nuclei . Now it is a question whether the intrinsic repulsiv e

force can be in any way regarded as a central force. But

as calculation will be rendered much more difficult withou t

this assumption, we will try to retain it . The force-centre

cannot always be situated at the nucleus, it must be shifted

in the same direction as are the electrons . As a reasonable

conception we will now assume the force-centre to be

represented by the mass- or charge-centre of the oute r

electron shell .

The separation into outer and inner electrons is arbitrary ,

especially as it is not granted that the number of outer elec -

trons is an integer, because the electron cannot be considere d

`outer' in all parts of its orbit . Since the number of outer

electrons is thus unsettled, it is suggestive to consider thi s

as the unknown magnitude which is to be determined. on

the assumption that the present cause of discrepancy is th e

preponderant one . It is assumed that only the outer electron s

contribute to the internal polarizability ar of the ion. If now th e

strength of the inner field of force is unity the displacement

of the outer electron shell with regard to the nucleus becomes :

1 LONDON F. : Naturwissenschaften . 17, 516 (1929) .
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s 1 = «''" for the cation, and s2 =
ar

for the anion (82 )
y 1 e

	

1' 2 e

The numbers of outer electrons y l and y 2 are assumed t o

be equal in the following, and the suffixes are therefor e

omitted .

By action of the field the ions as such are also displaced .

According to equations (3-5) the relative displacement of

the nuclei is given by :

aA
s3 =

ve '

The electrons of both anion and cation are displaced in the

same direction as the anion as such, whereas the cation a s

such is displaced in the opposite direction . It follows that

the relative displacement of the two outer electron shells is

given by :
aA aP -

s4 = s3 +sg -s1 = rt -
ve

	

ye

As argued above the intrinsic repulsive force depends o n

the relative displacement s4 of the electron shells, and not

on that of the nuclei, namely s 3 ; hence it will be realized

that s 4 and not s 3 ought to be introduced in equation (68) .

In order to correct equation (70) and the equations which

followed we may introduce the correction factor :

S4

	

v
=1 +

S 3

	

y

	

a.1

This correction factor can be applied to the theoretical com-

pressibility x1 obtained from equation (77) . If the present

cause of discrepancy is the preponderant one the experi-

mental. compressibility z 3 should be obtained thereby. This

means that the ratio s 4/g 3 should be equal to the ratio
x3/x 1 . With a view to numerical calculation the . following
transformations are performed.

Pi -PF v PI,

PE

	

y P A Pr-{- pi ;

From this again y can be calculated .

v PE Pi - PÉ

	

(85)
x3-1

P A Pr_- +
x 1

The reason why the transformation was made in the abov e
manner is that v, pE and pA have already been quoted in
table 4 ; x1 and x 3 in table 5 ; and Pi and Pl. in table 7 .

The values of y calculated for the alkali-halides by mean s

of the above equation are tabulated in table 8 . The arrange-
ment is similar to that of table 7 .

Table 8. Number of Effective Outer Electrons y .

F Cl B r

Li 1 .21 1 .61 1 .69 1 .6 9

Na 0 .82 1 .13 1 .33 1 .4 7

K- - 0 .10 0 .90 1 .06 1 .2 5

Rb	 0 .66 0.91 1 .17 '

Cs	 0 .37 0 .56 0.77

As will be seen from the table 8, y is not found to b e
the same for all salts . It is furthermore considerably smaller
than six, the number of electrons in the loosely held p-sub-

group . Thus it is likely that the present cause of discrepancy

(83)

(84)

v PE PT v PE

y

	

P1

	

y P.4
x3 -
x1
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is not the only one . On the other hand it cannot be neglecte d

as being inconsiderable . As argued above, all six p electron s

cannot be considered `outer ' electrons at the same time .

They presumably describe orbits round the nucleus . The

deflection caused by an external field is considerably large r

at an outer, than at an inner loop of an orbit . Hence electrons

in inner loops do not contribute nearly as much as those i n

outer loops . We may express this by asserting that the elec-

trons in inner loops do not count at all . As a consequence

of this the number of effective outer electrons may be con-

siderably smaller than six ; still one can hardly expect it t o

be as small as unity .

Too small values for the number of outer electrons are

also found from the relation of DRUDE and VOIGT, con-

cerning the dispersion in ultra-violet . By means of this

relation, the number of outer electrons in the noble gase s

were determined by CUTHBERTSON and QUARDER . The

resultant numbers quoted from Handbuch der Physik are 1 :

He 1 .11 ;

	

Ne 2 .37 ;

	

A 4.58 ;

	

Kr 4 .90 ;

	

Xe 5 .61 .

It will be seen that these numbers are also smaller tha n

the number of electrons usually taken to be in the oute r

shell . The explanation is similar to that given above .

Note on the Effect of Thermal Motion .

Professor J . A . WASASTJERNA (in a discussion following

his reading of the present manuscript) commented o n

assumption 3) on page 64 i . e . :

The lattice shall be perfect and the ions devoid of thermal

Handbuch der Physik : 20, 490-91 . WOLF K . L . and HERZFELD K. F.

motion. Actually the latter is not even the case at the absolute

zero of temperature, but the amplitudes are generally small .

