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INTRODUCTIO N

I
t is well known that, generally speaking, continuous one -

valued functions of one or more almost, periodic func-

tions lead again to almost-periodic functions . Also it has

been shown that in various situations where problems with

almost-periodic data give rise to many-valued solutions, thes e

solutions are themselves almost-periodic, or at any rate show

interesting almost-periodic features . The case of algebrai c

functions was first treated by WALTHER 1) , who proved tha t

the solutions of an algebraic equation whose coefficient s

are complex almost-periodic functions of a real variable t

are always almost-periodic functions, provided the discrim-

inant D(t) of the equation not merely is different from zer o

for all t but actually has a positive number as the greates t

lower bound of its absolute value . By means of well-es-

tablished relations between the translation numbers and the

Fourier exponents of an almost-periodic function one ca n

easily obtain from WALTHER ' S proof some first results on th e

connection between the Fourier exponents of the solution s

of the equation and the Fourier exponents of the coefficients .

The latter result was sharpened by CAMERON 2) in an in-

teresting paper dealing with the general question of implicitl y

given almost-periodic functions . CAMERON also answered in

1) A . WALTIIER, Algebraische Funktionen von fastperiodischen Funk-

tionen . Monatshefte für Mathematik und Physik . Bd . 40, 1933, p . 444-457 .
2) R . H . CAMERON, Implicit Functions of Almost-periodic Functions .

Bulletin of the American Mathematical Society . 1934, p . 895-904 .

1*
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the negative the question left open by WALTHER, whether

the restriction on the discriminant that GLB ~ D(t) I > 0

could be replaced by the weaker condition D(t) $ O. In fact

he stated that there exists an almost-periodic function f(/)
which, while f(t) $ 0, has GLB ~ f(t) I = 0, and which has

the property that the two continuous roots + V/f(t) of the

equation y2 -f(t) = 0 (with discriminant 4 f(t)) are not al-

most-periodic 1) .

In the present paper we investigate systematically the prob -

lem of the almost-periodic solutions of an algebraic equatio n

whose coefficients are almost-periodic functions of a rea l

variable and whose discriminant is not near zero . We shal l

not make use of the previous investigations quoted above ,

but start afresh ; the former results will naturally presen t

themselves in the course of our investigation . The proble m

will be studied both from an analytical and from an alge-

braic point of view. That the latter to some degree predo-

minates is simply due to the fact that a certain Abelia n

substitution group, the "almost-translation group" of th e

roots of the equation, presents itself as a natural basis fo r

any thorough-going discussion of the problem and turn s

out to have a fundamental influence on the structure of th e

solutions. A principal result of our paper is the fact that

any arbitrarily given transitive Abelian substitution grou p

can occur as the almost-translation group of the roots of

an algebraic equation with almost-periodic coefficients . Thus

the solutions of an algebraic equation present a much more

rich and varied aspect when the coefficients are general al -

l) Since CAMERON did not indicate explicitly the construction of suc h

a function, the present authors have constructed an example which pre-

sumably follows the same lines .
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most-periodic functions than in the classical case when the

coefficients are pure periodic functions with a common

period, which leads to only cyclic groups .

The paper is divided into seven sections . In section I

we set down, in such form as will be most convenient for

our later applications, some familiar facts concerning Abelian

substitution groups and their character groups . In section

II we introduce the notion of almost-translation substitutio n

and almost-translation group, basing our considerations o n

an arbitrary finite set of complex functions . In section II I

we apply the notions and results of section II to such sets

of functions when they form the roots of an algebrai c

equation with almost-periodic coefficients . Section IV (lik e

section I) is of auxiliary character, and assembles some wel l

known important relations between the translation number s

and the Fourier exponents of one or more almost-periodi c

functions . In section V we apply these relations to our pres-

ent problem. The principal contribution of the paper i s

found in section VI, where we deduce necessary and suffi-

cient conditions that a given finite set of almost-periodic func-

tions shall have as its almost-translation group an arbitrarily

given transitive Abelian substitution group . In these condi-

tions the characters of the group play a predominant role ;

and by means of the characters we are enabled to give a

certain canonical representation of the functions considered .

We also give general examples - which from various as-

pects may be said to be the simplest, as well - of sets o f

functions with arbitrary transitive almost-translation groups .

The paper is concluded in section VII by the applicatio n

of the results of section VI to the original algebraic problem .
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I . Preliminary Remarks on Abelian Substitution Groups .

W
e shall be concerned throughout with substitution s

which permute the m objects in a finite set . If the

objects are distinguished by attaching the indices 1, . . ., m

to a fixed symbol, we shall denote the set by enclosing the

fixed symbol in [ ]'s : e . g. [a] denotes the set composed o f

a1 , . . ., am . Where no ambiguity arises we shall not distin-

guish between a substitution operating on the elements o f

[a], and the corresponding substitution operating on the in -

dices. Thus we shall customarily denote the substitution S
. . ., m )

which takes a1 into a	 a m into agm , by
~1 ,

	

, glli
We shall indicate the effect of S on any alt by writin g

agh = Sal, . The substitution resulting from operating first

with S1 and then with S2 will be denoted by S 2 S1 . Finally ,

a relation which holds between each ah and its correspond -

ing Sah will frequently be denoted by enclosing a specime n

relation in [ ]'s . Thus if, as often in the later sections, th e

a's represent numbers such that ah -Sah < e for h = 1 ,

m, we shall write simply [I ah - Sal, < e ] .

Let r be an Abelian group of substitutions on [a] (o r

on the indices of [al) . A generating system of I' is a

set of elements of F, say S'1, . . ., Sg , in terms of which

every element S of F can be expressed as a power pro-

duct, as S = (SD' . . . (S '' ) e`r . (If this representation is uniqu e

in the sense that each factor (SZ) e is uniquely determined
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by S, the generating system is called a basis of T) . A gen-

erating system which contains the smallest possible num -

ber, say u, of elements S is called a minimal generat-

ing system . This number which is characteristic o f

the group, has a property which is particularly importan t

for our purposes, namely that out of every generating sys -

tem S'1, . . ., Sq there can always be chosen ,s elements ,

say Si, . . ., S ',,, such that (E denoting the identity element )

for every relation (S') ey . . . (S 'u) elu = E between these ele-

ments, we have GCD (e l , . . ., ed > 1 .

Of special importance for our investigation is the cas e

where the Abelian substitution group F is transitive .

Then T is of order in, and each substitution of F is uniquely

determined by specifying its effect on any one element of

[a] . Hence we can always assign the indices 1, . . ., m to

the objects a and the substitutions S in such a way tha t

= ah , so that Si = (1, . . .1 ,

	

S,t: =

(1'
. ) . Such am, . . .

concordant indexing of [a] and r has the readily verifiabl e

advantage that the effect of multiplying every element of T

by any fixed element Sh is to perform on the elements of

T a substitution whose symbol (in terms of the indices) i s

identical with that of Sh. Thus, if SfS 1 = S1 , . . . , Sh S,,, _

S
hm

, then S
hi

, . . .,
Shrrz

is a permutation of Sl, . . , S ,,, , and
. . .,712

~ti

	

h 177J ,

interpreted as a substitution on [a], is pre-

cisely Sh .

Since T is Abelian we know that a complete set of char-

acters of T forms (with respect to ordinary multiplica-

tion) a group T 'isomorphic with T. We may then denot e

the elements of the character group by x 1 (S), . . ., x,,, (S) .

(We shall denote the principal character by its value, 1) .
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The notions of generating system and minimal generating sys -

tem apply to I' * as they did to I', but with certain additiona l

features due to the connection between the two groups .

Thus, we shall find useful for our later applications th e

following well known simple criterion for a generatin g

system of T * : the characters x',, . . , xq form a generatin g

system of T* if and only if xi (S11) = xi (S0 ), • • •,
;4(s11)

=

xg (S g) implies S h = S9 . Also, since .T* is isomorphic with

F, a minimal generating system of I * has the same num -

ber ,w of elements as a minimal generating system of F.

Further, out of any generating system xi, . . ., xg can be

chosen p- characters, say xi, • • •, xu,, such that every relatio n

(id' • • • (xF,)e" = 1 implies that GCD (el , . . ., eu) > 1 .

Finally, since F is transitive, and since by definition

z(S11) x (Sg) = x (ShS O), it follows from the previously note d

result of indexing the elements of T and [a] concordantly :

If x(S) is any character and Shi , . . .,
Shn

is just that per -

mutation of Si , . . ., Sin produced by applying to the indice s

of the S's the substitution which denotes S 11 , then

x (Sh) x (Si) = xOh) , . , z (Sh) x (S ,11 ) = x (S11) .

