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PREFAC E

T
he present treatise contains a series of theoretical in-

vestigations on the properties of the jet-wave . The latte r

has during recent years achieved a certain significanc e

through its various applications .' A special importance

may be ascribed to the periodic jet-wave owing to th e

predominant part it plays in the jet-wave rectifier, th e

first high capacity mechanical rectifier ever produced . '

The present paper in the main confines itself to thi s

type of wave . In the first chapter the theory of a wave

of small amplitude is considered . The latter theory per-

mits a rather complete discussion of the properties o f

the wave under various conditions. Some of its results

have already been stated in a previous Danish treatis e

(Nye Ensrettere og periodiske Afbrydere) . For the sake

of completeness and in order to have the said results

' The Jet-wave and its Applications. Paper read before Section G
of the British Association at Glasgow, September 11, 1928 . "Engineering"

Sept. 14, 1928 .

1) Nye Ensrettere og periodiske Afbrydere . Jul . Gjellerups Forlag,
København 1918 .

2) Development of the Jet-Wave Rectifier. Paper read before Sec-

tion G of the British Association at Leeds, September 5, 1927 . " Engi-

neering" September 9 and 16, 1927 .
3) Den konstruktive Udvikling af Straalebølgeensretteren . "Elektro-

teknikeren" Nr. 23 1927 .

4) GcNTHERSCHULZE : Die konstruktive Durchbildung des Queck-

silber-Wellenstrahl-Gleichrichters . Elektrotechnische Zeitschrift 16 . Au-
gust 1928 .
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presented in a language generally known, the theory ha s

here been given at full length, including the earlier result s

and some additional discussions . - In chapter II the com-

plete theory of a jet-wave of partly arbitrary amplitude i s

represented and in addition it is shown how an approximat e

theory sufficient in most practical cases may be produced .

Finally graphical methods for the production of pictures

of the wave are considered . - In chapter III special pro-

perties of the jet-wave are made the subject of investigation

and formulae for the electric resistance of the wave, for

the heating of the same by an electric current etc . are

derived. Finally, in an appendix, a preliminary test on the

statements of the theory has been given .

In conclusion I desire to express my thanks to th e

Trustees of the Carlsberg Fund for having enabled me to

take the time necessary for the completion of the work .

Physical Laboratory II, The Royal Technical College .

Copenhagen, October 1928 .

JUL. HARTMANN .



The Jet-Wave .

CHAPTER I

The Jet-Wave of small Amplitude .

1 . The Jet-Wave .

If the nozzle N of a liquid jet is moved to and fro

perpendicularly to the axis of the nozzle, the jet assume s

the shape of the wave-line indicated in fig . 1 . The jet thu s

deformed is called a jet - 1

w a v e. In the case considered /V

the wave is produced i n

the following way . The in-

dividual jet-particle will, i n

passing the nozzle, assum e

the velocity of the same an d

keep it on its way onward

together with its original

velocity i . e. that of the

original jet. It will therefor e

follow a straight line, sa y

ab in fig. 1, which forms

a certain angle B with the

direction of the axis of the

original jet depending on the velocity of the nozzle at th e

moment of departure of the particle . The direction thus

varies from particle to particle . If the nozzle performs har-

monic oscillations, the direction will also vary in a har

Fig. 1 . Jet-Wave produced by an

oscillating Nozzle .
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monic way and the consecutive particles must arrang e

themselves along a simple wave-line, the amplitude o f

which increases proportionally to the distance from the

nozzle (or nearly so) . The jet-wave moves on as a unity

N

	

with the velocity v of the

original jet . Its wave-length

(1)

	

ti = v• T,

is obviously determined b

y 7''(11,

if T is the period of th e

oscillations of the nozzle .

Now, if the jet is mad e

of an electrically conductiv e

liquid, say mercury, a jet -

wave may he produced i n

another very simple way in -

dicated in fig . 2 . The jet J

Fig . 2 . Jet-Wave electromagnetically passes a constant magneti c
produced .

field F, the lines of force of

which are perpendicular to the jet and in the figure als o

to the plane of the picture . An alternating current, th e

auxiliary current, supplied by a suitable transformer V A , i s

passed through that part of the jet which is inside th e

field at any time . The current may he led into and ou t

of the jet through the nozzle and a special electrode ,

the auxiliary electrode, touching the jet: Owing to the inter -

action between the current and the field the consecutive

particles will be attacked by a periodic, mechanical forc e

which is nearly perpendicular to the jet and to the mag-

netic field, thus situated in the plane of the picture . Ac-

cordingly they will be sent out along a line of a directio n

8 varying periodically with the time as in the former case,
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and consequently a similar wave will be produced . Ob-

viously, instead of employing a constant field and an alter-

nating current, an alternating field in interaction with a

constant current may as well be employed for the pro-

duction of the wave . The subject of the present paper i s

mainly the theory of the electromagnetically produce d

periodic jet-wave .

current may be considered as perpendicular LJId/ ' '
a

to the axis of the original jet during the whol e

passage of a particle through the field . Further -

more we will assume that the extension dl

fig . 3 of the field in the direction of the origina l

jet is small compared to the wave-length . This

is the same as to assume that the current
Fig . 3 . Theory

may be considered constant during the pas- of the Jet-

sage of a small particle ddx of the jet . Finally

	

Wave with

small Am -
we shall base the following theory on the

	

plitude .

supposition of the individual particles moving

independently of each other . We shall thus neglect the

cohesion and friction between the particles of the jet .

The mechanical force acting on the particle d/x passing

the field at the moment to is

K = 10
Hto • z/x

provided Hto is the intensity of the field and Ito the value of

the current at the said moment. We shall thus preliminarily

2 . The Jet-Wave with small Amplitude and a laminar Field .

In the first instance we shall confine ourselves to wave s

of such small amplitude that the mechanical force pro-

duced through the interaction of field an d

(1)
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assume that both vary with the time. As indicated th e

force is perpendicular to the original jet, that is to say, to

the x-axis in fig . 3. During the passage it will give th e

particle considered a velocity vJ perpendicular to the sai d

axis determined by

m•A.x v~ =
K. rll

v

m indicating the mass per cm of the original jet, and
dl

v
being the time which the passage takes . From (1) and (2)

is found
-1

	

dl
v~ =

10 to Ht0 rn • v ,

The direction of the path of the particle after the field

is left is determined b y

(4)

	

tg B=
v

	

10 co' H •	to
rr~v'

The coordinates of the particle at the moment t (t > to) are

X = v (t - to )

from which
vu

	

1

	

d l
g

	

v x _^ 10 rta Hto m 1) .
x .

If the field is constant and its intensity equal to H an d

if the current varies with time according to

(8)

	

i = f( t )
(7) becomes

_ 1 H dl
il

	

10 m va x 'f(to) •

The equation of the wave line at an arbitrary momen t

t is found by eliminating to from (9) and (5) . It is

(2)

(3)

(5 )

an d

(6)

	

rg = vu • (t - to )

(7 )

(9 )
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1 Hdl

	

f ~

	

xl .
_

	

--- 2 x t -
10 m

	

v

In the following way it is seen from (10) that the wav e

proceeds in the direction of the x-axis with the velocit y

u, thus the velocity of the original jet . The intersection

with the x-axis is determined by

(11)

	

f t-
U

J = O .

If now t-
x

= a is a value satisfying (11), it follows

that after the lapse of dt the point of intersection ha s

been moved forward by dx where

(10)

dt-
dx

=0 .
U

dx

dt
=v .

The expression (10) may also be looked on as repre-

senting the motion of the point of intersection between the

jet-wave and a line or plane perpendicular to the x-axi s

at a distance x from the field . It is seen that the sai d

motion is given by just the same function of time as th e

current, only it is delayed by
x

seconds

	

relation to
I)

the current .

The motion thus pictures the current . On this fact the j
wave oscillograph is based. In the latter an image of the
jet-wave is projected on to a wall parallel to the plane of th e
wave . In the wall is a slit perpendicular to the axis of the ori-
ginal jet . Behind the slit a photographic plate or film is move d
with constant velocity in a direction perpendicular to the slit .
On the plate the projection thus traces a picture of the curren t
passed through the jet .
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3. The Wave produced by a simple alternating Current .

We shall now consider some few particular cases . In

the first instance we shall assume the wave to be produce d

by a simple alternating current .
2fc

(1) i = Isin ro t = IsinT t .

The equation of the jet-wave then become s

(2)
J

	

10
m 12 •dl•x -sin w t

v

The expression obviously represents a sine-shaped wav e

fig. 4 which travels on with the velocity v, the amplitud e

at the same time increasing proportionally to the distanc e

from the field, that is to say ,

the starting-point of the wave .

During its motion the wave-

tops touch the two line s

_ 1 HI

(3) d-+ 10 m v2
dl x ,

which form an angle B77 with

the axis of the original jet

given by

(4 ) tg e lll
= ' 1 0

1 HI

m v2 dl

	

u .

Obviously (3) represents th e

lines which the jet woul d

stationarily follow if direct

currents +1, thus current s

equal to the maximum value of the alternating current ,

were sent through the jet . Generally tg 8171 found from (4) i s

taken to measure the amplitude of the jet-wave and is denoted

by cc . If introduced in (2) this latter expression becomes

Fig . 4 . Wave produced by a simple
alternating Current.
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(5) ÿ = ax•sinwl t-~ I ,

while the equations of the lines limiting the wave trac k
may be written

(6) iJ _ +ax .

From (5) is seen that the wave will, at a given moment ,
cut the x-axis in a series of points, the zero-points, deter -
mined by

(7) sin w t- 0 .

Obviously these points are situated at a distance fro m
each other given by

.2,

	

T
2 - v 2

Â. is called the wave-length of the wave . On the other
hand it is seen from (5) and (6) that the points t 1 , t2 , t3 ,

fig. 4, at which the wave touches the lines (6) are deter-
mined by

(9) sinw(t -x = 1 .

They are thus to be found half-way between the con-
secutive zero-points of the wave . The tops of the wave,
m1 , nn2 , m 3 , fig . 4, that is to say the points at which x = 0 ,

are situated a little farther on in the direction of the motion .
In order to see this we may preferably consider the wav e
at the moment t = 0 . At this juncture dx = .0 at the points
determined by

wx

	

co x
(10) ty

v

	

v

As known, this equation is solved graphically b y
finding the point of intersection between the curves

(8)
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and y =

	

It is seen that the solutions ar e
v

(0 x

	

, r

V
=p 2 -I- ~

where p stands for the odd numbers 1, 3, 5 . . . while d is a
quantity which tends to zero and is the less the higher th e
number p. From (11) follows

(12)

	

x=p•--I-

while the zero-points in the case considered are given b y

(13)

	

x = p • 2 ,

where p ' indicates the numbers 0, 1, 2, 3 . . .
The expression (2) may, as indicated above, be con -

sidered as describing the motion of the point of intersection
between the wave and a plane at a distance x from" th e
field and perpendicular to the axis of the original jet . I t
is seen that the said point performs harmonic vibrations .
The zero-point of the latter is the point of intersectio n
with the original jet . The vibrations are of course syn-
chronous with the alternating current from which the wave
originates. But they are delayed in phase with regard t o
the current, and the phase-lagging i s

9) = ca '- = 27T . --
v

From (14) it is seen that the vibrating point of inter -
section will pass the zero-point simultaneously with the
current at a series of . distances of the plane given b y

(14)

(15)

or by

x
2sz• - = p•n
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( 1 6) x = p• Z ,

where p indicates the numbers 1, 2, 3, 4 . . . The points deter -

mined by (16) may be called the nodes. With a short

field they thus form a series of points separated by th e

constant distance 2 . Obviously, if the wave is produced by

a current i = I sin wt, being zero at the moment t = 0, th e

nodes are simply determined by the points of intersectio n

between the x-axis and the wave at the moment t = 0 .

It should be noted that the wave considered in th e

present paragraph might as well have been produced by

intersection of an alternating field and a constant curren t

flowing in the jet .

On the vibratory motion of the hitting point of the jet-wav e
in a plane perpendicular to the axis of the original jet, and o n
the easily adjustable phase-displacement between the said mo-
tion and the current by which the wave is produced, the j et -
wave commutators and rectifiers are based . The commu-
tator generally serves for commutation of a voltage synchronous
with the said current . The commutation is, as a rule, to tak e
place nearly at the moment at which the voltage changes it s
sign . This is achieved by moving the commutator-electrode, con-
sisting of two insulated parts symmetrically placed with regard t o
the axis of the jet-wave, in the direction of the said axis .