WASASTJERNA remarked that the amplitudes are not small

under any circumstances . At room temperature the ampli -

tudes are of the order ten per cent of the distance betwee n

the ions, and at the absolute zero of temperature they are of th e

order five per cent . of the distance . He pointed out that the ne -

glect of thermal motion is an important cause of discrepancy .

It is admitted that the neglect of thermal motion contri-

butes to the discrepancy ; but it is another question how

great this contribution would be and how it may be eva-

luated. In the writers opinion the proper procedure would

be, to measure the property in view at a variety of tempera -

tures, to plot in a diagram the measured values against th e

corresponding amplitudes, and to extrapolate to zero ampli -

tude. (Not to the absolute zero of temperature.) The present

experimental data, however, are too scant and inexact fo r

performing such an extrapolation with any degree of

accuracy . Possibly the compressibility can be extrapolated

by means of the procedure proposed by HILDEBRAND 1 , BORN

and MAYER 2 and WASASTJERNA 3 ' 4 ; but as regards the

dielectric constant and the residual . ray, new experiment s

must be undertaken at various temperatures, before the

effect of thermal motion can be evaluated _

Summary .

) The entire treatment is restricted to regular ionic lattices ,

and is subject to certain assumptions which are state d

in .the preliminary pages .

1 HILDEBRAND J . H . : ZS . f. Physik . 67, 127 (1931) .

2 BORN M . and MAYER J . E . : ZS. f. Physik. 75, 1 (1932) .

WASASTJERNA J . A . : Soc . Sc . Fennica . Corn . Phys. Mat . VIII . 20 (1935) .
4

WASASTJERNA J . A . : Soc. Sc . Fennica . Coro. Phys . Mat. VIII . 21 (1935) ,

Vid . Selsk . Math .-fys . Medd. XVI.2 .

	

9
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2) The theory of the "LORENTZ" force is put forward in

a simple manner mainly following DEBYE, but em-

phasizing the inherent uncertainty pointed out by HECK -

MANN. As a measure of the uncertainty the parameter ß

is introduced which denotes the virtual fraction of th e

classical LORENTZ force .

3) By means of a simple statement, regarding the inerti a

of a vibrating ion and the forces acting on it, an ex-

pression for the dispersion of the dielectric constant i n

the far infra-red is derived . The influence of dampin g

being neglected, the dielectric constant becomes infinit e

at the natural frequency of the ionic motion . The

corresponding wave-length is found to be given by HECK-

MANN'S relation, which includes BORN'S relation as a

special case .

4) The natural frequency is approximately equal to th e

frequency of the absorption maximum, but not to that

of the reflection maximum . (The residual ray .) The

shape of the reflection curve is discussed .

5) The various relations are tested on the experimenta l

data available . The discrepansies may be ascribed

solely to the uncertainty of the LORENTZ force, whence

reasonable values of ß have been determined .

6) The intrinsic repulsive force between two ions i s

assumed to be a short range central force . It is found

convenient to expand it into a TAYLOR series .

7) The compressibility can be expressed as a function o f

the second and the third coefficient of this TAYLO R

series .

8) The change in potential energy of intrinsic repulsiv e

forces arising from a relative displacement of th e

lattices of positive and negative ions respectively is

computed. For small displacements the resultant elasti c

force is proportional to the . displacement and inde -

pendent of the direction in the crystal . The propor-

tionality factor is expressed by the same function of the

second and the third coefficient of the TAYLOR serie s

as is the compressibility .

9) Both coefficients therefore can simultaneously be elimin-

ated whereby a relation connecting measurable quan-

tities is derived. These are : the compressibility, th e

lattice dimensions, the dielectric constant and the
refractive index .

10) The parameter ß is the only arbitrary magnitude in-

volved. It can therefore be determined by means of th e

experimental data . Values between unity and zero ar e

found in nearly all cases. The values of ß found from

compressibility data are similar to those found fro m

the absorption maximum in the far infra-red, and t o

those found from the CHRISTIANSEN wave-lengths

(measured by BOWLING BARNES and BONNER), but

somewhat larger than those found from reflection data .

11) The compressibility as a rule is measured with greater

accuracy and for more compounds than is the ab-

sorption, transmission or reflection in the far infra-red .

As a consequence the values of ß' found from com-

pressibility data are employed in an empirical manne r

to elucidate the relationship between the deviation o f
the LORENTZ force and various properties of the ioni c
lattice .

12) Thus it is found that ß increases with increasing interna l

polarizability of the cation, and decreases with in -

creasing internal polarisability of the anion .

13) Intrinsic repulsive forces between next-neighbours ar e

9*
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found to be insignificant except in the case of anio n

contact which causes an increase in (3 .