We conclude this section with some remarks on thos e

powers of the substitutions of a (not necessarily transitive)

group F which leave a given element of [a] unaltered. For

fixed element ah we may regard the relation Seah = ah

as an equation in the variable substitution S, whose rang e

is the group F. We denote by vh the least positive integer e

for which this relation is an identity in S . Trivially, v 1, i s

not greater than the order g of the group, since the n

sg a 1, = Eah = ah , not only for every S in F, but for ever y

ah in [a] . Equally trivially, vh < In! , since the set of all
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substitutions on [a] forms the symmetric group 2 ,,, of order

m! . If Z' is Abelian and transitive, and hence of order m ,

we have the sharper result that vh is < in ; and in fact vi ,

is independent of h and equal to in', the least common

multiple 'of the orders of the elements of F. If the Abelian

group T is intransitive, each ah belongs to a transitivity

set containing, say, Inh elements ; and T is homomorphie .

with a transitive Abelian group F' operating on this subset

and hence of order mh . In this case vl, = In f, < mh , where mt ,
is the least common multiple of the orders of the substi-

tutions in I

II . Almost-Translation Substitutions and the Almost -

Translation Group .

In this section we suppose that the In elements of th e

finite set [a] upon which substitutions are to be performed ,

are distinct one-valued complex functions, h W , . . . , ;h(t) ,
of a real variable, defined for -oc < t <-F- oc . In accord-

ance with our previous notation the set is then denoted

by [f (t)] .
We first assume only that each function is c o n ti n u o u s

for all values of t .

Definition . For given s> 0 we shall say of a rea l

number r that it s-performs the substitution S on [f(t)] if

[I f,,(t+ c) -Sfl,(t) ~ < s] for -oc < t <+ oc .

We shall denote by { ,c(s) (s) } the set of all real numbers

r each of which s-performs the fixed substitution S on

[f(t)] ; and by {r{fl (s)} the set of all real numbers z eac h

of which s-performs some substitution on AO] .
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Remark . As the rn functions are distinct from eac h
other, it is clear (quite apart from any consideration of th e
continuity of the functions) that for sufficiently small pos-
itive e, no r can e-perform more than one substitutio n
on [f(t) . In other words, there exists c> 0 such that if

0 < e< e * and r belongs to both { z(s (e) } and {{ 7(SØ) (e)) ,

then S i = S2 .

Lemma . If r t
E { r(So A e l) } l) and r2 E r i s,) (e

22
)ß, then

(Ti + r2) E {r(,ssi) (e1 + e2)} and (r1 + r9) E \ r (siss) `El +e 2)ß .

Proof. By assumption [I f,(t+rl)-Slf},(t)I<e1] . Re -
placing t by t+r2 ,

(1) [I fii ( t + r2+ rl) -Slfh ( t + r2) IÇ el ] .

Also, by assumption [ I fh(t+ r2) -S2 fh (t) < e2], whence, re -
placing fh by S 1 fh,

(2) [ I S1th( t + r2) - S 2 S1fh( t ) I Ç e2] '

From (1) and
/

(2) follow s

[Ifh( 1 + r2 +z1 ) S2S1fh(t)H1+e2] ,

which says that (r 2 r1 ) E { z"(s 25) (e1+e2) ) . The other half
of the lemma is derived similarly (or simply by interchang-
ing the indices 1 and 2) .

Corollary. If r E {T(s) (e) } and v is any positive inte -
ger, then yr E (r( sv ) (ve)or 2 >

v { r(S) (e) } Ç { r (Sv) (v e) } .

1) The symbol e denotes the relation "belonging to", while the sym -
bol e is used for positive numbers .

2) For fixed real v we shall denote by v { r } the seL of all num-
bers vv .
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Definition . If S is and substitution on [f(t)] such tha t

{ E(s)(e) } is relatively dense for every positive e, we shall say

that S is an almost-translation substitution on [f(t)], or that

f(t)] admits S as an almost-translation substitution .

Theorem. 1 . The set I' of all almost-translation substitu-

tions admitted by [f(t)] is either vacuous or an Abelian sub-

stitution group (which we shall call the almost-translatio n

group of [f(t)]) .

Proof . If I' is not empty, let S 1 and S9 be any sub-

stitutions in T. For any e > 0 take arbitrary s s z(sl) (-62

and E2 E v(s2) (Tl (. . If we put s1 = 2 = 2 in the lemma

above, we seethat z1 +T2 belongs to both {v(s,so(e) ) an d

{ v(s„so (E) } . But these relations hold for every positive E

and corresponding G1 , r 2 ; in particular, when e< e', which

requires that S2 S 1 = S1 S 2 . Thus the product of any tw o

substitutions in F is commutative . Furthermore, since the

sets 1E(SO(II and } c (sa ~ (6)1 are relatively dense for ever y

E > 0 (actually we only need to have one set relatively dens e

and the other not empty), the set of all sums Z1 + i2 , and

a fortiori {,r(ss)(E)}, is relatively dense for all positive E's .

Thus S 2S1 = S1 S 2 belongs to T (which is a subset of th e

finite group 2n), so T is an Abelian group .

Corollary. If [f(l)] has an almost-translation group T,

then each function fh(t) is almost-periodic .

Proof . The identity-substitution E must be in 1' ; i . e .

every positive E determines a relatively dense set {E(E) (E) }

of real numbers r for each of which

[Ifiz (t-I- z) -Efi,(t)1< E] .
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Since Efh = fh , this simply says that for each fixed h, every

am(s) is a translation-number -1h (£) of fh (t) 1) .

Theorem 2. A necessary and sufficient condition that [f(t) ]

admit an almost-translation substitution (and therefore hav e

an almost-translation group T) is that the set {
T[fl

(e) } be

relåtively dense for each e >O .

Proof . The necessity is immediate . To prove the suf-

ficiency we show that the identity E is actually admitted

by AO ] (t)] as an almost-translation substitution . By assump-

tion the set z~f] (

	

	
s

t~ is relatively dense, and to each o f
In /

the numbers z- =

	

there corresponds a substitutio n
m I

	

l
. Hence rn! iS (depending on z) such that 7 E z ( s) ( rrie l 1 . Hence

belongs to { i(Sm ) (e) }, i . e . to { T(F) (s) } . Thus the set { z(E) (e) }

For the remainder of this section we suppose that w e

have to do with a finite set AO ] (t)] of functions, each of

which is almost-periodic . By the above corollary, thi s

condition is automatically fulfilled when the set has a n

almost-translation group. We collect here some remark s

concerning this case which will be useful in later sections ;

1) In accordance with the usage prevailing in the literature we shall ,

throughout the paper, denote by zf (e) a translation-number (correspond -

ing to e) of a single function f(t) . We have been careful to differentiat e

from this the two other symbols of similar type introduced here, viz .

r(s) (e) and T u. ] (r), each of which denotes a number performing an offic e

similar to that of the translation-number of a single function, but i n

connection with a finite set of functions .

contains the relatively dense set ni! Iz-w ( ml)}, and is it -

self relatively dense .
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in particular we shall see that the converse of the abov e

corollary is also true, that is that the almost-periodicity of

the separate functions fh (t) implies the existence of a n

almost-translation group of the set At)] .

1°. A familiar and important property of such a set i s

the fact that each e > 0 determines a relatively dense se t

of real numbers r, each of which is a translation numbe r

for every one of the functions fh (t), so that for 1 < h < in ,

I fh (t -{- a) - fh (t) < e for -Do < t < -}- oc .

Even more, as BOCHNER has shown, there exists an almost -

periodic function F(t), called a m a j o r an t of the set, such

that for every positive e the set { VF(e) } of its translation -

numbers is identical with the set-theoretical product of th e

sets { r,. (e) }, . . . , { rï°1 (e) } of translation-numbers of the

individual functions .

2°. Our set [f(t)] certainly admits the identity E as a n

almost-translation substitution, and hence has an almost -

translation group T (which may consist of E only) .

In fact, for every e > 0, the set { rF (e) } determined in 1°

is precisely the set { r(F) (e) } .

3°. If S is such a substitution of the whole group 2',,,

that for some e > 0 the set { 7(s) (s) } is not empty, then the

set {'e(s) (26)} is relatively dense . For if ao is some num -

ber in { T(s) (&) }
and r c { v(F) (e) } , then (To -{- v) E { r(s) (2 e) } ,

and this set is therefore relatively dense since { r-(F) (e) } i s

relatively dense .