4. Geometrical Construction of the Jet-Wave .

From the expressions (2) and (4) in the previous para -

graph it is seen that the angle H which the path of th e

consecutive jet-particles forms with the axis of the origina l

jet varies periodically with time according to the expressio n

tg 8 = tg9r„•sinw t

a suitable zero-point for the time being assumed. It is

therefore a simple matter to construct the paths of a serie s

(1)



14 Nr . 2 . JUL . HARTMANN :

of consecutive particles . In fig . 5 this has been done in a n

easily comprehensible way for 16 particles following eac h

other with a lime-difference 16 . The paths are marke d

0, 1, 2 . . . 16. Now let the first particle 0 have reached th e

Fig . 5 . Construction of Jet-Wave .

point 0 of the axis at a given moment . The next particle 1

will then be
1fi

behind the particle 0 on track 1, the

particle 2 again
16

behind particle 1 on path 2 and so

on. In this way a series of points of the wave at the mo-

ment considered is found, and the wave itself is easily

traced. The picture in fig . 5 does not, however, give a true
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conception of an electromagnetically produced wave wit h
an amplitude of the size shown . For the theory on which
the construction is based holds good only for quite smal l
amplitudes. The figure is therefore merely to be taken as
illustrative of the way of constructing waves with smal l
amplitudes .

5. The Jet-Wave in the Case of alternating Current an d
alternating Field .

If both current and field vary periodically say accord -
ing to
(1) i = Isinw t

(2) H = Ho sin (wt-+-y )

it is found from the general theory in paragraph 2 that
the wave produced may be represented b y

2 1 0
y

	

0 mH2 •dl•x•cos p

(3) [2co

	

` -I20 m	 2•dl•x•sin

	

\t-v~+99 -2 .

From this expression it is seen that a wave is forme d
which has half the wave-length of that produced by a con-
stant field. The wave proceeds in a direction which forms a n
angle 00 with the direction of the original jet determined b y

(4)

	

tg Bå = 2 IH dl cos T .10 m t) 2

The angle is thus zero for y = . In that case the wave

become s

(5)

	

g = 20	1 I )nH2d1•x•sin2w(t-
-v )

and moves on in the direction of the original jet .
It is seen that the deflection oo or rather tg 0o might
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be taken as a measure of cos cp . An indicator for phase -

displacement might obviously be based on the relation (4) .

Fig . 6 . Theory of Wave

produced by direct cur-
With a field rotating in a positive

rent in interaction with direction the mechanical motive force
a rotating yield .

	

F =
10 Io Ho acting on one cm of th e

jet is delayed with regard to the field-vector by the angle 2 .
The field may be produced by means of two periodi c

fields in the direction of the y-axis and z-axis respectively .

The two component fields may be represented b y

(1) HJ = Ho•cos co t

(2) H, = Ho sin w t .

Each field produces its motion and the actual motio n

is the resultant of the two . The problem has thus in a

way already been solved . The two component waves arc

(3 )

	

q

	

I°- H
°•dl . x-sin w t -

10 m v-

1 I Ho
(4) z == 10 - 9.dl•x•cos wit- -

The resultant wave, obviously, has the shape of a screw -

line with a radius increasing in proportion to the distance

6. Jet-Wave produced by a direct Current and a

rotating Field .

Finally we shall consider the wave produced if a direct

current lo is sent throught the jet while the latter with th e

original direction x, fig . 6, passes a rotating field Ho of th e

period T, thus of the cyclic frequency
2 Tr

w = T We may assume that direc -
F

lion of rotation as positive which see n

against the positive direction of the

x-axis coincides with that of a watch .
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x from the field. Its point of intersection with a plane per-

pendicular to the x-axis traces a circle with the radins

	

1	
(5) r

	

Io Ho

	

= -

	

~, dl x .
10 mv-

The radius to the point of intersection is delayed wit h

regard to the motive force by the angl e

(6) 2 c .

On the motion here considered the rotating jet-wav e

commutator is based .

7 . Jet-Wave of small Amplitude with non-laminar Field .

We now proceed to consider the wave with a field of a n

-extension L which is not small compared to the wave-lengt h

~ . The amplitude again is assumed t o

be relatively small as in the previous

	

___ -3 _

cases and again a current i = I sin cot

	

~---~ -- ; - , ;	 4_ -
--- -

is sent through the jet . One way of

treating the problem is to divide the

field into laminae dl as indicated in ô
fig. 7 and to sum up the deviation s

Jg to which the said laminae give

rise . The total deflection at a distanc e

x from the entrance of the field an d

inside the same, x< L, is thus, ac -

cording to the theory given above ,

determined by

(1)

	

~

	

10

H

t0

~(x -1) sin ,, t-x
v 1\

dl .
~

Outside the field the deviation is given b y
Vid . Selsk . Math .-fys . Medd . IX, 2 .

	

2

Fig. 7 . Theory of Wav e

with non-laminar Field .
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(2)

	

g - 10 m2
.Jo (x-1) sin w (t-

x v
ll

dl .

In both cases 1 indicates the distance from the entranc e

of the field, which is assumed homogeneous, to the arbitrary

lamina dl.

8. The Jet-Wave inside the Field .

From (1) in paragraph 7 is found by integration

0 m~
,/g

-{- B 2 sin (w t- p )

mx wx

	

x
A =

	

sin

	

+cos w
- 1

v

	

v

	

v

(1 )

where

(2)

COX COX m x
- cos -- sin

V v

	

U

Btgp°
A

Again the point of intersection of the wave with a plan e

perpendicular to the original jet will vibrate synchronously

with the alternating current but lagging in phase with regar d

to the same. The point will pass the zero-point simultane-

ously with the current at a series of positions x of the sai d

plane, the nodes, represented by

wx _ m x
ta

	

_
v

The nodes are, thus, no longer equidistant. Practically ,

however, they become so at greater distances from the en -

trance to the field, as will be seen from the well-know n

graphical way of solving (5) . The final distance between

two nodes, is, as with a short field ,

(4)

(5)

( 6)
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The amplitude-curves, that is to say, the curves inside

which the wave proceeds, are given by

1 IH 2 B2

10 in v 2 (/`I

	

-

(7) 1 IH '/
(ß+ 10 m 2

V ' - sin ,61 ) 2 + (1- cos /I ')2 ,

being introduced for co
x

. Obviously with increasing dis -

tance . x the curves approach the two straight line s

(8)

	

y = 1 HI

lOmw218 '

A good approximation is

1 IH
(9) y - + 10 In w - (f - sin ,6) .

The curve y = ß'- sin,6 ' is shown in fig . 8 . It forms a kin d

of staircase profile ascending along the line y =
1 IH ' ,

10 m w
and having horizontal

	

y

	

Y=/e=sind '
tangents at the equidis-

tant points

(10) ,8 ' =0, 27r, 4 r . . .

or at distances fro m

the entrance to the fiel d

given by

(11) x = 0, 2,, 22. . . .
s

The same is true fo r

the curve represented

by the exact expression v

	

sS

	

3.

(7) . We may conclude Fig . 8 . Amplitude-Curve for Wave in -

that if the field is cut side the Field .

off at one of the distances given by (11), we shall obtai n

a wave with a constant amplitude outside the field .

2*
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9. The Jet-Wave outside the Field .

For the jet-wave outside the field the following ex -
pression is found by integration of (2) paragraph 7 :

L

	

L

	

L_1

	

L

2 IH w2

	

w2

	

w2

	

x 2
cos -----sin

	

cos co 1 -'0 l7t w 2

	

t)

	

t)

	

U/

	

\

	

U

( L

	

L

	

/

	

L
t.~ x-2

	

co 2

	

x-2

+

	

-

	

sin

	

sin w t-
U

	

U

	

\

	

U

	

_

For x = L this expression gives the same value for tj

as does the formula (7) paragraph 8 for the wave insid e
the field. It shows that the motion of the point of inter -
section with a plane perpendicular to the original jet i s
synchronous with the current by which the wave is pro-
duced. The phase-lagging, however, is now given b y

(1)

y = 99'(2)

where
L_

	

L

	

L
w

	

w2

	

2

	

2
cos

	

-sin
(3)

	

tg p ' =

	

-L\

	

-L
2 ))

	

co
	 si

	

2
n

1)U

	

U

U

	

Z)

O r

(4)

	

tg cp' _

TL

	

7

	

7Ly 2-cos y

fi TC sin y

if the length of the field measured with ~ as unit is in-

dicated by y and if the distance from the centre of the
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field to the plane measured in the same unit, thus

x- 2

2
is denoted by ,8 . We shall now discuss the wave considere d

in detail .

10. Amplitude of Wave outside the Field .

As will be seen, the amplitude-curve may be expressed by

2 IH
(1) g 10m& 2 j

With increasing

(1) tends t o

(2)

or to

Z

	

TG

	

7,\ 2
7Gy 2 cos y 2 -sin

2)
+ f2rsiny 21 2

distance fi from the centre of the field

2 IH
LI =	

1 0
m /3 7r•siny -

w 2

(3)
1 IH

	

siny
2

Y _ lO m U2
L xo

	

,

2

xo standing for x- 2 .
This expression may be compared with the formul a

for the amplitude with a short field, thus with (3) para -

graph 3. The two expressions are identical apart from th e

sin
76y 2

factor

	

provided the distances, in the case of the non -
7c

2
laminar field, are measured from the centre of the field .

Thus at greater distances the formula corresponding to a

short field may be used provided the result is reduced b y

applying the factor

7G
sin Y

F=

	

.
7S

(4)

2
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With special extensions of the field particular waves

are obtained. If for instance y assumes such values tha t

the first member under the square root in (1) vanishes ,

that is to say, i f

(5)

	

tg y
2
- ° y -

2 '

then (2) is exactly true for all distances ß and the phase -

displacement

	

(3) paragraph 9, also vanishes so tha t

L
wx-2 1

the whole phase-lagging is that expressed by - . In

the said case, therefore, the wave is identical with the wav e

with a short field, the length dl of which is determined b y

sr
sin y 2

dl = L -
7r.

y 2

The first length of the field satisfying (5) is obviously

determined by a value of y
2

somewhat smaller than 3 2
thus by y a little smaller than 3 .

If on the other hand y has such a value tha t

(7)

	

sin
y'

= 0

thus if y is equal to 2, 4, 6 etc . then

1 IH y (À,\ 2
10 m v 2 7c 2 /

That is to say, the amplitude is constant outside th e

field as predicted in paragraph 8. At the same time tg p' = o 0

or p' = p • 2 • (p = 1, 3, 5 . . .) and the formula for th e

wave becomes

(6)

(8)
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•

~ 10 m~ Tc 2
cos w t-

xo

A wave with constant amplitude may thus be electro-

magnetically produced, but a rather long field must b e

employed. It is easy to see how the amplitude become s

constant . The shortest field giving the wave in question i s

just a wave-length A.. . It thus takes a particle a period t o

pass the field. The velocity in the positive direction of

the y-axis which the particle obtains during the one hal f

of the passage is therefore lost during the other . So the

particle arrives at the boundary of the field with no velocit y

perpendicular to the direction of the original jet . But ob-

viously it arrives with a certain deviation, the deviatio n

due to the first half of the field not being compensate d

by the opposite deviation to which the second half give s

rise, simply because the latter part of the field is closer t o

the exit of the field than the former .

11 . The Variation of the Amplitude with the Extension o f

the Field at a given Distance from the Centre of the Field .

In addition to the general discussion in the precedin g

paragraph we may consider the variation of the amplitude

with the extension of the field aL a given distance from

the centre of the field . We may in (1) paragraph 10 writ e

(9)

and (2) ßTc = /3 '

with which notations the amplitude i s

2 IH
/O,' cos 7-sin

IO m
	 0;2; V

	

Y )~ + (ß sin ri ` .(3)

We find that y is minimum for the values of r' given by
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or for

(5)
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sin y' = 0

L = p•(p= 1, 2, 3 . . . )

thus for the values of L giving waves of constant amplitude,

the latter, as shown, being expressed b y

1 IH y ) 2

(6)(

,
g

= 10 m0 sr 2

The amplitude is maximum for the field-extension s

determined by
Q

(7) (ß '2 - Y12) COs +
vi sin y' = 0

thus for

(8)

	

fg Y =
r ,2_ 13 /2 .

Y

The equation (8) may be solved graphically by deter -

mining the points of intersection between the two curves

(9) q ' = tg y ' .

and

= yi2 Y

	

= Y`
1

	

\

	

\ ~' ~ 2 ) .-

	

/
If for instance fi' = 7rß = 37r,, corresponding to the am-

plitude being considered at a distance
2~

from the centre

of the field, it is found that the amplitude is maximu m

for values of ÿ close to 9 and 2 thus for extensions L

nearly equal to 2 and
32.

. In both cases the amplitude i s

about the same, namely approximatel y

_ 2 IH
(11)

	

q

	

10 mw 2 y1+ß'2 .

thus for ß' = 37r very nearly

=

2 IH

	

1 IH 3 2

(12)

	

g

	

10 ~nca2
3Tr =

10 m v2 2Tr

	

.

(10)
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s

/a

po
o

Finally the amplitud e
in the case considered i s
maximum for a value o f
y ' somewhat greater tha n
~2 . This is seen from fig . 9

representing the graphica l
solution of (8) with regar d
to the root considered . It
is seen that the solution

is y ' = 20.95 • 2 corres-

ponding to L = 5 .24 2 .