14) The deviation expressed by (3 may also be ascribed

partly to an irrelevance of some of the other assumption s

involved. For instance it is likely that the intrinsic

repulsive force is not a central force, and if it has t o

be described as such, then the force-centre of the

polarized ion cannot be situated at the nucleus . The

alternate conception of the force-centre as situated at

the charge-centre of the outer electron shell is con -

sidered. It is likely that part of the deviation has to b e

explained in some such way .

15) The neglect of thermal motion may also contribute t o

the deviation .

ON AN ELEMENTARY METHOD

OF CALCULATINGMADELUNG'S CONSTANT

WITH A DETERMINATION OF TH E

ELECTROSTATIC LATTICE ENERGY OF TH E
IDEALIZED CALCITE LATTIC E

B Y

KRISTIAN HØJENDAH L

CONTRIBUTION FROM THE CHEMICA L

LABORATORY OF THE ROYAL VETERINARY AND AGRICULTURAL COLLEG E

COPENHAGEN, DENMARK



T
he lattice energy of a salt is defined as the energy

necessary to form free gas ions from one grammolecul e

of the crystal ; it is not to be confused with the heat o f

vaporisation of the salt crystal. ; salt vapours, at attainable

temperatures at all events, do not consist of separate ions ,

but of clusters of associated ions, these being the molecules

in the ordinary sense . The difference between the heat of

vaporization and the lattice energy, which is the energ y

gained by the association and mutual polarization of the

ions in forming the cluster, has been calculated by BORN

and HEISENBERG' who, computing also the lattice energy .

were able to evaluate the heat of vaporization of the alkali-

halides in fair agreement with experimental data .

The lattice energy is also of great importance as regard s

the solubility of salts in various solvents. According to

FAJANS 2 the heat of solution of a salt in a solvent is equal

to the difference between the heat of solvation of the ga s

ions, and the lattice energy of the salt crystal . This has been

emphasized by BJERRUM 3 . In a more qualitative manne r

the lattice energy is related to the hardness, the meltin g

point, and several other properties of the salt crystal .

Boaz M . and HEISENBERG W . : ZS. f. Physik . 23, 388 (1924) .

FAJANS K. : Naturwissenschaften . Heft 37, 1 (1921) .

s BJERRu e N. : Ber . D . chem . Ges . 62, 1091 (1929).



Nr. 2 . KRISTIAN HØJENllAHL :136 Studies in the Properties of Ionic Crystals . III .

	

13 7

The lattice energy can be determined by means of BORN ' S

cycle', this method, however, has the disadvantage that th e

electron affinity of the anion is implied, and as a rule thi s

energy term is badly known . The lattice energy can also be

calculated directly on the basis of certain assumptions

regarding the forces between the ions . These forces can b e

separated into two types ; a) the electrostatic force which

follows Coulomb's law, and b) a short range repulsive forc e

which keeps the ions apart ; and the lattice energy ca n

accordingly be separated into a major electrostatic part, an d

a minor repulsive part . A calculation of the repulsive par t

was first carried out by BORN and LANDÉ 2 , and afterwards

refined by BORN and MAYER 3 and WASASTJERNA 4 ; this part

amounts to about one tenth of the electrostatic part ; it cannot

be determined with any great accuracy, since an accurat e

expression for the relation between repulsive force an d

distance of ions is not known .

The calculation of the electrostatic part of the lattic e

energy is the theme of the present investigation, and in what

follows we will restrict ourselves to that item : The electro-

static potential energy of two ions of charges ve and v ie

at a distance L is :

(I)

To obtain the potential energy Ø of an ion with respect t o

all other ions in the lattice we must sum up over all distances

with due regard to the signs of the ions. It is convenient to

introduce a standard distance Lo .

BOR N
z BORN

M. : Verh . d . D . Physik . Ges . 21, 679 (1919) .

M . and LANnF. A . : Verh . d . D . Physik . Ges . 20, 210 (1918) .

`5 Boas M. and MAYER J . E . : ZS . f. Physik . 75, 1 (1932) .
a WASASTJE8NA J . A . : S . Sc . Fennica . C . Phys . Mat . VI . 22 ; VIII . 20 ;

VIII . 21 .

_ vvl e2 \` Lo
-

vv t e2

Lp .	 ~ L

	

L 0 1 '

The factor j is termed MADELUNG'S constant, the numerical

value of it is proportional to the particular value chosen fo r

Lo, but for a given standard distance it is a constant numbe r

characteristic of the lattice . The electrostatic lattice energy

of a grammolecule Ø is only half the sum of the (I) value s

of the constituent ions, for in our summation we coun t

each distance twice, counting both a-b and b-a.

Ø = z (Øi ii + 4)2 v+ . . . .) ;

	

(3)

N is AVOGADRO ' S constant, and u and v are the numbers o f

ions of different types in the molecule. The constant j canno t

be evaluated by an uncritical summation, because the rati o

L° decreases only slowly, and the number of ions increase s

rapidly with the distance ; it is therefore necessary to procee d

on a definite plan .