4° . There exists a fixed number e** > 0 with the prop-

erty that any substitution S of .fm belongs to F provide d

only that for some positive e < e ** , the set { z( s) (e) } is not

empty . For let us denote by J(e) the (possibly vacuous,
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certainly finite) set of substitutions belonging to tin but

not to T, each of which is e-performed by some real T . I t

is evident that 0 < e 1 < e2 implies /1(e1) Ç /I(e 2), and that

this, combined with the finiteness of every AO, implies

that for some positive e**, 0 < e l < e** < e 2 gives us /1(e1 }

zl(e**) ç L1(e2) . If zI(e**) actually contained a substitutio n

S, for this S every { z(S) (e) } would be non-vacuous, and

by 3° every { z(s) (2 e) } would be relatively dense . S would

then by definition belong to T, contrary to hypothesis . Thus ,

if for some positive e < e** , a substitution S of 2,n is e-per-

formed by even one z, then that substitution belongs to T .

5° . Let fh (t) be any fixed member of [f(t)], and v h the

corresponding positive integer (defined in section I) for which

SZ'tfh(t)	 fh (t) for every S in T. Then for each suffi-

ciently small e (in fact for e < th e**) ,

(ifr (e) j ~ ph {Tif (v)} .
h

For, for each S in T, {zfi (e)} {z(Svh)(e)}, and (z(Svh)(e)}
and henc e

{ zfiZ (e) } , (L)
'\vhl i .

But the last relation, just proved for each S in T, hold s

for trivial reasons for ever y

actly the set {v,i ()} so
vh

proof is completed .

S in 2m which does not belong,

the set iz(S)
(E

1
}

is empty on
vh J

the set-theoretical sum,

the sets {r( s )(_-)} ,
vh

{zfh(e)} v h

	

(HI, and the

account

to T, since for such an

S of 4° (as-I- < e**) .
vil

taken over all the S's in 2m , of

Now

is ex-
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III . The Existence of an Almost-Translation Group fo r

the Solutions of an Algebraic Equation with Almost-Peri -

odic Coefficients .
Let

(3) y,n+xl(t)yni-1+ . . .+x„i-1(t)y+xnt(t) = o

be an algebraic equation of degree m in the complex vari-
able y, with leading coefficient 1 and remaining coefficients ,
x l (t), . . ., x1,(t), almost-periodic functions of the real vari-
able t . We denote the discriminant of the equation (which ,
by the way, is also an almost-periodic function) b y

D(t) = d [xi (t), . . ., x,,,( t)] .

If DO) $ 0 for - oo < t < + Do, the m roots of the
equation are distinct for every value of t, and since th e
coefficients are continuous, these roots may be sorted in
just one way (except for choice of notation) into m one -
valued functions, y l (t), . . ., gm(t), each of which is con-
tinuous for all values of t . Further, as the coefficients xi (t)
are bounded and uniformly continuous, the roots yh(t) wil l
also be bounded and uniformly continuous in - < t< + Do .

We now assume not merely that D (t)

	

0, but that

D(1)> a > O .

Then there clearly exists a ß > 0 such that for every t

(4) i yh (t) -Y g (t) I > ß for li $ g .

Consequently, for any two values t i and t2 , there can exis t
at most one substitution S (we may denote it by S(tl , t2)
to indicate its dependence on tl and t 2) such that

{
I y i ( tl) -Syh(ts) l < 2

We shall now prove the important theorem :
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Theorem 3. The set [yet (t)] of continuous solutions of a n
equation (3) with almost-periodic coefficients x (t) and discrim-
inant satisfying I D (t) I> a > 0, has an almost-translatio n
group I', and hence is composed of almost-periodic functions .

The last fact was first given by WALTHER, as was men-

tioned in the introduction .

Proof : According to theorem 2 of section II it suffice s

to show that to every given e > 0 there corresponds a

relatively dense set of real numbers { '[al (e) }, i . e . of num -

bers 'r to each of which there corresponds some substitu-

tion S = S('r) of lm such that [I yj,(t+z)-Syj,(t) I < e] .

Naturally it suffices to consider "small" positive a' s ; we

may therefore take the given e to be < 2, where f is the

positive number occurring in the inequality (4) . With thi s

restriction on e, if for some two values tl and t, we hav e

found two substitutions S i and S2 such that

[I yh(ti) -Si yh (t2) < e] and [l y h ( ti) -S2 yh( t2)

	

s] ,

we may conclude that S l = S, .

Corresponding to the given e we determine (as is pos-

sible because the coefficients x T (t) are bounded) a à > 0

such that for any two real numbers t ' and t " satisfying

~ xj(t')-xl(t") <
a

(j = 1, . . ., ln)

there is a substitution S = S (t' , t "), for which

yh(t')- Syh(t")~ <

From the preceding remark this substitution is uniquel y

determined since 3 < e <
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Consider the relatively dense set {'r (d) } of translation
numbers (corresponding to this d) of a majorant X(t) of
the coefficients x (t) . We shall prove the relative density
of {'t (E)} by showing that {qty] (E)} {Tx (d)} . In other
words, we shall show that to each fixed Z satisfying fo r
all t the inequalitie s

x.(t+z)-xi(t) I < d (j = 1, . . rn)

there corresponds a substitution S = S (T), such tha t

[I g,, (t + r) - Sgh (t) i ~. E]

	

(- oc < t < + Do) .

Note first that, from the manner of choosing d, ou r
fixed 'r and any fixed t certainly determine one, and only
one, substitution S = S (t, z) which satisfies the relatio n

[Iuht+_suh(tI < s .

The proof will obviously be complete when we have show n
that this substitution S(t,'r) is independent of t, i . e .
depends only on T . For this purpose we first determin e
an r > 0 such that the inequality I t' - t" < ij implies the

inequalities I gh (t' ) . -gh (t " ) I < 3 for 1 < h < in, i . e . implie s

gh(t')-Eglz(t ") I < ~ .

Since the whole real axis can be covered by -intervals of
length in order to prove that S (t, a) is independent o f
t it suffices to prove that for two arbitrary numbers t i and
t2 satisfying I t i - t2 < i , the two substitutions S i = S (t1 , z) ,

and S Z = S(t2 , a) are identical .
V idensk. Selsk . math . fys . Meld . XV ,12 .

	

2
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From the definition of Si and S2 we have

~ iJh
. (4 + -Si iJ11 ( t) < 3

1
and

[I9h(t2 -f T)-S2gh( t2) ~ Ç

Since I (ti + a) - (t2 + r) = I ti - t2

	

,1, we have als o

gh (ti + a) -- Egh (t2 +z) I < 3
J

.

Hence

[I S i iJh ( ti) - S 2 911(12) I< 3 + 3+ 3
=

	

.

Replacing gh by Si 11)h, this become s

(5)

	

[I g h. ( ti)- S2 Si 1g h ( t 2) I

	

e] .

On the other hand, from I t i - 12 1 < ,71 we get

g h (ti) E~h (t2 ) I < 3< e

But (as we emphasized above) relations (5) and (6) enabl e

us to conclude that S 2 S i 1 and E are identical . Thus Si =

S2 , and the proof is completed .

We here introduce an abbreviation of our notatio n

which will be useful later on . If f(t) and g(t) are almost-

periodic functions we shall write

l -f) {zg

in order to indicate that, corresponding to any ei > 0 (or,

equally well, to any sufficiently small e l > 0), there exists

an e 2 > 0 such that { af(e2 ) } e { Zg (ei ) } . Such symbolic ab-

breviations we shall use not only in connection with th e

translation numbers of single almost-periodic functions ,

(6)
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but also for translation numbers zvl (e) and r(s) (s) referring

to sets of functions . For instance, by

{ i ffl f

	

{ c
9

we shall mean that to any e 1 > 0 there corresponds an

E2 > 0 such. that {
z[fl (e2)lli

	

{r(1) } .
In terms of this notation we see that, for our alge-

braic equation with almost-periodic coefficients x (t) and

D (1) > cc > 0, the translation numbers of the majorant

X(t) and the translation numbers belonging to the set o f

roots [y (t)] are in so far the same a s

{Tx} s {`[g]) and
{%l)

ç
{Tx) .