A .So/ution of the Equo7'7bn.

2/	 22	 23	 24	 51,d. '
~,/I

►/~~"„"
~

a

In fig. 11 a complete //
graphical representation o f
the variation of the am-
plitude with y' is given for y

8 ' = 3 Tr (ß = 3) . All three Fig . 9 . Graphical Solution of Maximum -

maximum-values of the

	

Problem .

amplitude are very nearly identical . The value of the mini-
mum-amplitude increases according to a straight line . From
these facts it follows that the difference between maximu m
and minimum becomes the less the greater the extension o f

V(r-,,r'--;--.7,-O;~7J 1~-,gy =sa

p.mppigil
Fig . 10 . Variation of Amplitude with Field-Extension, N' = 37r .

y
/a

/ 2 J 6 7 0 9 /O // /2 /3 44 3 24- 25

~
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the field . Furthermore the conclusion may be drawn from

fig. 10 that if the greatest possible amplitude with the cheapes t

possible magnet is aimed at, an extension of the field equal

to 2 (r' = 2) should be chosen .

12. Position of the Nodes with Fields of various Extensions .

We may finally discuss the positions of the nodes in

their dependency of the extension of the field . According

to paragraph 9, (2) the nodes are determined b y

= P 1 -ß ' = p -7r (p = 0, 1, 2, 3, . . . ) ,

where with the notation in the previous paragrap h

(2)

	

tg p , = y'	 cos y' - sin y'
ß ' sin y'

The nodes are thus determined b y

(3)
tg s, _ y ' cos y ' - sin y'

ß' sin y '

The values of fi' satisfying (3) are found graphically

as points of intersection between

(4)

	

ii ' = a, and (3) g' = fgß' ,

where
y' cosÿ- sing'

sin y'

In fig. 11 the solution is given for a series of values of
L

y ' = 2 •
1

. For y' = 0 (L = 0), c assumes the form . The

2
value is, however, easily seen to be O . The nodes are thu s

determined as the points of intersection between the axi s

of abscissae and the tangent-curves or by ß' = rrß . = p7r ,

(p = 1, 2, 3, . . .) corresponding to distances from the fiel d

(1)
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equal to , 2y , 32 and so on, as already found in the

discussion of the wave with a short field . If now the length

Somttan uI tçj- x~i
fi-sinr '

p ~ nr.

Ex tensiøcft-fe(d 1.-

	

i =
b

	

L_ A

	

7

L =lk

	

d

	

..

	

..

	

L=V ; i_,Lû

a ,s- f''(K-i)

Fig . 11 . Graphical Determination of the Nodes .

of the field is increased, c will become, and remain, nega-

tive and numerically increase steadily as long a s

y'< Tc

that is to say as long as

L<~ .
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The positions of the nodes are determined by the point s
of intersection between the tangent-curves and hyperbola s
situated below the positive part of the axis of abscissae .

In fig. 11 the hyperbolas are drawn corresponding t o
TC

	

TG
y' = 4 (a), y' = 2 (h), and y ' = 3- (c) or to L equal to

and 4y respectively . It should be noted that the dis -4 2
tances of the nodes from the centre of the field are ap-
proximately the same as with a short field all up t o

L = 34 or even above . This is especially true for the nodes

at greater distances from the field . For y' = r (L = 2), tg cp '

is oo thus = (2p1 -î- 1) .7-2( where p i stands for 1, 2, 3 . . .

The positions of the nodes are now determined b y

tP = (2p1+ 1)'fii = p,L ,

from which

(7) = 2 (p-p)+ 1

	

2p 2 +1

	

16 '
2

	

2

	

;c

where p 2 stands for 1, 2, 3 . . . The nodes are thus all dis -

placed by 4 with regard to the positions with a shor t

field . This is also seen from fig . 11 if we imagine the hyper -
bolas extended infinitely . Now if y ' is increased beyond
Tr. (L beyond 2), c becomes positive and the hyperbol a

y ' =

	

is situated above the axis of abscissae . For

y ' = 4 Tc j L =

	

the hyperbola is d fig. 11 . Again the

nodes are distributed approximately as with a short field .
The constant c remains positive until the first of the field -
extensions (greater than 0) which satisfy

(8) tg y'
= y '

(6)
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is reached. At the said extension L, which is a little less

than 2 ;,, the nodes are distributed exactly as in the case

of a short field . If the extension is made still greater th e

constant c again becomes negative and so on .

In tab . I which is derived from fig . 11 the distance s

A, ß2, ßs from the centre of the field of the three firs t

nodes are given corresponding to four values of the field -

extension .
Table I .

L

	

;31

	

ß3

	

-

0 1 .000 2 .000 3 .000 1 .o00 1 .00 0

0 .981 1 .988 2 .994 1 .007 1 .00 6
4

7.
0 .894 1 .950 2 .975 1 .056

	

1 .02 5
2

37
0 .695 1 .830 2 .918 1 .135

	

I

	

1 .08 8
4

It is seen from the last two additio-

nal columns how nearly equal to -9 the

distance between consecutive nodes is ,

even with fields of rather great ex -

tension .

13 . The Jet-wave produced by an

oscillating Nozzle .

A jet-wave of the kind considere d

above, but subject to no restrictive

assumption with regard to the size

of the amplitude, may be produce d

by means of an oscillating nozzle . In

fig . 12 N indicates a nozzle which pet- by an oscillating Nozzle .
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forms a translatory motion perpendicular to the axis o f
the nozzle, the motion being determined b y

(1)

	

Y= f(t) •
A jet-particle which leaves the jet-hole at the moment

to will, at the distance x from the nozzle, exhibit a devi-
ation with regard to the axis of the said nozzle determined ,
as seen from the figure, b y

(2)

	

y = f(to)+vf'(to) ,

f ' (to) standing for the velocity f at the moment to, and

o for the velocity of the jet . If furthermore the distance x
has been reached at the moment t, the n

(3)

	

x = U (t- to) .

The expression for the wave produced is found b y
eliminating to from (2) and (3). It is

y = f(t- v ~ v

	

v) .

If now, particularl y

(4)

(5 )
then

(6)

where

Y= Yo sin wt

\
Yo [sin w(t- x) .+ x wcosw(t- x

U

	

U

	

U /

/w x\ 2

1+ I-I sin
U /

(wty)) ,
`

(7 )

(8)

cy = x- arctg w x

The amplitude-curve of the wave is expressed b y

9° 1ro
VI+ (	

Ux J a

v
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or by

(9)
J 2

	

x2

U
and _

w 2 a
the jet-hole

It is thus a hyperbola with the axis Y,

2 = vT, T = 2 . At greater distances from
w

the amplitude-curve may be represented by

	

xw

	

2aa
(10)

	

y=Y0 v

	

+ Yo -
. x

thus by two straight lines .

The formula (6) may also be conceived as the equatio n

of the motion of the point of intersection between the jet -

wave and a plane perpendicular to the axis of the original

jet. The motion is harmonic like that of the nozzle but

lags in phase with regard to the latter. The phase-displace-

ment is zero or a at the points at which the wave cuts

the x-axis at the moment t = 0, that is to say, at the point s

determined by

X

	

X
tgw - = w- .

v .

	

V

Attention may be drawn to the fact that the nodes in -

side the field of an electromagnetically produced wave wer e

determined by just the same equation ((5) paragraph 8) ,

x being the distance from the entrance to the field .

If the deviation of the particle is measured relativel y

to the axis of the moving nozzle it is expressed b y

y = x f' (to) - [f ( t) -f( to) ~

(compare fig . 12) . With harmonic oscillation of the nozzl e

the equation of the jet-wave in the oscillating system of

coordinate i s

(12)
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Y F° I(w
i

Coswlt-U)-sinwt--sinwlt-U

J
1

(13) =

	

[(wsinw-+cosw--_-1)sinm 1

+ (x

	

x

	

x1
w- cos CO -- sin W - cos w t .

U

	

U

	

U

The wave is seen to he identical with an electromag-

netically produced wave of small amplitude inside the field

provided (paragraph 8 )

(14) 1 _ 1 IH
°

	

10 m(02 .

It has thus already been discussed above .

On the wave-motion considered in the present paragraph th e
jet-wave accelerometer is based . If f(t) in (12) is replaced
by the first three terms of the serie s
(15) .

	

f(t) = f(to)+(t-t°) f'(to)+1(1-ta)°f"(to)+ -

.where t- t° = v , (12) may be written

2

(16) y =

	

l ( ) ° f "

	

= - ()°f" (t `

it being assumed that the displacement of the nozzle is smal l
and that y is measured so close to the nozzle that the members
of higher order of (15) may be neglected. It is thus seen that th e
acceleration f" (to) of the nozzle or of any body to which th e
nozzle is attached may be registered by the relative motion o f
a point of the jet-wave close to the nozzle .

On the other hand it is seen that (12) at greater distance s
assumes the shape

(17) J = v f ' ( to)

provided ,again that the displacement or the nozzle is kept withi n
certain limits . The velocity of a body to which the nozzle is at-
tached is thus registered by the relative motion of a point of th e
jet-wave chosen not too close to the nozzle .

1 Nature, June 6, 1925, and Phil . Mag ., vol . III, 1073 .
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CHAPTER II

The Jet-Wave of large Amplitude .

1 . The Jet-Wave in the Case of a laminar Field.

We now proceed to consider jet-waves of larger am-

plitudes and shall commence with a wave produced by a

laminar field i . e. a field the
ax-

	

Sextension dl of which is so

smal] that the current used in

production of the -wave may

considered constant durin g

passage of a small particle

/ix of the jet. While, in the

building up of the theory in the

	

,L __

	

S a x

case of small amplitudes, w e

were justified in assuming th e

mechanical force, acting on the

jet-particle, perpendicular to the
Fig . 13 . Theory of Wave wit haxis of the original jet, this as -

short Field.
sumption can now no longer be

maintained. During the passage the particle zix of the je t

will be attacked by a force

1O)

	

K = 10 iHz/x ,

where i is the value of the current during the passage an d

H is the intensity of the homogeneous field. The force K
Vid. Selsk. Math .-fys. Medd . IX, 2 .

	

3

the

be

the
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is perpendicular to the field and to the direction of Mc
or, what we shall assume to be the same, to the directio n

of motion of the said particle. It is therefore unable t o

alter the original velocity v of the particle, but it wil l

force the latter to follow a circular path the radius o of

which is determined by

ni ax
(2)

	

v2 = K,

m being as in Chapt . I the mass per cm of the original

jet. From (1) and (2) we derive

1 _ 1 IH

P

	

10 rn v 2 '

After having left the field the particle will proceed

along a straight line forming an angle 6 with the directio n

of the original jet, where obviousl y

dl

	

1 IH
(4)

	

sin B = -=

	

.dl .
Q

	

10 mu-

If the current through the jet is determined by

(3)

(5) i = I sin co t

and if the particle which passes the field at the momen t

to is considered, the deflection of the path is expressed b y

(6) sin B =	
1	

10
rnH • dl • sin w to .

At a later moment t the particle will have reached a

distance r from the field, wher e

(7) r = v(t-to) .

Eliminating to from (6) and (7) we find the formul a

of the jet-wave. It is
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sin e = 10
rn 2

dl -sin co (t

	

V

= sin 0 771 . sin w t-
v J

.

Obviously (8) represents a wave proceeding between

two straight lines 0 = + Om where Om is seen to be the sta-

tionary angle of deflection for a jet carrying a constan t

current I . The wave-length is determined by

(8)

(9) U • T

as in the case of a wave of small amplitude . The equatio n

derived for the latter wave wa s

(10) tg0=-=

	

11îH dl•sinco(1-o)=tg•sines /t-x

``

	

III

	

\

	

U

The latter formula may be used instead of (8) for th e

determination of the amplitude 0 m as long as the differenc e

between sin O m and tg O17t may be neglected. For On, = 10°

sin Ong = 0.1736 and tg O ,n = 0.1763. The difference in thi s

case is 0.0027 or ab . 1 .5 per cent. For O n, = 20° the differ-

ence is already 6 .3 per cent .

2 . Construction of the Jet-Wave .

Fig. 14 illustrates how a jet-wave of given angular am-

plitude 0m is constructed. The angle On, is laid down to

each side of the direction of the original jet OP . With an

arbitrary part OA of the line OP as diameter a circle i s

drawn. It cuts the line OC limiting the track of the wave

in the point B. The chord AB is swung down round A o n

the line CC perpendicular to OA . In this way the end of

the chord AB comes down at B'. We may now for in -

stance consider 17 consecutive particles of the jet follow -

3*
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ing each other at a mutual distance of 16 . In order to

determine the rectilinear paths of the said particles, 17 piece s

are set out on the line B'B' from the point A. The piece s

are as sin 0 • , sin 1 . 8 , sin 2 - g , . . , sin 15 8 , sin 16 • S .

Fig. 14 . Construction of Jet-Wave .

AB' is taken to represent the unit length. The well -

known construction of the pieces is indicated in the figure .