MADELUNG 1 , who first calculated the value of j for th e

NaCl lattice, considered at the first instance the potential o f

an ion with respect to a linear, equidistant row of alternately

charged ions . If the reference ion is one of the row, th e

summation gives a well known series, namely:

2 (1- 9 + 3 -
4	

) = 2 bi . 2. = 1 .3863

	

(4 )

If, however, the ion is outside the row, the summation i s

by no means so simple . MADELUNG evolved the distributio n

of electric charge along the line of the row into a FOURIE R

' MADELUNG E. : Physik . ZS . 19, 524 (1918) .

vvi e 29,
L

(2)
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series, which means that he replaced the discrete charge s

by a number of superimposed continuous charges, having

charge densities varying as cosine functions . In practice only

two members of the FOURIER series need consideration ,

namely that having the ionic distance as period, and tha t

having one third of this distance as period . The problem

is now reduced to the determination of the potential energy

of an ion with respect to a linear charge the density o f

which varies as a cosine function . This problem can b e

solved by means of high mathematics, the solution involving

a cylinder function, namely HANKEL'S function that is

tabulated in JAHNKE and EMDE 'S Funktionentafel l . The

potential energy was found to decrease considerably wit h

the distance between the ion and the row, and hence the

summing up of the contributions of comparatively few row s

sufficed to give a reasonably accurate value of MADELUNG 'S

constant for the entire lattice . EWALD 2 has proposed anothe r

method which, however, is still less understandable to

persons not acquainted with the highest of mathematics .

Now it is not my opinion that the use of high mathematics

to physical chemical problems should be abandoned, sinc e

in many cases there is no other way, still if a more ele-

mentary way can be found this is worth while, because a

considerably greater number of persons will then be abl e

to understand the derivation. That an elementary method

of calculating MADELUNG's constant can be derived, which

is even less cumbersome as regards the numerical calculatio n

than the above methods, I should like to show :

It is a familiar fact that crystals, growing from a solution ,

as a rule acquire a nearly perfect external shape . This is

1 JAHNKE F . and EmDE E . : Funktionentafel. Leipzig (1909) p . 135 .

EwAr.n P . P . ; Ann. d . Physik . 64, 253 (1921).

not accidental, on the contrary, we must infer that th e
perfect crystal is more probable, and this again can onl y

be explained by the internal energy or the lattice energy o f
the perfect crystal attaining a maximum value . This value
depends on the size of the crystal, but only slightly, as wil l
be seen later; this is in agreement with the fact that the
solubility of small crystals is only slightly greater than tha t
of large crystals, granted of course that the crystals are
perfect. In order that the lattice energy of even a small

crystal shall approach closely to that of an infinite crystal ,

the crystal must not only be perfect in every way, but i t
must presumably also be electro-neutral, i . e . it must contain
equal numbers of positive and negative charges . The fact
that a maximum of lattice energy has been attained, mean s
that the forces on the outside charge neutralize each other ,

which can only be the case if the crystal is electro-neutral .

The new method of calculating electrostatic lattice energ y
is the following : In the case of the smallest possible perfect

and" electro-neutral crystal we sum up the reciprocals of th e

relative distances between one reference ion and all othe r
ions in the crystal whereby a value j 1 of the MADELUNG
constant for the minute crystal is obtained . Afterwards the

crystal is allowed to grow equally in all directions by deposi t

of a mono-ionic layer or a layer of crystal units, and in this

way a larger perfect and electro-neutral crystal is built . Now

the reciprocals of the distances between the above referenc e

ion and the ions of the newly deposited layer are summe d

up as before, and a value j 2 is obtained which is termed

the contribution of the second division . In a similar manner

we determine the contributions of the subsequent divisions .

Now it will be observed that these contributions diminis h

exceedingly with the distance from the reference ion, and as a
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rule only few contributions need be summed up to give pract -

ically the entire electrostatic lattice energy of the infinite lattice .

In order to demonstrate the method by the simplest

example we will consider a two-dimensional lattice, fo r
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Fig . 1 .

instance, an ion bearing (1, 0, 0) plane of the NaCl lattice ,

see Fig . 1 . In this the reference ion is marked R, and th e

relative distances from the reference ion are written in the

circles representing the other ions . This relative distance

can always be expressed by yn where n is a whole number ,

which facilitates the calculus, as 1Iy
n is tabulated in BAR-

Low ' s tables of squares and cubes . The ions are classified

into divisions as will be seen from the figure, each ne w

division forming a frame around the former one . The sum -

mation was carried out on a calculating machine, and th e

following contributions were found .