The first of these two relations has been directly shown

in the course of the proof above . The second relation hold s

because, corresponding to any given e, > 0, since the root s

yh (1) are bounded, we can find a positive e2 so small that

every Z; which e2-performs some substitution on [y (t)] must

satisfy, for all t, the inequalitie s

1 x(1+-x(t) <

	

(j = 1,	 m) .

IV. Auxiliary Remarks on Relations betwee n
Translation Numbers and Fourier Exponents of Almost -

Periodic Functions .

With any almost-periodic function f(t) there is associ-

ated a certain series as its Fourier series ,

f (t) N Zane i 't . t .

In the treatment of various questions concerning the Fou -

rier exponents 1,n of At), it is not just the set of exponent s

themselves which is of primary importance, but the larger
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set containing all linear combinations with integral coeffi-

cients of a finite number of these exponents ,

gl%1+ g2 Z2 -}- . .+ gN
l`'ly .

This set is usually denoted by Mf and is called the mod-

ule of the function f(t) ; evidently it is the smallest

number-module which contains all the exponents a,n .

There exist important relations between the translatio n

numbers z- f(a) and the exponents of an almost-periodic

function f(O. Especially we shall have to use a necessary

and sufficient condition s) that the module M of an almost -

periodic function g (t) be contained in the module Mf of

an almost-periodic function f(t), expressed in terms of th e

translation numbers of the two functions . By using th e

abbreviated notation introduced at the end of the previou s

section we can express this condition very simply as follows :

Lemma 1 . Let f (O and g (t) be two almost-periodi c

functions . In order that M g Ç Mf. it is necessary and suf-

ficient that {'af} ç { rq } .

Roughly speaking, the fewer translation numbers, th e

more exponents .

We shall also recall a relation between the translation

numbers and the Fourier exponents of a single almost -

periodic function :

Lemma 2. In order to show that the real number B be-

longs to the module Mf of an almost-periodic function

f(t)

	

.anetA tt it suffices to show that to any positive a

1) Compare H . Bonn, Ueber fastperiodische ebene Bewegengen . Corn-

mentarli Mathematici Helvetici . Vol . 4, 1932, p . 51-64 .
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there corresponds a positive d = ô(r), such that each

belonging to { zf (d)) satisfies the inequality

I eieT-1 I < e .

We shall not enter upon the proof of these two lem -

mas, but content ourselves with pointing out that they

depend essentially on a famous theorem of KRONECKER on

Diophantine approximations . As we shall make direct us e

of KRONECKER 'S theorem in section VI, but in a form

slightly different from the usual one, we take this occasio n

to re-state his theorem in this form, using the exponentia l

function eit .

KRONECKER ' S Theorem . Let Å 1 , . . ., LN be arbitrarily

given real numbers, and let qiw be given complex

numbers of absolute value 1 . In order that to each posi-

tive e there correspond a real r satisfying the N inequalities

eiÎ"nT__ryjn ( 5_ e (72 = 1 , . . , 1V ) ,

it is necessary and sufficient that whenever a linear rela-

tion with integral coefficients

g 1 2,1+ . . . + gNÂ'N = 0

holds between the L,'s, the corresponding relatio n

hold between the n's .
One sees immediately that the condition is necessary ;

the real content of the theorem lies in the fact that it i s

also sufficient.
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V. Relations between the Fourier Exponents of th e
Roots and the Fourier Exponents of the Coefficients o f

an Algebraic Equation .

We return to the algebraic equatio n

u 7n I ,xl
(()

t~f17
-1

+
. . .T x77i -1(t) y +

xf77 (t) = O
of section III . We denote by X(t) some majorant of the

almost-periodic coefficients xi (t), . . ., x ,n (t) . As is wel l

known, the module M1 is independent of the choice of th e

majorant, and is not only the smallest number-modul e

containing all the Fourier exponents of X(t), but is als o

the smallest number-module containing all the Fourier ex-

ponents of all the functions xj (t) .
As before, we assume that the discriminant of the equa-

tion satisfies the inequality

GLB ID(t)I>0,
-cc <t<00

so we know that the equation has as continuous roots

a set of almost-periodic functions ,

.ÿ1 (t), . . . , y m (t) .

Thus the roots have a majorant Y(t), and the module

My is the smallest number-module containing all the Fou -

rier exponents of the functions in the set [q(t)j .

In this section we shall discuss the connection betwee n

the Fourier exponents of the roots of the equation an d

the Fourier exponents of its coefficients . The connection

will be exhibited by demonstrating some important rela-

tions between the modules M1 , M l„ and Myr
:,

and thei r

multiples .' )

1) By the multiple r•M we shall understand the module arisin g

from the module M by multiplying every number in M by r.
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Theorem 4. Mx ç My .

Proof. This is an immediate consequence of the facts :

that the coefficients x(t) are polynomials in the roots

gh (t) ; and that the Fourier series of a polynomial functio n

of almost-periodic functions is determined simply by forma l

calculation from the Fourier series of these functions . Thus

each exponent of each x(t) is a linear combination with

integral coefficients of the exponents of the roots g1 (t), . . . ,

gm(t), and therefore belongs to My . Hence the whole mod-

ule ILTx is contained in My .

We now proceed to a theorem which is not at all trivial ,

and the proof of which uses essentially the connectio n

between Fourier exponents and translation numbers men-

tioned in section IV . As in section II we denote by F the

almost-translation group of the set [g(t)] of roots, and b y

vh (< m) the least positive integer e such that Segh = gjz

for every S in F, as defined in section I .

Theorem 5. For each h among I, . . ., m we have the

relation

(7)

	

Mfr ç
v

Mx

The fact that to each of the roots gh(t) there corre-

sponds some number vh < m for which Mu, ç_ 1 Mi , was
vh

first found by CAMERON in the paper quoted in the in-

troduction .

Proof . In remark 5° of section II it was shown tha t

for each sufficiently small s,
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Hence, using the abbreviation introduced at the end o f

section III, we hav e

(8 )

	

vh{ r{Y]}

	

{ rv h}

But, as shown in section III, the translation numbers
r[y ]

and rx are the "same" in the sense that

	

{ Tm} c {' .Y} and lTxf

	

Try] }
.

Hence the relation (8) is equivalent to the relatio n

vh {Tx} Ç {ryh } .

Now it is evidently the same thing to say of a number r

that it is a vh •Tx (d) as to say that it is a rx* (d), where

X*(t) denotes the function X (-I . Thus we may write
\ ' h

{rx`} Ç
{ ryft} ,

and by lemma 1 of section IV we conclude that

t
But the Fourier exponents of X*(t) = X - are simply the

vh ,
exponents of X(t) itself, each divided by v ie Hence 11/1x* =
1

Ml , and we get the desired result ,
It

M -1VIa .
y,t - yh

Corollary 1 .

MY Ç	 1 Mx
rn !

For this merely contracts to one relation the m relation s

M h c ml Mx, each of which must hold since every vh ,

being < m, is a divisor of in! . This corollary, substantially
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due to WALTHER, may also be proved readily without usin g

the sharper relations (7) .

Corollary 2 . The modules Mx and MY have the sam e

maximum number of rationally independent elements (i . e .

elements linearly independent with respect to the rational

domain) .

This follows immediately from Mx My and MyÇ -
1

m!
Mx .

In the remainder of the paper we shall confine ou r

attention to the case where the almost-translation group F

is transitive . In this case we get a rather complete sur-

vey of the relations connecting the Fourier series of th e

different roots . This restriction is a natural one since ,

when our given algebraic equation has as roots a set of

functions with an intransitive group F, it may be split up

into a number of equations of lower degree, each one

having as its roots the functions of a transitivity system

of the original set ; at the same time, as we proceed t o

show, this process does not enlarge the modules of th e

coefficients, i . e. the module of the coefficients of eac h

new equation is contained in the original module Mx .

For let g l (t), . . . , g 0 (t) be a transitivity system of th e

set WO] , (t)], and let

(y-J1(t)) . . . (g - g 0 (t)) = + ~ (t)

	

1+ . . . + (t)

	

o

be the corresponding new equation, with Z (t) as a major-

ant of its coefficients . Then we have to show tha t

_Mw c Mx .

Now, roughly speaking, every "fine" translation number of

X(t) gives rise to one of the substitutions in F, and hence,
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when applied to the transitivity system y 1 (t), . . ., y e (t) ,

merely effects some permutation of this subset. But this

means that it is a "fine" translation number of Z (t) .

Speaking precisely, we hav e

{zXJ Ç {z~ J
and therefore

M,z Ç Mx .