Now the ends of the same pieces (0), 1, 2, 3, . . . , 15, (16)

are swung back round A on the circle OBA. Through the

points thus obtained the tracks of the particles in questio n

pass . They may be numbered 0, 1, 2, . . . , 15, 16 . Now as-

suming that at a given moment particle 0 has arrived at A
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on the track OA, then particle 1 will be on track 1 neare r

to the point 0 by the distance 16 , particle 2 will be o n

track 2 nearer by
16

to O than particle 1 etc . The way

to find the positions of the consecutive particles is thu s

obvious . Backwards from A we may divide OA in parts ,

each of the length 16, and mark the points of division b y

1, 2, 3, . . . Then in order to find the position of a certain

particle, We shall only have to project the point of division
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of the corresponding number on to the track of the same

number by means of a circle with its centre at O .

A main difference between the construction of the wav e

with small amplitude (or of the wave produced by mean s

of a nozzle performing translatory oscillations)- and tha t

of the wave with large amplitude lies in the .way of pro-

jecting the points of division of the jet-axis on to the tracks .

In the first case the projection takes place by lines at righ t

angles with the said axis, in the second by circles . The

first type of waves may accordingly be characterized as

the rectangular type while the second may be terme d

the circular type. The latter type has the peculiarit y

of the wave-fronts being markedly convex in the direc-

tion of the motion . How close the actual jet-wave comes

to the shape of the constructed wave is seen from fig . 15 ,

representing an instantaneous photograph of a wave pro-

duced electromagnetically from a mercury-jet .

3. The Jet-Wave in the Case of a non-laminar Field .

General Theory .

We now proceed to consider the wave with a fiel d

which is not laminar. Again we shall assume the wave t o

be produced by the curren t

i - I sin oil in interaction

with a constant and homo-

geneous field. The extension

of the latter in the directio n

of the original jet is L,

fig . 16 .

During the motion through

the lamina dx of the field

the path of the particle con -
Fig. 16. Theory of Wave with

non-laminar Field .
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sidered will suffer a change of direction de, given, as wil l

be seen from the figure, by

ds

	

v dt
d6 ==

	

,
Q

	

Q

Q

ni v 2 1= 10 . HI sin cot ,

in indicating as above the mass per cm of the original

jet. From (1) and (2) is found

dB = i~ I7H
Û2

•v•sinwt•dt ,

and by integration

_ 1 HI

10 mvs
2 Jr (COS wto- coswt)

= Øp (cos w t„ -coswt) ,

to being the moment at which the particle enters the field .

The equation (4) gives the direction of the motion of a

particle at any point of the path provided it is known at

what moment t the particle is at the point in question .

Especially it is possible to determine the direction of th e

motion at the lower boundary of the field if the time o f

passage of the field is known. We shall now derive a for-

mula expressing the distance x from the upper boundar y

of the field as a function of time .

From fig . 16 it is seen tha t

(5)

	

d x = ds • cos B = v dt cos O .

If O is kept below a certain limit we may pu t

0 2

cosB =1-2

(3)

(4)

(6)
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4

The error committed is of the order 4
thus, with

0 - -, 384 or 0
.3 per cent .

If the value of cos 0 determined by (6) is introduce d

in (5) and if the value of 0 is then taken from (4), an

integration gives

02

	

02 1
X = 1- ~

	

COS 2 wto
J

v (t -t° )
\

	

/

+ v-4 cos w to (sin w t- sin w to)

0
2

v °-(sin 2 w t- sin2wto)
8 w

i

	

Bo 0~

	

2

	

t-t°
x = 1 1-

4
- ry cos' co to~ __r

0 2
(8) + ;,

2
° cos w to (sin w t- sin co t°)
Ir.

2

À

16

° T (sin 2wt-sin2(o to) .

Finally a formula for the deviation q perpendicular t o

the original jet of the particle is derived . From fig. 16 i t

appears that

(9) dq = ds•sin 0 = v dt•sin 0 .

An approximation which will suffice in most cases i s

obtained by replacing sin O by 0 . The error is of the order0 3

6 i
. e . ab . 2 per cent . for 0 = 2 . Apparently this error i s

not quite small but as y in most practical cases is small ,

the error is only of relatively small influence on the am-

plitude outside the field at greater distances from the same .

Introducing the value of 0 from (4) and integrating, we find .

(10) y = v 0 ° (t- to), cos co to -
v

00- (sin w t- sin w to)
w

( 7 )

or
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or

(11) y = 7
0

° 	 I t0 cos w t,
) - ®TC

(sin t- sin w t° ) .

For small values of 9 the theory now developed coin- .

cides with the theory for a wave of small amplitude in -

Fig. 17 . Difference between Waves calculated from the exact Theor y

and from the Theory with small Amplitude .

side a field of great extension . If the members with 8 of

(7) may be neglected, the formula is reduced t o

(12) x = v (t- t°)

and by eliminating to from (11) and (12) we find for th e

equation of the wave
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2_ 1 IH

	

}~

	

2 r,x
cos w t- x- sin w tll

	

10 rn v 2 2rr/

	

v ~

\
~- sinw

//
(t - -

x
J ,

\\

	

v

which may be shown to be identical with the formula (1)

in Chapt. I, paragraph 8 . With large amplitudes the ex-

pression (13) leads to a false picture of the wave both in-

side and outside the field . Fig. 17 illustrates this . The wave

A is calculated on the basis of the complete theory, whil e

B is found by applying the theory for small amplitudes .

In both cases the same value for
- 1 IH	

= Bp is as -
10 mv- 2 m

sumed. By employing the theory for small amplitudes a

too small value of the amplitude is found, and at the sam e

time the zero points or nodes are displaced somewhat wit h

regard to the true nodes, i . e . the points of intersection

between A and the axis of the wave . The points K l and K2

represent the positions of the nodes as they would be with

a laminar field in the centre of the actual field . How pic-

tures like A in fig. 17 are produced, will now be explained .

4. Production of Wave-Pictures on the Basis of th e

complete Theory .

By means of the theory of paragraph 3 it is compara-

tively easy to trace jet-waves corresponding to variou s

values of field-length and amplitude . It is done by calcul-

ating the path of a series of particles characterised by th e

moment to at which they enter the field . The particles ar e

appropriately chosen equidistant, distributed over half a

wave-length, i . e . the values to are distributed evenly over

half a period . Corresponding to each value of to a serie s

of equidistant values are ascribed to t in the formulae (8)

(13)



The Jet-Wave .

	

43

a

Fig . 18 . Jet-wave Diagram L = = 0.250 .
R

2 ' 00
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Fig . 20 . Jet-wave Diagram L = 4, 00 = 0 .250.
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and (11) of paragraph 3, and so a series of x- and y-value s

of the path is found. Furthermore the moment of arrival

Ç of the particle at the lower boundary of the field i s

found by extra- or interpolation . If then to is introduce d

in (4) paragraph 3, the direction of the outside rectilinea r

path is determined . It being known that the particle moves

on in the path with the velocity u of the original jet, it

is also known at what point of the path the particle i s

found at any moment . If now the positions of a series of

particles at a given moment are marked, the wave at th e

said moment may be drawn by tracing a curve throug h

the said positions .

In the way here indicated the wave-pictures in fig . 1 8

-20 have been produced . The direction of the paths out -

side the fields are stated in tab . I . Fig. 18 corresponds to

a field of half a wave-length and to 0 0 = 0 .250. The paths

numbered 0, 1, 2, . . , 15, correspond to particles entering

the field at the moments 0 1-
T 2

• T , . , 15 .
T

. (Th e
16 '

	

16'

	

16 '
current is supposed to be i = I sin cv O . On the paths th e

positions at which the particles are found half a period

after their entrance into the field are marked by circles .

It thus takes a little more than half a period for a par-

ticle to pass the field, and the more time the more slopin g

the path is . The wave proceeds within certain symmetrical

boundary-curves, the amplitude curves, which of cours e

are envelopes of the outermost paths . In fig. 18 the said

curves are stippled . Their points have been determined

graphically by measuring at a series of distances from th e

centre of the field the distances y from the axis of th e

wave to the various paths. The values of y have then been

marked out in a rectangular system of coordinates in their

dependency of the number of the path, and so the maximum-
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value of q has been found . In fig . 18 the amplitude-curves.

deviate markedly from the outermost paths. In fig . 19 cor -

Table I .

fo t'
T T 0 tg o

(16) ( 16 )

0 8 .44 0 .496 0 .54 2
1 9 .43 0.443 0 .475 L- ~ , 0a = 0 .25 0
2 10 .52 0 .314 0 .32 4
3 11 .28 0 .166 0 .168 tg Bnt = 0.54 6

4 12 .14 0 .013 0 .013 T

5 13 .02 - 0.195 - 0.201
Path to = - 0 .25 16

6 14 .10 - 0.360 - 0.376 0 m = 0.50 0

7 15 .25 - 0.470 -0.50 8

0 4 .06 0 .360 0.37 6
1 5 .12 0 .473 0 .512 L = R

	

= 0 .35 1
2 6 .20 0 .515 0.566 4
3 7 .17 0 .466 0.503 tg 0 ttt = 0 .56 6
4 8 .13 0 .350 0.366 T
5 9 .06 0 .186 0.189

Path to
= 2 1 6

6 10 .00 0 .000 0.000 0. = 0.51 5

7 11 .02 -0.193 - 0.19 5

0 4 .04 0 .253 0.25 9
1 4 .06 0 .333 0.346 L - 4 , 00 = 0 .25 0
2 4 .10 0 .360 0.37 7
3 4 .10 0 .330 0.343 tg 0 nt = 0.377

4 4 .06 0 .250 0.255 TPath to =
25 4 .04 0 .134 0.134 1 6

6 4 .01 - 0.001 - 0.001 0 , = 0 .36 0

7 4 .00 - 0 .135 - 0.136

responding to a field-length
4

the amplitude-curves coin-

cide almost exactly with the outermost paths, for which

to is 2 16 and 10 16 respectively, so the amplitude curve s

are not drawn. The same is true in the case shown in fig . 20 ,

where the outermost paths likewise correspond to to equa l
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to 2- and 10-1
T

respectively. In the table O m and tg 8

indicate maximum-values of B and tg B respectively .

5. Geometric Construction of the Jet-Wave in the Cas e

of a non-laminar Field .

The paths of the particles and so the wave may als o

be approximately determined purely geometrically as in-

dicated in fig . 21 .

The field is divided

into conveniently

thin laminae or

zones 1, 2, 3, . . .

Inside each of th e

said zones the pat h

is assumed to he a circle with a radius determined b y

1

	

1 iH

0

	

10 m v 2 '

i being the average value of the current during the pas -

sage of the zone . The centre of curvature C1 for the path

through the first zone is situated in the uppermost boundary

of the field . The centre of curvature C 2 for the path throug h

zone 2 is assumed to be on the line C1 a 2 , a2 being the

last point of the path inside zone 1 etc . In fig . 22 a-b an

example of the construction is given, fig. 22 a showing 1 6

equidistant paths inside the field and fig. 22 b giving the

corresponding paths outside the field and a complete wave -

picture. In the construction the field was divided into 8

zones and it was assumed that the passage of each zon e

took 16 sec . The current was supposed to be i = sin w t an d

the radius of curvature, measured in cm, was chosen 1 0

(1)
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limes the reciprocal value of sin w 1 at the moment at which

the particle is in the middle of the zone in question . Fur-

thermore i was taken to be 16 cm . With these dimension s

8o is very nearly the same as in fig . 18, namely ab . 0 .250 .

For to the factor 10 corresponds the value 1 of
HI

and
ni

Fig. 22 a . Instance of Construction .

thus with i = 16, the value of
0mû 21r = O

0 is
10 27r

0.254. Very nearly the same paths and the same wave

should therefore be expected in fig . 18 and in fig. 22 a-b.

In a comparison it was found that path 1 in the origina l

construction fig . 22 a cuts the lower boundary of the field

5.26 cm . from the axis of the wave, while the correspondin g

distance in fig . 18 was 5 .16 cm., the difference being thu s

ab . 2 per cent. i . e . the same as between the values of '6 0
Vidénsk . Selsk . Math .-fys. Medd . IX, 2.

	

4
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Fig . 22h . Instance of Construction .
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The influence of the width of the zones in the geometri c

construction was examined . It was found that in a field o f

2 the slope of path 1 outside the field varied as follows

with the number of zones .

Table II .

Number of Zone s

with field of
tg 0 B

2

4 0 .551 0 .50 4

8 0.536 0 .49 3

16 0 .517 0 .47 7

co 0 .500 0 .463

The values of tg 0 and 8 corresponding to an infinit e

number of zones was found by means of an extrapolatio n

of rather large uncertainty . From the preceding paragraph

we conclude that the true value of 0 should be ab . 0 .452 .