1 j/2

2 3

	

2 + 4

	

1

1 j/2 V4 V5 V 8
3 division :

	

= 0.00365

4 division :

	

= 0 .00299

5 division :

	

= 0.00098

6 division :

	

= 0.00044

Total

	

1 .61493+0.00 1

The electrostatic lattice energy of the entire NaCl lattic e

is more important . The smallest possible crystal of NaC l

consists of eight ions forming a cube . The reference ion i s

one corner of this cube . The subsequent divisions form some -

thing ixnilar to a system of Chinese boxes . The calculation

was carried out as above using BARLOw's tables and the cal -

culating machine . The following contributions were obtained :

3_ 3 +	 1
1

	

division : =

	

1 .456030
V2

	

y3

3

	

9

	

7

	

3

	

1 2

1

	

+ V3

	

1/4 +V2

	

y5
2 division :

12

	

3

	

6

	

1- 0.295739
V6

	

V 8

	

9

	

V12
3 division :

	

= -0 .004729

4 division :

	

=

	

0 .00067 9

5 division :

	

_ -0 .00022 1

Total

	

1 .747498+0.0005

{5~0

+

7

cJ

1 division :

2 division :

2

	

1
= 1 .29289

= 0.31398
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Note! that a value of 1 .7518, which is only 3 per mille in

error, can be obtained from the first two divisions . This will

suffice to demonstrate for students how MADELUNG'S constant

may be determined. In order to approximate MADELUNG ' S

7

	

8

	

9

Division
Fig . 2 .

constant as closely as possible from the above data, the

contributions of the subsequent divisions have been eva-

luated by extrapolation. In diagram 2 the logaritms of th e

numerical values of the above contributions are plotte d

against the numbers of the divisions, and the logaritms of

the subsequent contributions are graphically extrapolated .

In this manner we found :

6 division :

	

= 0.000100

7 division :

	

_ -0.000059

8 division :

	

= 0.000040

9 division :

	

_ - 0 .000028

estimated for further divisions

	

= 0.000007

Total

	

0 .000060

added to the above

	

1 .747498

we obtain as our most accurate value

	

1 .747558

This is very close to the values found by MADELUNG I . C .

and by EMEIISLEBEN' who found : 1 .747557 .

KossEL 2 has calculated the energy involved in placin g

an ion anywhere at the surface of a NaCl crystal . He found

that this energy depends, in a large measure, on the position

of the ion, and thus explains why crystals grow in a definit e

habit. The different energy terms determined by KossEL can

easily be derived from the above values of the electrostatic

energy of an ion with respect to a row, a plane layer, or a

three-dimensional lattice of ions . We can, for instance ,

determine the energy gained by placing an ion in the proper

position outside a plane (1, 0, 0) surface of a large NaCl

crystal. In order to do that we will consider an ion insid e

a large NaCl crystal, its electrostatic energy with respect t o

all other ions being expressed by MADELUNG ' S constant

1 .7476. We are now removing all ions except the reference

ion in a (1, 0, 0) layer . The energy required for removin g

these ions from the reference ion was determined above t o

be 1 .6149. The energy left, i . e . 1 .7476 -1 .6149 0 .1327

is the energy of the reference ion placed properly outsid e

x ENTEasLEBEN O . : Physik . ZS . 24, 104 (1923) .

KossEL, W. in a monograph edited by FALKENUAGEN : Quantentheorie

und Chemie.

i 62 53
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the (1, 0, 0) surfaces of two crystals, hence this energy i s

just twice the energy to be determined . We find 0 .0663 ,

whereas KossEL found 0 .0662 . In a similar manner we find

the energy gained by placing an ion properly outside th e

edge of a (1, 0, 0) layer to be equal to : 1 / 2 (1 .6149 - 1 .3863)

= 0 .1143, whilst KossEL found 0.1144 . We are thus abl e

to confirm KossEL's data .

The Electrostatic Lattice Energy of the Calcit e

and the Sodium Hydrofluoride Lattices .

The electrostatic lattice energy has, as far as I know ,

only been calculated for the NaCl lattice, the CsC1 lattice ,

the ZnS lattices (both blende and wurtzite), the CaF22 lattice ,

the Cu20 lattice and the two TiO 2 lattices (rutile and

anatase)1. The calcite lattice is one of the simplest and mos t

important among the lattices which, as I believed, had not

been considered earlier ; afterwards, however, I perceive d

that EvJEN 2 had already considered the idealized calcite

lattice . Later on EVJENS data will be compared with mine .

As we do not know how the electric charge of the carbonat e

ion is distributed, the lattice will be idealized in such a way

that the total charge becomes located at the centre of th e

ion, i . e . on the carbon atom. It is not likely that the distri-

bution of electricity inside the carbonate ion will affect th e

lattice energy to any great extent . By this idealization th e

calcite lattice becomes equivalent to a NaCl lattice, com-

pressed along a trigonal axis . In a similar manner the

NaHF2 lattice corresponds to a NaCl lattice, expanded along

1 For references see : BORN M . and BOLLNOW O . F . : Hdb. d . Physik .

24, 438 (1927) .
s EVJEN H . M . : Physical Review . 39, 680 (1932) .

a trigonal axis . The ions in the planes perpendicular to the

trigonal axis are all alike, and form a net-work of equilatera l
triangles ; the distances between ions in such a plane ar e

not altered by compression or expansion, but so are the

distances between the ionic layers . The distance between

neighbouring layers, which is the smallest intercept on th e
principal axis, will be employed for a standard distance Lo .