VI . The Fourier Series of a finite Set of Almost-Periodi c

Functions with a Transitive Almost-Translation Group .

In section II we introduced the notion of the almost -

translation group of a finite set [f(t)] of in distinct com-

plex functions of t, each function defined and continuou s

for -cc < t < + oc . We there showed that a necessary

and sufficient condition that such a set of functions have

an almost-translation group T is that each function b e

almost-periodic. In section III we found that in orde r

that an algebraic equation of degree m in the complex

variable y with leading coefficient 1 have as roots a se t

[y(t)] of m distinct almost-periodic functions of t (i . e .

a set of in functions having an almost-translation group) ,

it is sufficient that (a) the coefficients be almost -

periodic functions of t, and (b) the discriminant D(t) sat-

isfy the inequality

GLB ~D(t)~>0 .
- .<r< .0

Condition (a) is evidently necessary as well ; for the co -

efficients of the equation, being symmetric polymials i n

the roots, must be almost-periodic themselves . As regards

the condition (b), concerning the discriminant, the situation

(9)
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is more . complicated. In fact on the one hand, as men-

tioned in the introduction, condition (b) cannot be re -

placed by the weaker condition, D(t) 0 for all t; on the

other hand there exist algebraic equations of degree rn with

almost-periodic coefficients and satisfied by m distinct al -

most-periodic functions, for which not only G L B ID (t) I= 0

but even D(t) - 0 for some 1 1) . Thus the restriction (9 )

on the discriminant introduces an element extraneous to

the notion of the almost-translation group . In the present

section, therefore, where we deal with those propertie s

stemming directly from the group, we shall not think o f

our functions as roots of an algebraic equation, but onl y

as having an almost-translation group T. As pointed out a t

the close of the previous section, we consider only th e

case where T is transitive .

Let, then, [f (t)] be a finite set of m distinct almost -

periodic functions having as almost-translation grou p

a transitive Abelian group F of substitutions on the set .

As we remarked in section I, the group has m element s

which we may (and do) index concordantly with the func-

tions, so that S1 f1 = f11 . We begin by deducing a number

of properties of the Fourier series of the functions ftt(t) .

P. Every function f11 (t), h = 2, . . ., in, has exactly the

1) This may occur even in the case where T is transitive . A

simple example is given by the two (periodic) function s

it

	

it

	

ityi (f) = 2 (e -{- é ) =cos t, ~~(f) = - 2 (e -}- é-it) = -cos t

with the translation group F = E2 of order 2, where the discriminan t

D(t) = 4 cos 2 t of the corresponding equation

(y - 9i (f)) (y- y 2 ( t)) = y2 - cos 2 t = 0

vanishes at t = 2 -f- nn .
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same Fourier exponents, 2 1 , ) 2 , . . ., as fl (t) ; and th e

Fourier coefficients in fh(t) and fl (t) belonging to th e

same exponent ;, n , have the same numerical value .

Thus we may write the Fourier series of the functions i n

the form

fh(t)
cv Z

~h, n an eil." (h = 1, . . . , m) ,

where each factor Ih,n has the numerical value 1 . Within

the restriction that their numerical values be 1, the factor s

,ri h n in the Fourier series of any one function may of cours e

be selected quite arbitrarily. Thus, while keeping the nota-

tion above for convenience, we shall suppose that eac h

Iil,n in the expansion of f1(t) is equal to 1 .

Proof . Corresponding to any Ii among 2, . . ., rn, an d

to an arbitrary sequence of positive numbers a„ tendin g

to zero, we can choose a sequence of translation number s

2 '' £ {r(s1) (e„)} . Then the sequence of functions fl (t+ r„)

will tend to fh (t) uniformly throughout -cc <t<-}-oc ,

that is the function fh (t) belongs to the class of almost -

periodic functions usually called the uniform closure of th e

set { f1 (t+k)} and denoted by C {fl (t+k)} . It is a well -

known property of such a set that every function in it ha s

the properties ascribed above to fh(t) .

2°. The factors 1h,n, corresponding to any

Fourier exponent ~n are exactly the respective values ,

yn (S I ), . . ., yn(S,1), of some character x n of the group F.

It will be convenient to represent this assertion by th e

following scheme, where, fixing upon any Â. n , we have drop-

ped the index n momentarily and have arranged in vertica l

columns the terms and the factors rt corresponding to this

exponent in the Fourier series of fl (t), . . . , f(t) .
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arj2eiJ
r

/. l
a li,,, e

x (St )
~12 = x (S2)

''im = X (Sm)

Proof . From the definition of a character it follow s

thai we have to show that if S14 and Shß are any (not ne-

cessarily distinct) substitutions in T, and if Sh She = She , then

~Îh l . '2'ih e

Take again an arbitrary sequence of positive numbers con-

verging to 0, say ei, -> 0, and for each v denote by zt,, and

w-2v, arbitrarily chosen translation numbers belonging t o

i?(sh,)(ey)1 and {w(sr)(e„)} respectively. Then by the lem-

ma of section II the numbers vs,, = wt „+v2v belong to

ir(s ) (2 cr)} . Hence, as v - - oc, we have, uniformly through -

out -oo<t<+Do ,

fi ( t + i1v) > fh,( t) , ft ( t + 7 2v) > fe ( t) , /i(t+w3v)>fh(t) •

It is a trivial fact concerning almost-periodic functions tha t

uniform convergence of a sequence of such functions im -

plies ordinary convergence of the coefficients belonging to

any exponent. Since the coefficient corresponding to th e

exponent 7 in the Fourier series of fi(t+r), for arbitrary

c, is given by ae`h , and since a 0, we conclude fro m

the uniformly convergent sequences above tha t

>el"?'

	

ryJ hl
iil.Tev

	

e
iÂT,

~rylhQ~

	

t,

Finally, since ee «" eiA'e,. = e lÂ'a1 for every v, we have in

the limit
rJhl rJI,, = lbw



30 Nr . 12 . HARALD BOHR and DONALD A . FLANDERS :

3°. Those characters of F whose values actually occur

(in accordance with property 2°) as coefficients in the

Fourier series of f1 (t), . . ., f,,,( t ), form a generating sys -

tem of the character group F *.

Proof . Let us denote by xl, x2, . . ., xn the distinc t

characters in F * which thus appear. On the analogy of

the scheme in 2°, we write their values in vertical columns ,

thus :

(S i )

xq (S2 )

x2(S m)

	

x 'n (S ,7 )

If we now apply the criterion for a generating system o f

F* which we gave in section I, we see that the denial of

our assertion is equivalent to asserting that for some h $ g

the values in row h are identical with the correspondin g

values in row g. But this would make the Fourier serie s

of fh(t) and 4(t) identical, which (from the uniquenes s

theorem in the theory of almost-periodic functions) would

imply fh (t) - 4(0, contrary to hypothesis .

4°. If any linear relation with integral coeffi -

cients, say

(10)

	

8171+ . . .+gN2,, = 0 ,

connects a finite number of the Fourier exponents 7 n ,

then we have the multiplicative relatio n

xl . . . x g,N =
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connecting the characters x1 , . . ., xN corresponding (as

in property 2°) to the exponents )„	 1, v , respectively .

The relation (11) may be expressed in terms of th e

values of the characters as a set of in relation s

( 12)

	

[x1(sh)]gr . . . [xN(Sh)]9N = 1 ( 1 <h< m ) .

Proof . Instead of proving the assertion for some arbi-

trarily chosen relation (10) it will be more convenient t o

prove it simultaneously for all linear relations with las t

index equal to an arbitrarily chosen fixed N. As before ,

for fixed h, arbitrary sequence of positive numbers e,,-->- 0 ,

and corresponding sequence Zv of translation numbers

with each Tv
£ {(S)()}'

we have, uniformly throughout

- oo < t < + oo , that fl (t + 7v) > f,, (t) , and hence for each

n(=1,2, . . .)

ci 'k " T"

	

, n =

	

(sh) .

Hence for any arbitrarily smalls the N inequalitie s

ciÅnz-xn (sh) I < e (n = 1, . . , N)

are satisfied by some 2 (in fact by every w with sufficiently

great index v) . According to the "trivial" part of Kxo -

NECKER ' s theorem stated in the end of section IV, this re -

quires that, corresponding to each relation (10) with las t

index N, there must hold the corresponding relation (12) .

Thus (11) holds .