It thus seems that the construction employing zones o f

16 in the case considered, that is to say with a rather

large amplitude, leads to a comparatively large error, sa y

8-10 per cent ., in the determination of the slope of th e

paths and thereby also in the determination of the am-

plitude. Otherwise the constructive method has the ad -

vantage of affording a general means for the determination

of the wave also in cases where the field is not homo-

geneous .

6. Approximate Theory of the Jet-Wave with a

non-laminar Field .

If the non-laminar field is not too long in the directio n

of the jet, say not longer than
4 , and if furthermore th e

4 *
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amplitude is not too large, compare tab . IV, the equation

of the wave may with fairly good exactness be determine d

as follows .

It is assumed that the wave will be nearly the sam e

as would be produced if the current during the passage

of each particle were constant and equal to the averag e

value of the actual current during the said passage . Further -

more it is assumed that the passage of all particles take s

the same time, namely -, thus the time for the passag e
v

of a particle of the original jet . For the particle which a t

the moment to is at the middle-plane of the field the sai d

average value of the current i s

1

	

to+y 4

	

sin Y

	 2 .~ -
T

	

T Isinc,o t•dt = I

	

sinwt o

Y9 0, to-y T
y -9

(1)
7c,

y standing for	
L

(-12)
The slope of the path due

the field is

sin y

(2)

	

sin B = p • ~~H2 • L
.

	

2
• sin co to .

2

Prolonged backwards the path will generally intersec t

the axis of the original jet nearly at the centre of the field .

If therefore the distance from the said point to an arbitrar y

point of the wave is indicated by r, it may be conclude d

from (2) when compared with (6) paragraph 1 that th e

equation of the jet-wave may be written

to I in interaction with
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7
sin Y-

	

/

	

\
sin 9- 10 m H L	

7c2
sin w j t- ~ I

2

	

`

	

/

r \
= sin 01 71 • sin co t

v

I .

The angular amplitude 0777 of the wave is thus deter -

mined by

7r
sin y

(4)

	

sin 877 -= 0 t
z2

	

7r

2

Y 2

or it is the same as with a fictive laminar field of lengt h

sin 9

L

	

- . As in the case of waves with small amplitudes
7r,

Y 2

we find with waves of larger amplitudes that the wav e

with non-laminar field may be considered identical with

waves produced by a laminar field as long as the facto r
7r

sin r
2

IT
Y 2

values of the said factor are given in tab . III .

Table III .

Y

(3)

may be considered small compared with 1 . Some

0 . 1

0 . 2

O . :S

0 . 4

0.5

0 .99 4

0 .98 4

0 .96 2

0 .93 6

0 .902
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7 . Comparison between the general and the approximate

Theory .

In Tab. IV below, the absolute amplitude y at various

distances fi from the centre of the field, and calculate d

from the approximate theory in the preceding paragraph ,

is compared with the corresponding amplitude measure d

in the wave pictures in fig. 18 20. The latter amplitude

is stated under A, the former under B . The B-figures are

determined from

9 = fi' 2 • tg Bnl '

where 8,,, is found from (4) paragraph 6 . Obviously the

approximate theory agrees excellently with the genera l

theory for field-lengths up to
4

and for amplitudes a = tg O m

up to 0 .5 or even above .

Table IV.

x

2

(z~ A B

0 .50 5 .21 4 .62 L = 2 , A = 32 cm .

0 .75 7 .15 6 .91
1

	

IH
1 1 .00 9 .13 9 .22 2 00 =

	

~A

	

0 .50 0
10 m o2Tc

=

1 .50 13 .18 13 .8 4

2 .00 17 .44 18 .47 tg d„= 0.546 with to = - 0.25 .1E
- .

0 .50 4 .50 4 .58

~

L = ~ , 9. = 32 cm .

0 .75 6 .74 6 .85
1

	

IH

	

A
II 1 .00 9 .02 9 .12 2 go = - - - = 0.70 2

10 n1 U2

	

7Z
1 .50 13 .60 13 .7 2

2 .00 18 .12 18 .29
tg Hm = 0 .566 with to = 2 6

0 .50 3 .03 3 .02 L =
4 ,

A = 32 cm .

0 .75 4.53 4 .5 4
III 1 .00 6 .04 6 .04 ~ d0 = 10 1 ~~2 ' n = 0 .50 0

1 .50 9 .07 9 .06

	

T
2 .00 12 .10 12 .10

	

tg 0„i = 0 .377 with to = 2

(1)
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We will now consider the question of the nodes . The

wave represented by the approximate theory has its node s

at distances from the centre of the field given by p 2 ,

where p stands for 1, 2, . . . In figs . 18-20 these points

are marked as K1 , K2 . With the field-length fig . 18 ,

Kl and K2 are displaced rather considerably with regar d

to the nodes of the actual wave, that is to say, the point s

of intersection with the axis, the wave being represente d

at the moment i = 0. And it may be noted that Kl and

K 2 are farther from the field than the actual nodes. Willi

the shorter field
4

in fig. 19 the displacement of KL and

K2 is much smaller, and the same is true in the case show n

in fig. 20, in which the field-length is also
4

while th e

amplitude is essentially less than in fig . 19. With field -

lengths below
2

the nodes have very nearly the same pô-

sitions as with a laminar field, and obviously the said po-

sitions practically do not depend on the amplitude .

It is also of some interest to compare the positions of

the nodes determined from the general theory with th e

positions as found from the theory in chapter I for smal l

Table V .

Nodes
Length of

Field
General
Theory

Small Ampl .
Theory

i
ti

0 .878 0 .89 4
2

1 .934 1 .95 0
2

i 0 .980 0 .98 1
4

2 1 .988 1 .98 8
4
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amplitudes. A comparison with a field-length of
2

is made

in fig . 17 . It may be supplemented by the figures in tab . V .

The figures given are the distances from the centre o f

the field measured in half wave-lengths . Those of colum n

3 are derived from fig . 18-20. Obviously the small am-

plitudes give very nearly the same positions of the nodes .

as the general theory, from which again may be conclude d

that the position of the nodes depends very little on th e

amplitude, a fact of great importance in the application of

the waves in certain commutators .

8. The Jet-Wave with an inhomogeneous Field . The

effective Length of the Field .

In all the cases considered above, the field was assumed

to be homogeneous inside the space between the pole-piece s

H

~irrvrøoiiirrirvr rr~ ~rrrnrrrur.,ririirroui..rr

7oØ

/004

,; „:!z( /no'
_..y

-25

	

-7a

	

-/S

	

-KJ

	

-S

	

O

	

3

	

b

	

/5

	

10

Fig . 23 . Actual Field .
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and of zero intensity outside the same. The actual mag-

netic fields are not homogeneous, the intensity varying along

the axis of the jet in a way of which fig . 23 may convey

an idea. The picture originales from a magnet the width

of the field of which was 6 .4 mm while the height of the-

pole-pieces in the direction of the jet was 23 mm and th e

maximum intensity of the field 9350 Gauss . The contour-

of half of a pole-piece is indicated by hatching . Obviously

the field already commences to decrease inside the space -

between the pole-pieces . On the other hand a considerabl e

stray-field is present outside the latter. The result hereof

is that as a rule the field acts as a homogeneous field o f

a greater extension than the height L of the pole-pieces ,

even if an intensity equal to the maximum value of the-

actual field is ascribed to the fictive homogeneous field . .

The length L e of the latter may be spoken of as the effec-

tive length of the actual field . According to what has been _

stated we may write

(1) L e =L+/IL .

We now proceed to show how Le or zIL may be derive d

in cases where the field-curve of the actual field and the•

wave-length of the jet-wave are known .

Passing a zone of the extension dx in the direction of

the original jet, fig . 24 a, the path of a particle suffers a

change of direction de determined (compare paragraph 3) b y

(2) d O =
Ps

= p
1

HL
• ds ,

i being the value of the current during . the passage and-

H the intensity of the field within the zone in question .

Furthermore

(3)

	

dx = ds•cos 0 .
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Hence

1 iH dx
d O _

10 m v2 cos @

or
1 iH

(5)

	

d (sin B) = -

	

9 dx .
10 m v -

We shall now, as in the development of the approxim -

.ate theory in paragraph (6), assume that the amplitud e

N

(4)

Fig . 24 a-b . Calculation of effective Field-Length .

is determined by the path of greatest slope and that the

latter corresponds to the particle which is at the centre of

the field at the moment of maximum current. Furthermore

we shall assume that the time it takes- for a particle t o

pass the zone dx is
dx

. A cosine-curve i, fig . 24 b, covering
u

half a wave-length - is drawn with its top over the centr e

of the field O . Under the circumstances assumed it repre-

sents the variation of the current during the passage o f

the particle the path of which determines the amplitude Om .

The latter amplitude is now calculated from
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. x
1

	

2

(
2T

6)

	

sin 8 77 =1

	

10 m v9
H (x) cos

2

x • dx ,
a ,

where I stands for the maximum value of the current and

2 :c
where H (x) and cos

	

x are read on the curves in fig . 24 b .

'The integration is to be taken from the abscissa x1 of the

nozzle to a point x 2 where the field intensity is practically

zero. The amplitude given by (6) is now identified wit h

the amplitude produced by the fictive homogeneous fiel d

of length L e = y e 2 and with the maximum intensity H of

the actual field . The latter amplitude is determined by

sin ye -
21 IH

sin O m
= 10 m, v2 Le

	

Tc

ye 2

1

	

IH 2, .

	

Tc
- sin ~ ~

10 mv 9 ~

	

y '

Hence from (6) and (7) we get for the determination of re

+-,

	

2TE.
sin ye 2 =

H

	 2 H(x) cos
jÎ

x dx .
@. xi

Tc

with a view to illustration the effective length of the field
was calculated for the case in fig. 23 and for a wave-length o f
13 .30 cm . The nozzle was assumed to be at the abscissa -1 .9 cm
and on the other side the integration was carried down to + 4 .3 cm
where a prolongation of the curve, not given in the figure, showe d
the field-intensity to be negligible . By means of an integration i n
which dx was chosen equal to 0 .2 cm. it was found tha t

~+ +4 . 3
1 H (x) cos 2 n ~ • dx = 2577 0
*-1 . 9

(7 )

(S)

from which
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sr

	

2577 0
sin ye

	

13 .30 9350 = 0
.651 ,

ye •2 = 0 .709, ye = 0 .451 and L e = 0 .451 . 6.65 = 3.00 cm, while.

L was 2.30 cm and thus aL = 0 .70 cm .

9. The effective Field-Length with stationary Deflectio n

of the Jet -

It is of interest to determine the effective field-lengt h

in case of the jet carrying a constant current I so that a

stationary deflection of the jet is produced . As seen from

(5) in the preceding paragraph, the said deflection is given b y

(1) sin O = 1	 I ~ ZH (x) dx ,
10 m Ud

tx ,

while with a homogeneous field of extension L d it would be

(2) sin Od
= 10 m L d

Equalizing (1) and (2) and taking H to indicate th e

maximum-value of the actual field we find for the effectiv e

field-length Ld with a direct current through the je t

x2

Ld
H

H (x) dx .
x

1(3)

If sin B d taken from (2) is introduced in (7) of the

preceding paragraph we find
Tr

L sin ye

(4)

	

sin Om = Sin Bd e .	

Ld

from which it is seen that the amplitude with an altern-

ating current is no longer identical with the stationary de-

flection produced by a direct current equal to the maximum-

-2
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value of the alternating current as in the case with a shor t

homogeneous field . In calculating sin O m we have to mul-

7c
sin re 2

7c

/e 2
'originates from the field not being a laminar field whil e

L
the other L Q is due to the field not being homogeneous .

d

	

In the case of fig. 23 we find Ld

	

93 5
= 935

0
29490 =

3 .15 cm, thus

:appreciably different from the effective field-length with a wave -
L e

	

00length of 13 .3 cm, the factor Lbeing 3 . 15 = 0 .952 . With the
d

nsin y e
same field and wave-length	

2 = x .709

	

0 .919 so tha t

Ye t
sin ern = 0 .952 . 0.919 • sin dd = 0 .875 sin 0 d .

10. Damping of the Wave.

The theories stated above have all been based on the

assumption that the several particles of the jet are inde -

pendent of each other in their motion . Now, actually tw o

neighbouring elements do influence each other and the in-

fluence may probably be conceived in the way illustrate d

in fig . 25. Here the original jet is considered as made up

of disks . When a wave is formed, these disks are displace d

with regard to each other. Thus the viscosity 12 of th e

fluid comes into action and will cause the amplitude t o

be somewhat smaller than predicted by the elementar y

theories above .

The wave considered in fig . 25 is of the rectangular

type indicated in chapter I, and we shall here confine our -

selves to that type of wave . We may consider three adjacen t

tiply sin B d with two factors, of which the one
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2, 6

4 7

Fig. 25 . Damping of Jet-Wave .

elements 1, 2, 3 of which 2 passes the laminar field o f

extension dl at the moment to at which the alternating ,

current producing the wave i s

(1) i = I sincoto .