The distances within the layer can be expressed by L1 rn ,
where m is a whole number, and L1 the radius of a circl e

circumscribing the equilateral triangle . The ratio p =
L1

is
L a

used for the parameter of the lattice. We are going to cal-

culate the values of MADELUNG 'S factor j for a number of

parameters, and in order to facilitate the calculation th e

parameters chosen are square roots of whole numbers ; the

distance between any two ions may then be expressed b y

Lo j/n where n is a whole number, whence BARLOw's tables

can be employed as before .

The ions in the lattice are classified into divisions a s

before, but now these divisions are rhombohedral shells ,
and as a rule not cubical . A model of the NaCl lattice, and
drawings of its (1, 1, 1) planes, were of great use in classi-

fying and calculating relative distances. These drawings,.

however, are not reproduced, as they would occupy to o

much space, it is considered sufficient to give the (square s

of) the relative distances between the reference ion and th e

other ions in the inner rhombohedron (Table 1) and those

between the reference ion and the ions in the second divisio n
(Table 2) .

The squares of the distances from the principal axi s

through the reference ion is given in the first column, and the

square of the distance from the layer containing the referenc e

ion is given in the second column . The last column gives th e
Vidensk .Selsk. Math : fys. Medd.XVI, 2 .
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Table 1 . Inner Rhombohedron or 1st Division .

Table 2 . 1st Rhombohedral Shell or 2d Division .

parameter

1

	

v2 V3 V* V5 V $

square of distanc e

1 1 2 3 4 5 6 9 + 3

1 4 5 6 7 8 9 12
.-

3

0 9 9 9 9 9 9 9 + 1

4 1 5 9 13 17 21 33 + 3

3 0 3 6 9 12 15 24 - 6

9 0 9 18 27 36 45 72 - 3

4 1 5 9 13 17 21 33 + 3

7 1 8 15 22 29 36 57 + 6

4 4 8 12 16 20 24 36 - 3

7 4 11 18 25 32 39 60 - 6

3 9 12 15 18 21 24 33 + 6

9 9 18 27 36 45 54 81 + 3

1 16 17 18 19 20 21 24 - 3

4 16 20 24 28 32 36 48 - 3

1 25 26 27 28 29 30 33 + 3

0 36 36' 36 36 36 36 36 -1

number of ions having the same distance, the sign plu s

indicating attraction, and the sign minus repulsion .

The cases considered above were those in which th e

parameter p is the square root of a whole number . A cal-

culation has, however, also been carried out in some case s

where the number under the surd was a simple fraction /k .

In order to make use of BARLOW'S tables, we were here

obliged to choose another standard distance, namely on e

which is a j/7 part of the distance between the layers . In

this way the relative distances between the ions becom e

expressed by square roots of whole numbers . Afterwards

when the reciprocals have been summed up to give th e

contribution of the division, we may transfer to the usual

value of L o by multiplying the total by j/ 1 . Such transferred

values for the contributions are quoted in the followin g

table 3 together with the values obtained by means of th e

above tables 1 and 2 .

Table 3 . MADELUNG'S Factor for the Idealized Calcit e

Lattice .

Parameter 1

2
2

2
1 v

3

2

1 division	 + 1 .3686 + 1 .2684 + 1 .1130 + 0 .951 5
2 division	 - 0.4178 - 0 .1651 + 0 .0462 + 0 .144 1
3 division	 + 0.0761 + 0 .0505 + 0 .0211 + 0 .0040
4 division	 - 0.0284 - 0 .0198 - 0.0098 - 0 .002 9

Total	 + 0.9985 + 1 .1340 + 1 .1705 + 1 .096 7

Parameter V2 V3 V4 v5 Vg

1 division	 + 0 .8406 + 0 .6994 + 0 .6143 + 0 .5581 + 0 .4673
2 division	 -F 0 .1707 + 0 .1747 + 0 .1660 + 0 .1572 + 0 .141 6
3 division	 - 0 .0027 - 0 .0092 - 0 .0137 - 0 .0175 - 0 .026 4
4 division	 + 0 .0004 + 0 .0035 + 0 .0049 + 0 .0058 + 0 .007 5

Total	 + 1 .0090 + 0 .8684 + 0 .7715 + 0 .7036 + 0 .590 0

The parameter value 1/2 corresponds to the undeformed
NaCl lattice considered page 141 ; hence it is an important

check on the calculation to compare the present values o f

10 *

dist .
from
axis

dist .
from
layer

square of distanc e

paramete r

V i V3 Vi V5 number

1

1

0

4

65

98

2

5

9

4

7 .

9

9

12

9

3

6

9

+ 3

- 3

+ 1

dist .
from
axis

dist .
from
layer

number



Nr. 2 . KRISTIAN HØJENDAHL :148 Studies in the Properties of Ionic Crystals . III .

	

14 9

the contributions, division by division, with those foun d

before. The earlier standard distance is V3 times as large a s

the present one, and hence each of the former contribution s

should be 15 times as large as the present one. For the

total we find : 1 .0090 x0 = 1 .74764, whereas the first fou r

divisions on page 141 gave a total of 1 .74772 . The dis-

crepancy of 0 .05 per mille gives a measure of the inaccuracy

of the calculation itself. In the case of the NaCl lattice, i. e .

for the parameter value V 2, the electrostatic potential energy

of an inner ion in a minute crystal consisting of 512 ion s

is practically equal to that of an ion in an infinite crystal ,

for other values of the parameter this will not be the case .