We now turn the problem about, i . e. star t from a

given transitive Abelian substitution group and

ask what conditions a set of almost-periodic functions fh (t )
must fulfill in order that they be distinct and that [f(t)]
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have F as its almost-translation group . To avoid misunder -

standing, however, we emphasize that so far we do no t

know at all whether every type of transitive Abelian sub-

stitution group can occur as the almost-translation grou p

of some set [f(t)] . Only after having proved the theore m

below shall we take up the main problem of determining

whether the conditions stated in the theorem can really b e

fulfilled for any given group of this sort .

Theorem 6 . Let [f(t)] be a finite set of m almost periodic

functions, f1 (0, . . . , fn, (t) ; and let be an arbitrary transitiv e

Abelian group of m substitutions which we denote by S 1 =
(1' " ' l , . . . , Sn ,

= (1 . . . ) . Then in order that [f(t)] be com -
l	 m ,

posed of distinct functions and have T as its almost-translation

group, it is not only necessary (as was shown above) but also

sufficient that the following four conditions be fulfilled :

1. All the functions fh (t) have exactly the same Fourier

exponents 7 n , and the absolute values of the corresponding

Fourier coefficients are the same.

2. Further, the Fourier series of the functions fh (t) have

the form

(13)

	

fh( t)

	

~x,z(SIt) a,t
erin t

where xn (S) , for each n, is a character of the group T.

3. Those characters xn (S) which actually occur in (13 )

form a generating system of the character-group T * .

4. If any finite set, 7 1 , .

	

of the Fourier exponents

are connected by a linear relatio n

9'1 7, 1 + . . . + gn2'n = 0

with integral coefficients, then the corresponding characters

are connected by the relation
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Proof . That in almost-periodic functions whose Fourie r

series have the form (13) must be distinct, is immediately

to be seen from condition 3, which implies that for no tw o

distinct indices, h and g, are the Fourier series of fh (t) and

f9 (t) formally the same . (Here we use only the trivial fact

that two distinct Fourier series cannot belong to the sam e

function, in contrast to the corresponding point in the ne-

cessity proof, where we had to use the uniqueness theorem ,

that two distinct functions cannot have the same Fourie r

series.) Since our functions are distinct, they have an almost -

translation group r ' ; and the main point of the proof is

to show that condititions 1-4 insure that r' = F.

We first observe that it suffices to show that each o f

the substitutions of F belongs to F' . In fact, when this ha s

been shown, it follows immediately that r' must be iden-

tical with F. For then F ' must be transitive (since it con-

tains the transitive sub-group F) and, being Abelian, cannot

contain more than in substitutions .

By way of preparation we make the preliminary remark

that the set-theoretical sum {g(t)} of the ni sets of functions

{ fi(t+k) }, . . ., {fm (t+lc) J

	

(-oc <k<+oo)

is a m aj o r i s able set of almost-periodic functions, in fac t

majorisable by any majorant F(t) of the set [[(t)] ; and that

every function in lg(t)} has the same Fourier exponents

,2 t , . . . as each function in [/'W] . Hence, according t o

a wellknown theorem on majorisable sets, due to BOCHNER ,

it holds, roughly speaking, that formal convergence of the

Fourier series of a sequence of functions drawn from th e

set {g (t)) O . e . actual convergence of the coefficients be -

longing to each fixed exponent) implies uniform conver-

gence of the sequence of functions . Exactly speaking: to
V ideask . Selsk . Math .-fys . Medd . XV, 12.

	

3
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each e > 0 there corresponds a positive integer N and a

a > 0 such that any two functions g ' (t) N X bjZ e n ' and

g" (t) N ~b n elx I, of the set lg(t)), the coefficients of whic h

fulfill the inequalitie s

t)n - brz ~ < FS

	

(n = 1, . . , N) ,

themselves satisfy the inequalit y

I g'(t)-g"(t)i < r (- ao< t <+oc) .

Now let Sh be an arbitrarily chosen fixed element o f

F . We shall show that Sh also belongs to T' , i . e . that Sh

is an almost-translation substitution of the set [f(t)] . From

remark 4° in section II it suffices to prove that to som e

positive a < a te* there corresponds at least one real number

•r which satisfies for all values of t the In inequalitie s

( 14)

	

I

	

z) - Shfl(t) I < r

	

(I = 1, . .

	

in) .

We first make clear, for each 1, which of the function s

f1 , . . ., fr,, is denoted by Sh fi . This can be seen at onc e

by considering the Fourier series of the function :

fi(t) N ~ y n (SI) an

In this Fourier series the index 1 occurs only as index fo r

that substitution St of which the characters yn are taken.

As we noted in section I, since yn is a character of T, the

substitution Sh performed on the index I simply results i n

replacing y71 (S l ) by yn(ShS), that is by the product

yn(SI) y n (S I) . Hence the function Shfl (t) is just that function

among f1 (t), . . , f17i (t) whose Fourier series is given b y

y 11 (S[*I1)y 11 (S I)an ei41 .

We now proceed to prove that there exists a r which
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satisfies the inequalities (14) . As the Fourier series o f

(t- r), for an arbitrary fixed r, is given b y

e Z ~n T (S) an ea,t ,~n

and as, throughout, we deal only with functions of our

majorisable set { q (t)1•, the inequality

fi(t±r) -Sh f1( t) I < s

is (by the remark above) certainly fulfilled by any r for

which the N inequalitie s

e; 1
.nzxtx 1

(S)an --
xn (Sh)xn I

(S)an I

	

(n = 1, . . , N) ,

i . e . (since I x,1 (S,) = 1) the N inequalities

e

	

xlt (Sh) ) an
<d

	

(I7= 1, . . .,iV),(15)

are fulfilled. We see that the index 1 has disappeared, s o

that any r satisfying the inequalities (15) will certainl y

satisfy the In inequalities (14) . Denoting by a the maximum

of I a t I, . . ., I a T I, the inequalities (15) are certainly satis-

fied by any r which satisfies

(16)

	

I e"n z
- x„(Sh) I <

	

(n = 1, . . ., N) .

But according to the "non-trivial" part of KIONECIiER' S

theorem, the inequalities (16) certainly have a solution r

since condition 4 assures us that to every linear relatio n

with integral coefficients such as ,g1,1 + . . . + gN.1N = 0

there corresponds the relation (ti1 (Sh )) " 1 . . . (x N (Sl,)) gN = 1 .

Thus the proof of theorem 6 is completed .

We can now easily prove the following corollary, whic h

is to be considered one of the main results of the paper .

3*
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Corollary . Corresponding to each arbitrarily given transi -

tive Abelian group F of substitutions on the indices 1, . . ., m ,

there exists a set [f(t)] of m distinct almost-periodic function s

which has F as its almost-translation group.

Proof. We have only to show that to the given group

I' there correspond m almost-periodic functions f1 (t), . . . ,

Mt) whose Fourier series satisfy conditions 1-4 of theo-

rem 6. In order to avoid any trouble arising from th e

somewhat intricate condition 4, we choose the exponent s

Z ,, rationally independent, i . e . such that a relatio n

g 1 2, 1 + . . . + gN2.N = 0 with integral coefficients can occu r

only if every g is zero. Condition 4 then falls away. Next ,

to be sure that the series we set up are the Fourier serie s

of almost-periodic functions, we limit ourselves to only a

finite number of terms . Now let xi, . . ., yq be an y

generating system of the character-group F', let % 1 , . . 2, 1

be arbitrarily chosen rationally independent rea l

numbers, and let a l , . . ., a q be arbitrary complex num-

bers $ O. Then it is clear that the m almost-periodic

functions
q

fh( t) = Z x' (S h ) ane~ zn r

	

(h = 1, . . ., in)
n= 1

satisfy conditions 1-4, and so the set [f(t)] has I' as its

almost-translation group .

If we wish to have as few terms as possible in th e

example just constructed we shall take q = pc, where p i s

the number of elements in a minimal generating syste m

of r (or of F*), mentioned in section I ; and for our

characters x~, . . ., x,u we shall take any minimal generating
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system of F*. We shall show that the example thus ob-

tained of a set [f(t) j of functions belonging to the give n

group T is not only a simplest possible example, in

that the Fourier series contains as few terms as possible ,

but at the same time is the most general example of a

set WO] belonging to F, for which the functions hi(t )

contain the minimum number ,ce of terms. By this we

mean that the only restriction (other than as to the num -

ber of terms) of a voluntary character which has been

introduced so far, namely that the exponents be rationall y

independent, is in fact a necessary one . We shall prove ,

namely, the following general theorem :

Theorem 1. Let

fh(t) N yzp(Sh)aiei''',tt

	

(h = 1, . . , m)

be any m almost-periodic functions with the transitive grou p

F as almost-translation group of the set [ f(t) Y, and let u

denote the number of elements in a minimal generating syste m

of F. Then among the exponents 1. 1 , .z , . . . there occur at

least to which are rationally independent .