In the field the element in question obtains a velocity

perpendicular to the original direction of the jet given b y

v
`J = 10 St'dl•sincoto ,

Q
(2)
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where Q stands for the density of the liquid while S is th e

area of the cross-section of the jet . Outside the field th e

element 2 is acted on by tangential forces in the surfaces

of separation between 2 and the adjacent elements 1 and 3 _

The force originating from 1 may be writte n

dv
K= - r/ S •

d
u

and from the element 3

dvu+	
d dv J ll

(4)

	

K+4K = ry/S dx dx dx) dx]
.

The resultant force is thus

d2 v
/K= ~S• dx2•dx .

We now take to as the independent variable instead o f

x noting that

dv~ _ dvy dte

	

dv y

dx

	

dto dx

	

v dto

d2 vy

	

1
d2vJ

dx2

	

Udtô

From (2) it follows that

d'

	

1 HI

dtoy = - 10•9 Sv
dl - w 2 • sinwto .

Hence

K= -p•e	1 dl•r~ 2 •sinwtp dx .

The motion produced by dK is determined by

s 1 HI
(10)

	

m	
U

	

-10

	

a •dl•w 2 •sinwt0d t

(3)

(5)

(8 )

(9)
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from which
2

~(11)

	

II = -	 ~ . n,
HI

•dl•co 2 •sinwto•~ c 1 •t~-c 2 ,
9 v'

c1 and c 2 being arbitrary constants. Their values are de -

rived from the conditions

11 = 0 and df = v 11 at the moment t t o

from which

{12)
1 HI

10 oSv .
dl•sinwto .

2

	

c .
- 1~ . HI

	

t odl w 2 sin co t2

	

10 m 9 v'' 0 •
(13)

1

	

HI

10 m ov3
•dl•w 2 •sinwto•to- ~•

HI
dl•sinwto•to ,

which introduced in (11) giv e

c1
= 10 n IÛ3•dl•w2 •sinwto-I-

P

1 HI

	

~ x ~
(14)

	

J= ToO m v2
• dl x

.
sin w t- v ,Îw2

	

J
1- 2

9
v3 x

it being noted that x = v (t - to) ,

Now 10 • niv° • dl •x is the amplitude urn predicted by

the elementary theory (in the case of small amplitudes) .

The actual amplitude may be writte n

1 HI
LI =

f 10 Pnv2
dZ x ,

where f is termed the inverse damping factor . It is les s

than 1 and by (14) may be writte n

2

	

2
(16) f=1-~ U3 x=1-TV

U3
x

(15)

or
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(17)

	

f = 1-22r2 r x 2 = 1-22-O p . T .

	

1 .
v7.

v = being the dynamical viscosity of the liquid .
o

Obviously the theory set forth above is based on th e
d2 v

supposition of small damping in that
dx2

in (5) is derived

from the expression (2) for the lateral velocity obtained

in the field . It is thus assumed that the latter velocity i s

only altered by a very small amount by the damping forces .

With the mercury jet-waves employed in jet-wave commu-

tators the said assumption is as a rule justified and (17 )

should accordingly in the main represent the relation be-

tween ' the damping and the various quantities on which

it may depend . Considering a mercury-wave, we have

v = 0 .00116 (at 18 Centigrades). Let - = 1, = 6 .cm and

v = 600 cm per sec. then 22-0v •

	

2 = 0.635 . 10-5, , i . e .
, A

very small compared to 1 . Practically no damping shoul d

thus be expected . As a matter of fact the damping in a

case like that considered is so small that it is difficult t o

measure it, and therefore also to test the theory in orde r

to see whether the conception of fig . 25 holds good, or

whether one is justified in using forli (or v) the value

corresponding to a laminar flow of the liquid . Obviously

the theory now indicated does not take all forces int o

account . Thus also the surface-tension will undoubtedly

give rise to damping. We shall not, however, go further

into the problem of the said damping, it being propose d

to subject the whole question to a special experimenta l

investigation .

Provided, however, that the expression (1, 7) holds good

in the main, information of considerable interest may be

videask. Selsk . Math .-fys. Medd . IX, 2 .

	

5
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derived from it. In the first place it is seen that the damp -
ing is independent of the diameter of the jet, a fact whic h

is easily understood, for according to (5) the dampin g
force acting on an element of the wave is proportional t o
the area S of the cross-section, but the mass of the elemen t
is proportional to the same quantity, and so the motion
becomes independent of S. Furthermore it is seen that th e
damping observed at a distance which, measured in wave -

lengths, has a definite value \- constant), is inversely as 7 9 .

The damping thus probably \ increases very markedly with
decreasing 7 or, with constant velocity v, with increasin g

frequency. Finally the expressions (16) and (17) predict a
damping for water which is ab . 10 times greater than for
mercury, v being ab . 10 times less for the latter liquid tha n
for the former.
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CHAPTER II I

Particular Properties of the Jet-Wave .

I . Slope and Cross-Section . Rectangular Jet-Wave Type .

In the present chapter

we shall consider a serie s

of special properties of th e

rectangular and the circular

,jet-waves, discussed above .

The rectangular type ma y

be represented by

(1) y = ax sin w (
U

= axsin(wt- lux) ,

a indicating tangens to the

angle e1 , fig . 26 .

The slope of an elemen t

ds of the wave against the x-axis is determined by

(2)

	

tg e _ dy
dx

or from (1) by

(3) tge = asin(wt-ttx)-,ctaxcos(wt-Itx) .

The slope in a certain point x, y is found from (3 )

by first determining by means of (1) the moment t a t

which the wave passes the said point . The slope in

Fig . 26 . Jet-Wave, rectangular Type .

5*
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the x-axis is of special interest . For points of the latte r

y =0 i.e .

(4) sin (w t-,ux) = 0 and (5) cos (w t- x) = + 1.

Henc e

(6)

	

tgr = + pax = + Thai ,

fi standing for x
.

2
The element ds of the wave . must contain the same

amount of liquid as the element dx of the original jet, dx

being the projection of ds on the x-axis . .If therefore So

indicates the area of the cross-section of the original je t

and S the corresponding quantity of the element ds, then

(7)

from which

S•ds = So•dx

Hence the cross-section of the wave in the x-axi s

S

	

So

v 1 +7r2 a 2 ,8 2

d = 4~	 -	
do

+Tt 2 a2 '

do being the diameter of the original jet .

For a = 0.5, 3 = 1.8, (6) gives tg r = 2.83, s = 70°30', while,

from (9) S = 299 = 0.333•So and d = 0 .577 do .

2 . Slope and Cross-section. Circular Wave-type.

A wave of the circular type may generally be represented b y

(1)

	

sin 0 = sin O,i, sin w 1-- = sin 8171 sin (w t- pi) .

i s

(9)

and the diameter

(10)
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From fig. 27 we see that the slope of an element ds

towards the radius-vector r is determined by

rd 8
tg E =

dr
Hence from (1)

sin Hm rw
(3)

	

tge =
COSH U

cos(wt-wr) .

(2)

Again the slope in a

given point r, B is found b y

eliminating t from (1) and

(3) . For points in the axis

of the original jet, B = 0 ,

(4) sin (w t-,w r) = 0

and

(5) cos (wt-u,r) =

	

1

so that

(6) tgE = T sin 9 rrt jÛ

= -T-TC~3 sin Hm = 2T/3a', Fig . 27 . Jet-Wave, circular Type .

,

if ,3 =
I

~ 2 and a' = sin O . The difference from the reel -

\2 Jl

angular wave is thus that a = tg O m is replaced by a' = sin O» .
With the circular jet-wave the element ds of the wave

contains the same volume of liquid as the element dr of

the original jet, dr being now the circular projection of ds .

Therefore

(7 )

or

(8)

	

S

S ds = So dr

So

	

S o

(
/ d

Bl
a

	

I/1+ tg 2 E

dl' J

thus for points of the axis
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S =

	

S 0+
7

1..2 CC i9 ?°L

_

	

do

d v1 + Z 2 ll i2 R 2

For p = 1 .8, a = tge,ii = 0.5 i . e . a' = sin = 0.447 we find
from (6) tg s = 2 .53, 8 = 68°27' and from (8) and (10) S = 0.367 So
and d = 0.606 d° . Under the same conditions the rectangula r
wave is thus a little more horizontal (vertical jet assumed) tha n
the circular wave.

3 . Electrical Resistance of the Wave . Rectangular Type .

Of very great importance in certain applications (jet -

wave commutators) is the question of the ratio of the re-

sistance of the wave and the resistance of the correspondin g

piece of the original jet . We start with the rectangular wav e

g = c~xsinw(t- x l = iexsin(wt-,ux) .
\\\\\\

	

D

The resistance of the wave from its starting-point x = 0

to the plane x = 1, fig . 26, is determined b y

i

	

1
ds

	

k
(2)

	

R-

	

dJ

9

	

~	

2
°
~)

2 dx

4

	

4 do
a s

(3)

	

dô dx = d 2 •ds .

In (2) k indicates the specific resistance of the liquid .

The resistance in the length 1 of the original jet i s

(9)

an d

(10)

(1)

(4)

The ratio between the resistances of the undulatin g

and non-undulating jet is thus
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F =
R

	

L
SI

~x)2

	

j dxdx = 1 +

	

dx

	

0

	

od

	

0

c

	

9

F- 1=
t~~(dx,dx

.

From (1 )

(7)
dy

= asin(wt -ca x)-uaxcos(wt-µx) ,
dx

hence

- 2,ua 2 x sin (w t- ,cax) cos (w t-tax)

(8) = a2
1- cos 2 (w t- w .x)

9

	

-Faa xsin2(wt-tax)

+ u2 a2 XJ
9 1 + cos 2 (w t-px)

2

The average value taken over the time of F-1 is found

by carrying .out the integration indicated in (6) for those

members of (8) only which do not contain trigonometri c

functions as the latter members are bound to disappear ,

being periodic functions of time with a frequency twic e

that of the jet-wave so that the average taken over a perio d

of the latter is zero. Hence the average value of F-1 is

simply

(9)

A
or with L = ,8

2
a 2 ?2~2 a2

F-

	

--1

	

N6

	

2

it being noted that la

	

-C .

The variations in the resistance of the jet-wave ar e

(5)

or

(6)

(dy
.2- a'sin((o t Fax)+,u2 a2x 2 cos' (wt-,ux)

dx

a2 ta212

	

a2F-1
= 6 + 2

(10)
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found by carrying out the integration (6) for the periodi c
members of (8) . The result may be written :

zl (F-1 )
2

	

,w_ -
4

si~lIcos 2 ( 0) t-u1)

	

ll
-F-li lsin2(w l-I)-{--cos2(wt-,wl)

J
a

(11) (Sinm/3 ßfi . 2fi+2fi)2 t

(sin	
sin~-7r,ßcos27C,6-+-sin27c,62

w~ß

	

/
9

	

2	
= - 4 (Asin2wt--Bcos2wt)=-4~/A 2 +B 2 sin(2wt-~(p )

where tg p = Ä . The amplitude of the periodic variation s

of double frequency i s

a
1~A2 -{- B 2

(12) - 4/(sin ß)2
(n4) 2 1- 2 sin e zß 12

51 ;
cos cß

4' /;sin	 ßl2 cos 27cß 2 S12
2~ß -I- (Tß) 2

With increasing extension ,3 of the wave the latter ex-
a2 a2 42

,3pression tends to 4 .m3 or to 4N ß . Hence for large va-

lnes of fi F-1 may be expressed by

a2

2

a 2 q2~ 2
(13) F-1

	

6 IIL
3	 1

sin(2wt+cp)
2 7r/3

from which it is again seen that F-1 with increasing ,3 tends
to a value independent of time, namely the average valu e

a 2 ßi27r 2

	

a2F-1

	

6 -
+ 2. . In tab. I the function
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a 2 /327E2 a 2 a 2
F = 1 +

	

-I
6

	

2 -

	

-r
4

VA2 B 2 sin (2 a) t +

is illustrated through numerical values of the constant and

variable part, and of their ratio . The latter ratio measure s

the relative variations of the resistance of the jet-wave con -

sidered. It is seen that with a = 0.5 and ,6 = 2 the resi-

stance of the wave varies with an amplitude of ab . 14 per

cent. of the average resistance . Obviously, in the case con-

sidered, the relative amplitude of the resistance has a max-

imum for some value between fi = 2 and ß = 10 .

Table I .

1 . 2 .

u
2

13 1"'A2 -{-B' a' /32 rc a 1 ./2 .
1 +

	

6
= 0 . 5

0 .5 0 .0856

	

1 .228 0 .07 0

1 .0 0 .206

	

1 .536 0 .13 4

1 .5 0 .288

	

2 .052 0 .14 0

2 .0 0 .398

	

2 .775 0 .144

10 .0 3 .93

	

42 .195 0 .093

4. Resistance of Wave with constant Amplitude .

For the sake of completeness a formula for the resis -

tance of a simple sine-shaped wave of constant amplitud e

may be derived . The wave may be represented b y

/

	

\ 2

\~xJ = 1-F yO FL2 cos 2 (co t- FL x) .