A measure of the error, due to the neglection of outside

ions, can be obtained in the case of the parameter value 0.
For this value the deformed NaCl lattice becomes a CsCl

lattice, as will be observed when the values of relativ e

distances in tables 1 and 2 are examined . An accurate value

of MADELUNG ' S constant for the infinite CsCl lattice has been

calculated by EMERSLEBEN 1 . C . who (on EWALD 'S method)

found a value of 2 .035356 using the lattice spacing for a

standard distance ; transferring this to our standard distanc e

by dividing by V12 we obtain a value of 0 .587557. The

difference of 4 .1 per mille between this value and ou r

corresponding value of 0 .5900 is a measure of the error

arising from our neglection of the outside ions . This is the

case with the parameter value 1/8 , for the value 1/-2 the error

is insignificant, hence we expect this error not to exceed, a t

any rate, one per cent, not only in the interval between th e

parameter values of 0 and V8, but also between those of

we did in the case of the NaCl lattice, still it is of pedagogical

interest that a reasonably accurate value of MADELUNG 'S

constant can be calculated by the elementary method als o

in the case of the CsCl lattice .

The following empirical formula was derived using th e

values of the totals from table 3 corresponding to the para -

meters i ~.. .

	

1, V-2 and V5 :

1

	

1

	

1

	

1
j° + 0 .3573 + 2.085p -1 .9135p4 ~--0 .7754 Ps- 0.1286p8 ; (5 )

The parameters not employed in the adjustment of th e

formula showed the following deviations : for p = VL ,
2

- 2.2 per mille ; for p = V3, + 2 .5 per mille ; for p = V4 ,

+ 1 .5 per mille, and for p = V8, + 1 .8 per mille . To thi s

must be added the more significant error due to the neg-

lection of outside ions, whence the total error becomes o f

the order of one per cent .

The electrostatic part of the lattice energy of one gram -

'molecule can be calculated by means of the equations (2)

and (3). In the present case v and vl are equal, and Øl

and Ø 2 are equal, whereas u and v are both equal to unity,

and hence these equations may be reduced to :

2 .

CD = N e2	 J = 3.300 x 10-6
v

k cal .

	

(6 )
Lo

	

Lo

The numerical factor is computed, using the value o f

6.061 x1023 for AvoGADRO's number N, and 4.774 x 10-1°

e. s . u. for the electronic charge e ; furthermore, the con-

version factor 4 .185 X 10 1 ° is employed in order to expres s

the energy in kcal . Experimental and calculated data are

given in table 4 .

V2 and 1 /1 . In the case of the CsCl lattice we have no t
V 2

approached the accuracy of EMERSLEBEN'S calculations, as
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Table 4 . The Electrostatic Lattice Energy pr o

Grammolecul e

of compounds crystallizing in the calcite or the NaHF 2lattice.

v ah

Å

ch
Å

Lo

A. P kcal .

N a N O 3	 1 4.98 16 .56 1 .380 2.05 0.756 180

MgCO3	 2 4 .601 15 .21' 1 .268 2.10 0.741 772

CaCO3	 2 4.98' 17 .04' 1 .421 2 .01 0 .769 714

ZnCO 3	 2 4 .65 1 14 .98 1 1 .249 2 .14 0 .729 771

CdCO3	 2 4 .91 1 16 .25 1 1 .355 2 .09 0 .743 724

MnC03	 2 4 .85 1 15.521 1 .294 2 .16 0 .724 739

FeCO 3	 2 4 .67' 15 .251 1 .272 2.12 0 .735 762

ScBO 3	 3 4.75' 15 .27 1 1 .274 2.15 0.727 169 0

InBO 3	 3 4 .771 15 .46 1 1 .289 2.13 0 .724 1670.
YBO 3	 3 5 .06' 17 .21 1 1 .435 2 .03 0 .762 1580
N a H F 2	 1 13 .84' 2 .305 0 .855 1 .155 165

NaN3	 1 3 .64' 15 .20 2 2 .533 0 .830 1 .145 149

GOLDSCHMIDT V. M . and HAUPTMANN H . : Nachr. Gottingen . III. 16 . (1932) .

2 HENDRICNS S. B . and PAULING L . : Jour,, . Amer. Chem . Soc. 47, 2906 (1925) .
ANDERSEN C . C . and HASSE,. O . : Z . physik . Chem . 123, 151 (1926) .

v is the valency ; ah is the translation in the direction o f

the secondary axis, and ch the translation in the direction of

the principal axis (the hexagonal axes) . The standard

distance L0 is the distance between ionic layers perpendicula r

to the principal axis, hence in the case of the calcite lattic e

it is chi12 and in the case of the NaHF2 lattice it is C h/6 .