. Proof . Among the characters zn involved in the Fourie r

series there certainly occurs some generating system, it, . .

;4, of F* . By a remark in section I, out of this generating

system there can always be chosen a set of just h char-

acters, say (p i , . . .,

	

such that any relation rp`i' . . . Pgu = 1

implies GCD(g 1 , . . ., 1/ U) > 1 . Now let nr, . . .,

	

be arbi-

trarily chosen indices such tha t

'fit, . .

	

= P u .nY-

	

in u,

Then the exponents 1 11 , . . . , 1 nß must be rationally inde -

pendent ; otherwise there would exist a linear relation
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61
7.I

1 1+ . . .
+g,it)'21U. -

0

with GCD(g t , . . ., g tit

imply

1 . But by condition 4 this woul d

_

	

a tt = 1 ,
yn~

. .
. xntt

	

1, 1 . e . y7 . . . F

contrary to our hypothesis that no such relation can exist

with G C D (g i , . . . , g ,u ) = 1 .

In the case considered, where the almost-translatio n

group h is transitive, the characters of l' enable us to giv e

a certain canonical representation of the in function s

in the set [f(t)], in which all the functions /I,' (t) are repre-

sented as linear combinations of a finite set of almost -

periodic functions which do not depend on h .

Starting from the particular form of the Fourier serie s

of the functions f , (t) given in condition 2 of theorem 6 ,

namely

(17) /;,(t) N > y f, (Sd a lt e z À,, t (h = 1 , . . . , m) ,

we obtain our representation formally by collecting thos e

terms for which the characters are the same . Thus we ma y

write

(18) fh (t)

	

> Y (S 1 ) / 1
ti e; i, i tl

	

(lt = 1 , . . , ni) ,
/. g

	

\iCn= y

	

/I

	

-

where, for the sake of uniformity of notation, we suppose

that

	

a
e~tint is simply empty if

	

does not occur in th e
/n=X

an

series in (17). Since the series in ( )'s on the right side of

the relations (18) are independent of it, the principal ste p

in establishing our canonical representation is to prov e

that these series are the actual Fourier series of som e

almost-periodic functions of I .
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In general, a subseries of . the Fourier series of an al-

most-periodic function is not itself the Fourier series of

any almost-periodic function. In our case, however, eac h

series

f alt e
i ),n t

>

is the Fourier series of an almost-periodic function .

For if 3U (S) is any fixed character and we multiply th e

relations (18) by the respective values lp- (S i), . . ., -y) (S.) of

the conjugate character and add the resulting relations ,

we have

Now, due to the orthogonality of the characters ,
in

(Sh ) x (Sh ) = In or 0 according as x is or is not the
h
chosen character p . Hence after dividing by in the relatio n

(20) becomes

p
?~(Sh) fh(t) cv A an e

h =1

	

= .r!)

Replacing the letter

	

by x, we see that the series (19) i s

the Fourier series of the almost-periodic functio n

If t

o/ ( t ) = 1

	

:L (sh) ft
(i) ~ 2 an e i ).

Hence, by elementary theorems on almost-periodic functions ,

the Fourier series of the functio n

liks,ti) ft co - 2 zp (sh)

	

x (s
h =Y

	

,t --i

	

E rn:

112

	

172

or
n i

(20) Z if) (Si) ,t(t) N T., f ~/~ (Sn) x Oh)

	

aåe t )`R t ~ .
, -,

	

~Er °

( 1 9)

1
777

177 h

	

Xn-x
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S x(s h ) 0/ (0
xer '

is just the Fourier series of fh(t), as written in (18), so tha t

fh ( t) =

	

x(sh) Ø7 (t) (h - 1, . . ., m)
xer'

which is our desired canonical representation of the func-

tions fh(t) as linear combinations of a common set of m

almost-periodic functions, namely the functions Wx (t) .

In the next section, where we shall consider function s

fh (t) which are the roots of an algebraic equation with

almost-periodic coefficients, we shall return to this canoni-

cal representation and prove an interesting property con-

cerning the connection between the Fourier exponents of

each function Ø),(t) and those of the coefficients of th e

equation .

VII . Algebraic Equations with Almost-Periodi c
Coefficients whose Roots have a Transitive Almost -

Translation Group .

In this last section we return to the consideration o f

the algebraic equation

+
x1 (t) 9

Rl -1 + . . . + x
t~~ 1(t) y + x 112 (t) = 0

with almost-periodic coefficients . In case the discriminan t

D (t) satisfies the condition

(22)

	

G L B ID (t) ~> 0,
-Os <t<+ ~

we know that the roots gh(t) are again almost-periodi c

functions . We put the followin g

(21)
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Problem : To indicate necessary and sufficient condi-

tions which m functions, y 1 (t), . . ., 00, assumed to b e

almost-periodic, must fulfill in order tha t

(a) they may be the roots of an algebraic equation (21)

of degree rn with (eo ipso almost-periodic) coefficients xi (t)

satisfying (22), and

(b) the set (y(t)] may have a given transitive Abel-

ian group T as its almost-translation group .

It is not to be expected that an answer to this problem

should be as neat as the answer - given in theo-

rem 6 of section VI - to the analogous problem bearing

only on the Fourier series of the functions gh(t) . For th e

condition that the functions be distinct has been replace d

by the condition that the discriminant of the equation (21 )

whose roots they are shall satisfy (22) ; and it does not

seem possible to transform this more complex conditio n

into a simple condition on the Fourier series of the func-

tions. However, for our purpose it suffices to remark tha t

- as the yh (t)'s are almost-periodic, and hence bounded -

the demand that the y h (t)'s satisfy (22) is obviously equiv-

alent to requiring tha t

(23)

	

G L B

	

yh (t) - g g (t) ~> O .

h $ g

Thus we may give the following

Answer to the Problem : In order that the almost -

periodic functions y h (t) shall satisfy the conditions (a) an d

(b) in question, it is necessary and sufficient that the y

satisfy the condition (23), and that their Fourier serie s

satisfy conditions 1	 4 of theorem 6 .
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With the help of this answer we now easily reach th e

following principal result, already alluded to in the intro-

duction .

Theorem 8. Corresponding to any arbitrarily given transi -

tive Abelian group T, there exists an algebraic equation (21 )

with almost-periodic coefficients x(t) satisfying (22) and suc h

that the set [y(t)] of its (eo ipso almost-periodic) roots has T

as its almost-translation group .

Proof. If as in section VI we denote by

	

. . ., x,;„, an

. arbitrarily chosen minimal generating system of the charac-

ter group T'r, by a 1 , . . ., a F„, arbitrary complex numbers

(each 0), and by 4, . . ., arbitrary rationally inde -

pendent real numbers, we know already that the m (distinct )

almost-periodic functions

yh (t)

	

yn(Sh)an e rAn t

	

(h = 1, . . ., In)

n= 1

satisfy the conditions 1-4 of theorem 6 . We complete th e

proof by showing that we can easily make these function s

satisfy the additional condition (23), simply by choosin g

the (thus far arbitrary) coefficients a n so that the sequenc e

1 a 1 I, . . ., a~L I of their absolute values decreases rathe r

strongly . In order not to spoil too much the generality o f

our example by putting too great restrictions on the I an I's ,

we base our limitation on the respective orders yn (1 < ; '1 m)

of the characters in in our minimal generating syste m

xi, . .

	

Since (xn )r1z = 1, so that each of the in values

xn (S 1)>

	

xn (S,,) is a yn-th root of unity, for any two

distinct substitutions Sh and S9 of T the difference
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TC
xn (Sh) - tin (Sri ) is either 0 or numerically > 2 sin . Hence

for any two distinct functions g1. (t) and g rr (t) and any

real t it is obvious that

I gh (t)- J r,(t) an (xn(Sh

n1

~n (Sn) )
>

2 I anI sin 1-2(Iap+ll+ . . .+ a. I) ,

where p = p (h, g) denotes the smallest (certainly existing)

index among 1,	 a for which xp (S 11) $ 4(S) . Thus we

see that our condition (23) is certainly satisfied if w e

choose the coefficients a 1 , . . ., a« such that for each

n=1, . . .,Ix ,

(24) A n = lan lsin ( an +1+ . . .+ I au.I)> 0 ;

in fact these conditions impl y

GLB

	

I gh ( t)- g g (t)I >
-

2•min(A1, . . ., A
'
,,)>0.