Hence from (5) in the preceding paragrap h

( 1 )

	

J
= y 0 sin (cot - Fox)

from which

(2)
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2
b2

[

F-1 = Y
0j

	

cos 2 (w t- µx) dx
0

g

~
2

- 4° l~_	 t [sin 2(wt-,wl)-sin2wd .

The average value of F-1 over the time is thus

F- = t1åP2

	

2- y az
2

	

2 '

where y = q0

\2/I
The expression (3) may be written

F-1 = iltt2
1

.sin 1~ l
cos(2wt -pl)

]L

	

,tt

The second member in the brackets is maximum o r
minimum at the moments determined b y

(5)

	

t= p 4 ß •T=f
4

+p
4

where p = 0,1,2, . . .

and where ß =

	

. The member is zero at the moments

2 ,

2	 	 T T
(6) . t

	

4
T = 4 T p 8 where p = 1, 2, 3, . . .

For special values of 1, resp. ß, F-1 is independen t
of time, thus for the values given by sin 1,t 1 = 0 (excep t
,ct 1 = 0) i . e . when

(7) Jul = p . 9-r, (p = 1, 2, 3,

	

. . . )

thus for

(7 ') fi = p, (p = 1 , 2 , 3, . . .)

(3 )

(4)

(3 ' )
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The greatest variations in F-1 are obtained when 1

is determined by

(8) tgo1=tg7rß=n-ß

that is to say, approximately when

(9) ßn = p•2 , (p = 3, 5, 7)

thus for

(10) ß 2

Fig. 28 illustrates some of the relations indicated .

h, 13 no variations in resistance .
i4 , 14 maximum of variation .

Fig . 28 . Jet-Wave, constant Amplitude .

5 . Resistance of a Jet-Wave of circular Type .

We proceed to consider the resistance of a wave of the

type in fig . 27. In this wave the element ds contains, a s

indicated, the same amount of liquid as the circular pro-

jection dr of the original jet . Hence the ratio of the resis-

tance of the wave out to a circle with radius 1, and th e

resistance of the length 1 of the original jet is now, com-

pare paragraph 3,

(1)

	

F

	

(ndr
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or as
ds \2 =

	

(rdO\ 2
dr/

	

dr /

2
(3)

	

F-1
= l

	

(	 del . dr .
J

The wave may be represented b y

(4) sin A = ce ' sin (w t - te r) .

From (4)

r2 ( d B\2 _ 11,2 a '2 r2 cos' (w t- t e r)
l drJ

	

1 -a '2 sin' (wt-,ur)

Thus

r
(6) F-1 =

1 ~t
tu2 a '2 r2 cos' (wt-,cor) [1-a'2 sin' (wt-,wr) 1 -1 dr .

o

By developing [1- a '2 sin' (w l - 11 01 -1 in series (6)

may be written

2 a/2 ~
7

F-1 = '"' t

	

r 2 L 1-I-a ' ' sin' (wt-,ar) ; a '4 sin' (wt -,ar)

(7)

	

t o

sin 2 z = 2 (1 -cos2z)

1
sin4 z

= 8 (COS 4z-4 cos 2z -I- 3)

sin 6 z = - 32 (cos 6z-6cos4z-I-15cos2z-10)

sins z = 1 98 (cos8z-8cos62+28cos4z-56cos2z+35) .

(2)

(5)

t6

	

G
+ a sin (w t-,u r) -,- a sin 8 (w t-,cc r) -sin2 (w t-r)

-a '2 sin 4 (co t-ter)-a '4 sin' (w t-,cer)-a '6 sins (wt- ter)] dr .

After this the powers of the trigonometric function s

are expressed by trigonometric functions of multiples o f

(w t- ter) by means of the following formulae .
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If, however, as is generally the case, merely the averag e

value F-1 over the time is required, it suffices to carry

out the integration with regard to those members of (2 )

which do not depend on trigonometric functions . In this

way we find

4

	

, ~

F-1 = a'2 +

	

~--2

	

8

	

1 16 a/8 ~J

8
a ~ 4

16 cc
6

28 a 8~ ~2

	

~
r 2 dr

c o
2a'212

	

1

	

1

	

5
'

~ 6

	

C 1+4a28a4~64ae
F, . . )

2 ß2 2a

6

Tr

\+4
a,2+ $

a ,4+ 64a, 6

As an example we may consider a jet-wave for which

a = tg 8 711 = 0.5 or a ' = sin 8 ,, , = 0.447 . With ß = 2 we

find from (8) F-1 = 1 .74 while for a rectangular wav e

the expression (10) paragraph 3 gives 1 .72. There is thus

only a slight difference between the two types of waves

with regard to resistance .

A good many applications may be made of the dependenc y
between the resistance of a jet-wave and the quantities on whic h
the said resistance depends . The general character of the sai d
applications may be thus elucidated. The resistance of the wav e
out to a given distance 1 is determined b y

(1)

	

12 = F1•r ,

r being the resistance of one cm of the original jet . On the other
hand we have approximatel y

(2 )

or roughly, if the second member is tolerably great compared to 1 ,

, / '' ß2 n2
F

	

.

5

(8)

a /2 ß2 ,2
F= 1+ 6

d3)
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Now ,ß is, with a constant value of 1, proportional to the fre-

quency n = 1 and so it is seen from (1) and (3) tha t

JR _ 2 an
R

	

n

i . e . a certain percentage change in the frequency gives rise to doubl e
the percentage change in resistance . A change in frequency may
thus be measured through the corresponding change in resistance .
(Jet-wave frequencymet;er) . With constant frequency and

constant field a change in the cur-
rent producing the jet will produce
double the percentage change in th e
resistance as e' is proportional t o
the said current . A more complex
system is indicated in fig. 29. The
wave is produced through the inter -
action between a constant alternatin g
current, supplied by the source ti's ,
and a constant field produced b y
the magnet M. The latter has two
windings of which the one may b e
fed from the storage cell or batter y
B, while the other may be inserte d

through magnetising Current .
in a d . c . circuit I . Now if the cur-
rent in the latter circuit is raised ,

this will, according to the direction of the current in the windin g
on the magnet, give rise either to an increase or a decrease o f
the resistance in the wave between the two electrodes El and E2 .

So by the current in I we are able to control the resistance o f
another circuit II . Obviously a good many combinations of the
kind in fig. 29 are possible . It may be noted that the resistance
between two electrodes such as E l and E2 is given b y

( 5)

	

R = rls
F

(!32)

	

j'1i I' (13i )

thus approximately b y

R = r ( 1y - 11) + 1
, .izÿ

6
'2

(13
2
- 13 7) •

(4 )

B

(6)
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6 . Resistance between an Electrode in the Axis of the Wav e

and an Electrode perpendicular to the said Axis .

In fig. 30a E and E 5 represent two adjacent electrodes ,

the one in the axis of the jet-wave, J, the other perpen-

dicular to the said axis . The jet-wave will connect E and

E 2 during the passage of every second half-wave . We shall

Fig . 30 a-b . Resistance of Wedge-Commutator.

endeavour to derive a formula for the average resistanc e

taken over the time of passage of the part of the wav e

between E and E 2 , the problem being of considerable in -

terest in connection with certain practical applications o f

the wave. (Resistance of the Wedge Commutator) .

In order to simplify the problem we shall replace th e

wave in fig . 30 a by a simple sine-shaped wave of constan t

amplitude, J1 , fig . 30 b . In the position shown the said wav e

may be represented b y

(1)

	

9 = yin sin p,x .

The resistance of the element ds may be written, com-

pare paragraph 3,
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(2) dR
S0

1-{- (dx) dx,

So indicating the area of the cross-section of the origina l

jet. From (1) we get

k
(3)

	

dR = S (1 -F- y21 NL 2 cs,,x) dx .
0

Thus the resistance from the origin of the wave a 1 to

the abscissa x i s

x

R = k (1 +yI = µ2 cos' ,ax) dx
So 0

- k x j S
k

o

2

2

w2

x S k
0
	 2F`2 sin (2 fax) .So

	

4 cL

In order to obtain the average value in question w e

now put x = vt and form the integral

T

1
R =	

k

	

vt+ Y
2 	

vt=,
Y2t~

2
sin 2 1tvt dt .

(T) S 0 , 0

2

	

2

	

4,u

	

i

This is the same as to assume that the electrode E2

moves with the velocity of the jet upwards while the wave

is kept in the position shown in fig. 30b. The last mem-

ber in the brackets does not contribute to R. Hence

k

	

1

	

R=
S 2

2

	

	 2(1+	S o

Thus, if F now indicates the ratio of R and the resi -

stance
S

2 of the length 9 of the original jet, we have
0

r

	

I 2

	

2

F= ~ I1~-- d, 2

(4)

(5)

(6)

(7)
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	 rr lIntroducing the notations l = a and / 2	 = fi and re -

membering that =	 we may write \2 )

(8)

	

F = 2 (1 + 'T2 ,82 )
In the application of (8) to the actual wave in fig . 30 a

the question is what value should be ascribed to ß, It ha s

been found that good agreement between observed and cal-

culated values is established if fi is determined a s

l0

	

1

	

1
fi_ (2\-4 = ßo-

4 '
2/I

)6 0 being the distance from the starting-point 0 of the wav e

to the electrode E 2 measured in half-wave-lengths . Thus

for a wave a = 0.4, R = 1 .8, d = 4.20 mm (diameter o f

jet) the resistance here considered was found by measure-

ment to be 5.0 milli-ohm, while from (8) and (9) wa s

found 5.4 milli-ohm . The agreement was quite sufficien t

for the application . Actually the wave was not of the rect-

angular type indicated in fig . 30a but of the circular type :

On the other hand, the electrode E 2 was approximately

bent according to a circle with its centre in 0 . Judgin g

from the comparison at the end of paragraph 5, it seem s

justifiable to assume that if (8) and (9) hold good for a

rectangular wave in combination with a straight electrod e

E2 as in fig. 30a, they may also be used in the case o f

the actual combination described .

7. Temperature-Gradient in a Jet carrying an electric Current .

. In a jet carrying an electric current the temperatur e

will rise from the point at which the current is introduced ,

Vidensli Selsk . Matli .-Fys . Medd . IX, 2.

	

6

(9)
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say the nozzle, in the direction of the flow. An elemen t

Jac of the jet will commence heating at the moment i t

enters the current-carrying part of the jet, and it will g o

on heating as long as it is moving inside the said part. Its

temperature must therefore increase steadily which mean s

that the temperature of the jet must rise in the directio n

of the motion . The amount of heat dQ stored up in the

element 4/x during the time dt i s

(1) dQ = 0.239 I2 k-x • dt (g. cal .) ,
S

I being the current in Amp ., k the specific resistance o f

the liquid in Ohm per cm/cm2, and S the area of the

cross-section of the jet in cm2. The corresponding rise o f

temperature (1,9 is accordingly given by

(2) cQS•/Ix•d ;I = 0.239 I 2 k• si dt ,

c being the specific heat and e the density of the liquid .

During the interval dt the jet particle proceeds by the dis -

tance dx where

(3) dx = vdt ,

v being the velocity of the jet in cm/sec. Hence the rise

of temperature along a piece dx of the jet i s

2

d,~ = 0.239
k • S 2 • dx

~

from which follows that the temperature gradient (rise pe r

cm) i s

(5 )

With a mercury jet k = 0 .958 . 10- 4, c = 0.033, i = 13. 6

from which

(4)

= 0 .239 • -
CO v S 2
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(6)

	

- 5.10 10

	

I 2 (Centigrade/cm ,

,,,s2 Amp., cm/sec, cm 2) .

The expression (5) is derived without the conductivity

and the radiation of heat being taken into account . Estimates

of the effect of the said factors show that in most case s

they are practically insignificant . In a test of the theory

the liquid from the jet was collected in a simple calori-

meter and its temperature measured . With a mercury je t

of 1 .5 mm, a velocity of 253 cm/sec and a current of

20 Amp., the two values 0 .213 and 0 .232 centigrades were

found for while the value 0.257 centigrades is derived

from (6) . The difference between the observed and calcul-

ated values may easily be explained by the great difficultie s

of the measurement .

8 . Heating of a Jet-Wave of rectangular Type .

In the most important application of the jet-wave, tha t

of the jet-wave commutator, heavy currents are transmitted

through the wave and it i s

thus the heating of the sam e

which is of interest . We

shall consider a particle As,

fig. 31, which originate s

from a length Ax of th e

jet. The said particle i s

emitted from the centre 0

of the field at the moment

to in the direction 9 . At. the

moment t it has reached th e

plane x as As. We shall as-

sume the wave to have bee n

produced by a current
Fig. 31 . Heating of a Jet-Wave,

rectangular Type .
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(1) i = 10 sin w t .