The parameter p was defined as

L

where L, is equal to ah/ 15.
0

The electrostatic lattice energies of the above carbonate s

and borates are considerable and these compounds ar e

consequently insoluble in water . GOLDSCHMIDT and HAUPT-

MANN were aware of this and remarked furthermore that

ScBO 3 and InBO 3 are resistant even against strong acids .

It is likely that future methods of isolating scandium will

be based on the stability of scandium borate . GOLDSCHMID T

and HAUPTMANN also determined the hardness whic h

increases in the sequence LiNO 3, MgCO 3 and ScBO 3 .

After the above paper had been written I perceived tha t

EVJEN 1 had already proposed a similar method of deter-

mining MADELUNG'S constant . In order to demonstrate th e

similarity and the difference between EvJEN's method and

the present one it is found appropriate, verbatim, to quot e

the following sentences from EVJEN ' S paper :

"This immediately suggests a simple method of cal -

culating the MADELUNG constant : Sum directly the potentials.

of the ions over a cube of side red around the origin . The

potentials of the ions inside the cube are summed in th e

ordinary manner each being given unit weight ; the potential s

of the ions forming the surface of the cube, however, ar e

given the weights 1 / 2 , 1/ 4 or 1/8 according as they are situate d

on a face, an edge or a corner of the cube . This procedure ,

of course, is equivalent to summing by cells rather tha n

by ions. "

The last sentence quoted expresses the essential differenc e

between EvJEN's method and the present one .

EVJEN has furthermore calculated MADE .LUNG ' s constant

for the idealized calcite lattice . He used MADELUNG'S method,

and gives his results as a curve in a diagram on rather to o

small a scale . In order to compare his results with min e

I have transferred my data to his standard distance, which

is always the smallest distance between neighbour ions ; and

to his parameter, an angle p the tan of which is 4 . The

data thus transformed have been plotted as points (crosses )

1 EVJEN H . M . : Physical Review . 39, 680 (1932) .
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into the diagram, Fig . 3 . It will be observed that, especially

in a region about cp = 25°,. the agreement is not particularly

good, the deviation amounting to about 1 .3 per cent . Now one

might raise the objection to my calculation that perhaps thi s

deviation arises from the neglection of ions outside the

rhombohedron of 512 ions . In view of this I have calculated

the contribution of one more shell of ions, i . e . a 5th division,

for the case of p = V4 or P = 26.56°. I found a value of

-0,0028 for this contribution . Using this, together with th e

other contributions for the case of the parameter V4 in

table 3, for an extrapolation similar to that shown in Fig .

2, I found a value of 0 .7699 for Madelung ' s factor. This

is all on the basis of the old standard distance ; transfer-

ring that to the present standard distance, i . e . the smal-

lest distance between neighbour ions, I got a value of 1 .722 .

This most accurate value, which is probably no more tha n

1 per mille in error, is 2 per mille below my former va -

lue, but more than 10 per mille above Evjen's curve .

Hence we are probably allowed to conclude that our calcu-

lations are the more accurate .

Summary.

The electrostatic lattice energy of a salt crystal canno t

be evaluated by an uncritical summation, because the

electrostatic force is a long range force, and the number o f

ions increases considerably with the distance . MADELUNG

therefore applied a mathematical artifice in order to carr y

out the calculation . It is, however, found that a direc t

summation is feasible provided that it proceeds on a definit e

plan ; this plan being founded on the experience that crystal s

of a nearly perfect shape can be obtained by crystallization .

Perfect electro-neutral crystals were therefore used as stage s

in the calculation, and it was found that the lattice energ y

of 'even a small but perfect crystal comes close to that o f

an infinite crystal . Thus the electrostatic energy of an inne r

ion in a NaCl cube of 64 ions is no more than three per

mille different from the lattice energy of an infinite NaCl

lattice . By means of crystal cubes containing up to 1000 ion s

a value of 1 .747558 has been extrapolated for MADELUNG' S

constant of the NaCl lattice in perfect agreement wit h

EMERSLEBEN .

If the electric charge of the anion is assumed to b e

located at the centre, the calcite and NaHF 2 lattices may

be described as a NaCl lattice deformed by being compresse d

or expanded along a trigonal axis . By the deformation a

cube becomes a rhombohedron, and the lattice acquires a
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parameter determining the relative dimensions of the Thom =

bohedron . The electrostatic energy of an inner . ion with

respect to all other ions in a rhombohedric crystal of 51 2

ions has been calculated in the case of nine values of th e

parameter, and an empiric , formula for the variation o f

MADELUNG ' S factor with the parameter has been derived .

The value of the electrostatic part of the lattice energy ha s

been calculated in kcal, for NaNO 3 , MgCO 3 , CaCO 3 , ZnCO 3 ,

CdCO 3, MnCO 3 , FeCO 3 , ScBO,, InBO 3 , YBO 3 , NaHF22 and

NaN 3 . EVJEN has earlier calculated MADELUNG 'S factor for

the idealized calcite lattice, and in a diagram his data ar e

compared with mine .
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