-oo<t<+~
h + g

Remark . If we wish to have conditions on the a n' s

which depend only on the group T rather than on th e
choice of the minimal generating system . . ., xF~ of T* ,

we may replace the conditions (24) by the somewha t

stronger conditions

(25) IanI sul >-r.
(Ia n +l I-+- . . . +Ia u I)> 0

where y (> each yn) denotes the highest order of any ele-

ment x in T* (or, equivalently, of any element S in T) ; or

we may go further and replace y by In .
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Example . As the simplest possible example of a transitiv e
but not cyclic Abelian substitution group, we consider th e
group I' of the following four substitutions :

S 1 = ('1'234

	

SJ = "123 4
1234~

	

(2143~
(123 4

,3412
123 4
432 1S3 = .54 =

for which a complete table of character values i s

X1

	

Z2

	

y3

	

ti4

S1

	

1

	

1

	

1.

	

1
S2

	

1

	

1 -1 - 1
S3

	

1 -1

	

1 - 1
S4

	

1 -1. -1

	

1

	

.

Here y = 2, and a minimal generating system of T* is formed
by any pair from x3 , Z4 , say by x2 , x3 . Hence, if we let f 1
and 2. 2 be any two real numbers with an irrational ratio, and
let a 1 and a 2 have any complex values other than 0, the fou r
functions

Y1 (t) =

	

a 1 e i 2~, t + a2 eiÅ,

y2 ( t) =

	

a i ei A,t-a2 eiR a

3 ( t) =- a l elAit + aoe i. )a r

y4 (t) _

	

al e i7 = t

	

a2 eiti z t

will satisfy conditions 1-4 of theorem 6, and hence have 1' a s
almost-translation group ; and will satisfy the algebraic equatio n

y4-2g2 ~ a12 e2iti,t+ a22 e2ih a t
)+ ~ a1

e2i2„t-a22e2i :4,lf = 0

of type (21) . If in addition (since in (25) we have y = y1 = y2 = 2 )
we take a 1 > a.l >0, the functions will satisfy (23), that is
the discriminant of the equation will satisfy (22) .

In the figure, where we have chosen a 1 > a2 > 0, the posi-
tions in the complex plane of the four functions y 1 (t), y2 (t), y3 (t) ,
y4 (t) are denoted respectively by 1, 2, 3, 4 when t = 0, and by
1, 2, 3, 4 for some other value of f.

In order to show that this set of four almost-periodic func-
tions actually has the non-cyclic group _t' as its almost-trans-
lation group - which simple observation was a starting-point
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of this investigation - we need not, of course, refer to the gen-
eral theory above . In fact, it is obvious from the vers' figure
that the almost-translation group of the set can contain no othe r
substitutions than those in T. That each of these four substi-

tutions actually is an almost-translation substitution of this set
of functions, can he verified immediately with the help of Kao -
NECKER ' S theorem for the case N = 2 .

Remark 1 . In the special, classical, case where th e

coefficients x1 (t) of the equation (21) are continuous pur e

periodic functions with a common period, say with

least positive common period p, (and where the condition

G L B ID (t) ~> 0 is equivalent to the condition D (t) $ 0
for 0 < t < p), the case lies so clear and is so well known

that we may leave to the reader the slight task of showin g

how the theory developed in this paper for the genera l

case of almost-periodic coefficients may be applied t o

deriving the periodicity of the roots, and the essential

features of their (ordinary) Fourier series . There is one

point however which it may be worth while to emphasize :

namely, that in this case the almost-translation group T

(whether it is transitive or intransitive) becomes, as is t o

be expected, merely the usual "exact translation group"

of the set of roots, and hence is simply the cyclic group
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composed of all powers of that substitution S which is

(exactly) performed by p . For it is clear on the one hand ,

that any integral multiple gp of p exactly performs S g i . e .

r-performs Sg for every positive e ; and on the other, tha t

each "fine" translation number of the majorant X(t) must

be "very near" some gp, and hence must e-perform the

same substitution S g which gp exactly performs .

Remark 2. Of somewhat greater interest is the cas e

where the coefficients x1(t) in equation (21) are limit-

periodic functions with a common period p ; that is ,

expressed in terms of the exponents, the case in which th e

module Mx contains only rational multiples of a singl e

number, namely a = 2~ . From the general relation
p

11I1, 1
!
llv

- m

it follows that the exponents of the roots yh (t) likewise ar e

rational multiples of a, and hence the roots themselves ar e

limit-periodic functions with common period p . We may also

remark that the really interesting case of a non-cycli c

transitive group - interesting because it can never occur

when the roots are pure periodic - is equally impossible

in the limit-periodic case . That is to say, in the limit-

periodic case a transitive almost-translation group .I' must

be a cyclic group, i . e . the number must be equal to 1 .

For, by theorem 7 of section VI, the assumption p, > 1

would imply that the module Hy contained at least tw o

rationally independent numbers, contrary to what we hav e

just seen .
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Finally we prove the following theorem concerning the

canonical representation of the functions yh (t) men-

tioned at the end of section VI . We suppose here tha t

1y(t)] is the set of roots of an algebraic equation (21) wit h

almost-periodic coefficients xi (t) satisfying condition (22) ,

and that its almost-translation group F is transitive .

We denote the canonical representation of the function s

i11z(t) by

(26)

	

tl h(t) =

	

x(S,,) Wx(t) (h = 1, . . ., m) ,
% cr*

where the almost-periodic function s

Øx (t) N

	

aneli. t

x R=x

are independent of h . As . before, X(t) denotes a majoran t

of the xps, and MY the module of their Fourier expo-

nents .

Theorem 9 . If z is any fixed character in l*, then the

difference 2« -2." of any two Fourier exponents of Wx(t) is

contained in the module M .

Proof. Let and 2 " be two distinct Fourier exponents

of the function 0x (t) . (The proof either "goes by default"

or is trifling in case cPx (t) is identically 0, or has just on e

Fourier exponent) . Let a ' e"'
,

and a"e""t be the correspond -

ing terms in the Fourier series of (Dx (t) (and hence als o

in the Fourier series of h(t)) .

In order to prove that 2' -%" belongs to My it suffices ,

from lemma 2 in. section IV, to prove that to any e > 0

there corresponds a ô = ((e) > 0 such that .the inequality

ei0.'-0T -1 I < e

i . e . the inequality
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(27) ei.A i-

	

e i 1"7 < ,

is satisfied by every c belonging to { TA O) } . Now, since

{Tx} C {T [y] ) and {

	

{ rx } ,

this is equivalent to proving that to the given s there

corresponds a d ' d' (a) > 0 such that (27) is fulfilled by

every r belonging to { r[u] (d ' ) } . But for d sufficiently smal l

(in fact for d < s") we know from remark 4° in section I I

that { r[y1 (d ') } is equal to the set-theoretical sum of the i n

sets {r(s)(d')}, where S belongs to F. Hence it suffices t o

prove that to the givens there corresponds a d" = d" (s) > 0

such that the inequality (27) is satisfied whenever r

belongs to one of the sets {c(sh)(d")} . We complete the

proof by showing that a, where a denotes min (I

	

a" p,

is a suitable value of d " .

In fact, let r be a fixed number belonging to any one

of the m sets in question, say to {r(s,)(d")} . Then by the

very definition of the translation numbers
r(sh)(d) we have

(28) I 11t (I -F- r) - uv (t) I < d" = 2 a (for -Do < t < -I- Do .

In the Fourier series of the almost-periodic functio n

Jt (t + r) - ZII, ( t)

the coefficients belonging to the exponents î,' and 7" are

given by

a'eiA T-a ' y(S1 ) and a" eil. -a " z (S I)

respectively. As any Fourier coefficient of an almost-peri-

odic function f (O is numerically < L L' B I f (O 1, we con-

clude from (28) that
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a ' e i% ' T

	

ar y ~(Si) I

	

E

and

	

a~

	

" eiÀ"z -
a

n
s(SI) 1

	

a ,

and hence (dividing by j a ' and le l respectively )

I
ei%'z-

(Sb) <

	

and I eiA r -~(SI) I< E

Thus r satisfies the inequality e l '< e, i. e. the

inequality (27), and the proof is complete .
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