The direction 9 of the path of the particle in questio n

is, compare chapt . I, determined by

(2) tg B = a sin w to ,

where a = tg O m . The length Js of the particle is deter-

mined by

(3) ds2 = dx2 J-

where the connection between ddx and rig is given by the

equation of the wave at the moment I . The latter i s

	

sin /

	

x\

	

x w

	

/
X

a w t- - a

	

cos w t-

	

i/x

	

\

	

v/

	

V

	

\

	

ulll

(4) 9 =

Henc e

(5) dg =

X
axsin w

	

-
v

or, as

(6 ) X = U (t -t~)

dg = [asinwto_a xw coswto~dx .
U

Inserting in (3) we fin d

/

	

\ 2
r/s2

	

1+ asinwlo - a - coswtolIax e .

The resistance of /s i s

JR= -dsS~, ,

where the area of the cross-section S of ris is determined by

(10) S•r/s = SoJ/x ,

So being the area of cross-section of the original jet . Thus

//

	

\ 2 1(11)~/R=s
0

	

o

	

\

	

/
	 ~Ix as2=l 1-~( a sin r~>to- a xU coswto I

J
z/x .

(7)

(8)

(9)
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The amount of heat dQ accumulated in //s during th e
dx

time dt =

	

i s
V

dQ = 0.239I 2 aR-dt

(12) = 0.239
Solç

L
1 + ( a sin co to - a x cos co to)2 ,_/x . dx

and the corresponding rise of temperature d,9 is deter -

mined by

(13) coSoax-d, = dQ

from which

(14) d .,9. = 0.239 . co
I'

k So v
{1+(

a sin w to - a aÛ cos w to l2
J

dx .

The rise of temperature obtained during the passag e

from the centre of the field to the distance x is found b y

integration of (14) from 0 to x. The result i s

2

,`I =
O .C~Sô,k x-{-xa2 sin2 wto-x2

Û
a 2 sinwtocoswto

For the particle emitted at the moment to = 0, thus th e

particle travelling along the axis of the wave, we ge t

I 2 2

x -(- aßn2 • x a

(2 )

Here the first member represents the rise of temperature

,S o in a non-undulating jet of length x. To this rise is

added an amount /LS, which, measured in relation to ,Io, is

(17)	 	 = 3fr a 2 if2

0

•x.
,6 standing for	 If for instance a = 0.5, ß = 2 then

(2

(15)

	

2 2

	

11
+ ~

x
3

revw
cos2 wto

0 .2391 2 k
_

çoSF)' v
(16)



86 Nr . 2 . JuL . HARTMANN :

7r2
= 3 = 3.3 . The rise of temperature along the axis i s

thus more than four times that in the original jet carryin g

the same current .

For the particle travelling along the path of greates t

deviation, thus corresponding to w to = 2 , is found

0.239I2k

	

2

	

0 .239I 2 k	 x
(18)

	

= --

	

- (x -~- a ,x)
ceS

o
vi

	

ceSov

	

cos2 0 17L

One would expect to find a rise of temperature equa l

to that in a straight jet of length cos , velocity cos
,9Ill

	

,, ,
and area of cross-section So cos 0m . Actually the formula give s

the value anticipated.

The rise of temperature in a piece of the wave betwee n

two planes perpendicular to the axis of the wave at th e

distances xi and x2 from the origin of the said wave, i s

of course calculated as the difference between the values foun d

for from the formula above by inserting x 2 and xl for x .

9 . Heating of a Wave of circular Type .

Finally we shall consider the heating of a wave of th e

circular type, fig . 32. Again we shall imagine the wave to

be produced by a current

(1) i = I0 sin w t

and we shall fix our attention on a particle ds originating _

from a member /Ir of the non-undulating jet . The said

particle may pass the centre of the field at the moment to .

It . will then he sent out in a direction given b y

(2) sin 8 = sin 0717 • sin w ta .
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The length Js of the wave-element formed by the par-

ticle at the moment t at the distance r from the origin o f

the wave is determined by

(3) ase = 1,2/10+ are .

The connection between JO and Jr is found from th e

equation of the wav e

(4) sin B = sin On, sin w t- -
r l

\

	

V

which gives

(5)

	

91 _ -
cos B v	 1	

z/6' = A~1 B
cos w to w sin B I7 1

it being noted tha t

(6) r = v(t-t0 ) .

From (3) and (5) is foun d

(7) Å s 2 = (1.2+ A 2 ) 119 2 .

The resistance in ris i s

(8) 11R =
IcSS

,

where

(9) S1/s = SD M>r .

From (7), (8) and (9)

is derived

Fig. 32 . Heating of a Jet-Wave ,

circular Type.

(10)

	

JR = S tA (1 .2 T A 2 ) L19 .
D

During the motion through the distance dr, taking the

time dt = dl , a quantity of heat dQ is stored up in th e
v

element as, where

(11)

	

dQ = 0.239I2JR•
dl ,
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Introducing for SIR (10) and identifying dQ with

(12) dQ = ceSodr•d99 '

we get
0.239I 2 k

	

r '
(13) dd =	 cPSov C1+ 2

The total rise of the temperature during the passage o f

the particle from the origin of the wave out to the dis -

tance r thus becomes

(14) _ 0 .239 T k
1+

1 r- l
ceSov

	

(3 A 2 1 '

Indicating by ,9'o the rise of temperature in a length I

of the original jet we see from (14) that = o +zI . where

	

X9,1 _ 1 r2

	

w cos w to' sin d, , 2

(15)

	

3 A 2

	

3

	

v cos 0

	

r 2 ,

where it should be noted that 0 and to are interconnecte d

through (2). For to = 0, 0 = 0, we get

(16)

	

4~ _ 1 7212sin29n„ = 1
Tc2 a'22 ,

0

	

3

	

(ßl2

	

3

l

which should be compared with (17) in the preceding para -

graph. With to = -4 the rise of temperature in the outermos t

particle of • the wave is found . It is seen that zI = 0, tha t

is to say, the said particle is heated as much as a par-

ticle of the original jet would be . This result might be anti-

cipated since the outermost particle does not suffer any

deformation .

Again the heating of the wave between two -concentri c

electrodes with radii r 2 and r 1 is found as the differenc e

between the values 42 and derived from (14) by intro-

ducing r2 and r1 for r .

2
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APPENDIX

Experimental Test of the Theory of the Jet-Wave .

1 . The Wave-Length .

According to the theory set forth above the length o f

a half-wave should, subject to certain conditions, be deter -

mined by
(1)

	

7

	

T

	

v

where T is the period and p the frequency of the altern-

ating current used in the production of the wave, while v

is the velocity of the jet . In order to test (1) a fairly larg e

number of instantaneous pictures of the jet-wave was pro-

duced. Fig. 15 in chapt . II originates from this investigation .

The wave-picture is seen against a plate of frosted glas s

on which the axis of the wave and the boundaries of th e

wave-space corresponding to the angular amplitude a = tg B t„

= 0 .5 are drawn. The scale on the axis indicates the dis -

tance from the centre of the field in cm, thus the distanc e

from the starting-point of the wave .

Table I .

hp = Distance from Surface of Mercury in Reservoir to the Jet-Hole .
do = Diameter of Jet-Hole .

xn = Distance from Jet-Hole to Number n Zero-Point of the Wave-

Picture .

h = lto+
xn+t+xn

2

_

	

T

	

7.

	

J.

2)c - 2 + ~P 2 +ßt 2

2 ~ o = Observed Half-Wave.
\\

iÂ = Factor reducing the Scale to the Plane of the Wave .

2-= V '- =2Zp ,



,(©Table I .

1 . 2 . 3 . 4. 5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 14 .
--

Plate X n +1+xn 7-t v/2 g h

)
o

No .
h o

d
0 f,Å r

n 2
~n+1

	

n h
P 2 i2 ~2~c ~. 2 ~ 02n- (D (

~, 2

	

c

cm . mm . sec . -1 cm . cm . cm . cm . cm . cm . cm . cm . cm .

55 228.0 6 50 .0 0 .991 5 .57 9 .13 7 .11 237 .1 6 .82 - 0 .04 + 0.10, 6 .88 7 .04 1 .02 2
12 .68 16 .15 6 .94 244.2 6 .93 - 0 .04 0 6 .89 6 .87 0 .99 7
19 .62 23 .22 7 .20 251 .2 7 .02 - 0 .04 0 6 .98 7 .13 1 .020

26 .82 ~
(0 .6 per cent .) 1 .01 3

66 228 .0 4 .4 51 .0 0 .991 6 .16 9 .61 6 .89 237 .6 6 .69 -0.02 + 0 .15 6 .82 [i .82 1 .00 0
13 .05 16 .60 7 .09 244 .6 6 .80 - 0 .02 0 6 .78 7 .02 1 .03 4
20 .14 23 .65 7 .02 251 .7 6 .89 - 0 .02 0 6 .87 6 .95 1 .01 1
27 .16

(0 .3 per cent.) 1 .01 5

69 228 .0 5 Y 51 .0 0 .991 4 .90 8 .30 6 .79 236 .3 6 .68 - 0:03 + 0 .1 4 1 6 .79 6 .72 0 .99 0
11 .69 15 .12 6 .86 243 .1 6 .78 - 0 .03 0 6 .75 6 .79 1 .00 5
18 .55 22 .02 6 .93 250 .0 6 .87 - 0 .03 0 6 .84 6 .86 1 .00 2
25 .48

(0 .5 per cent .) 0 .99 9

136 145 .0 5 50 .0 0 .962 4 .38 7 .27 5 .77 152 .3 5 .47 - 0 .01 + 0 .07 5 .53 5 .55 1 .00 2
10 .15 13 .10 5 .90 158 .1 5 .58 - 0 .01 0 5 .57 5 .67 1 .01 7
16 .05

((1 9 ner relit .) 1 .009



137 80 .5 5 50 .1 0 .962 3 .5 0

7 .9 6

12 .46

17 .0 5

21 .70

5 .7 3

10 .2 1

14 .7 6

19 .37

4 .4 6

4.5 0

4.5 9

4 .65

86 . 2

90 . 7

95 . 3

99 .9

4 .1 0

4 .2 1

4 .3 1

4 .42

- 0
- 0
- 0
-0

+ 0 .05 4 .15 4 .2 9

4 .3 3

4.4 1

4 .47

1 .033

1 .028

1 .02 3

1 .01 1

0

0

0

4 .2 1

4 .3 1

4 .4 2

(< 0 .1 per cent .) 1 .02 4

145 a 59 .5 5 50 .9 0 .962 4.59 6 .53 3 .87 66 .0 3 .53 -0 + 0 .04 3 .57 3 .72 1 .04 2
8 .46 10 .42 3 .91 69 .9 3 .64 -0 0 3 .64 3 .76 1 .03 2

12 .37 14 .42 4.10 73 .9 3 .74 -0 0 3 .74 3 .94 1 .05 3
16 .47

(< 0 .1 per cent.) 1 .042

1451) 59 .5 5 50 .9 0 .962 3 .39 5 .39 4 .00 64 .9 3 .50 -0 + 0 .04 3 .54 3 .84 1 .08 5
7 .39 9 .38 3 .98 68 .9 3 .61 -0 0 3 .61 3 .82 1 .05 8

11 .37 13 .37 3 .99 72 .9 3 .71 -0 0 3 .71 3 .83 1 .03 2
15 .36

(< 0 .1 per cent.) 1 .05 8

144 a 59 .5 5 50 .9 0 .962 5 .32 7 .25 3 .86 66 .8 3 .55 - 0 + 0 3 .55 3 .71 1 .04 5
9 .18 11 .11 3 .85 70 .6 3 .66 -0 0 3 .66 3 .70 1 .01 1

13 .03 15.07 4 .07 74 .6 3 .76 -0 0 3 .76 3 .91 1 .03 9
17 .10 19 .18 4.16 78 .7 3 .86 -0 0 3 .86 4.00 1 .03 6
21 .26

(< 0 .1 per cent.) 1 .03 3

1441) 59 .5 5 50 .9 0 .962 3 .80 5 .26 3 .92 64 .8 3 .50 -0 + 0 3 .50 3 .77 1 .07 6
(6 .72) 9 .18 3 .92 68.7 3 .61 -0 0 3 .61 3 .77 1 .04 3
11 .64 13 .61 3 .93 73 .1 3 .72 -0 0 3 .72 3 .78 1 .01 6
15 .57 17 .62 4 .09 77 .1 3 .82 - 0 0 3 .82 3 .93 1.02 8
19 .66

(< 0 .1 per cent .) 1 .041

') Cylindrical on the outmost 4 mm. of the bore .



92

	

Nr. 2 . JUL . HARTMANN :

In tab . I half-waves found from the photographs ar e

compared with values of
2

derived from (1) . The agreement

is fairly good. The observed wave-length seems, however,

to be slightly in excess of the wave calculated from (1) .

The fact is explained below by the influence of the surface -

tension on the velocity of the wave. In the table certain

corrections are indicated in columns 10 and 11 . They wil l

be understood from the following discussion of the test .

In the latter the half-wave read on the scale of th e

photographic plate is of course corrected for the smal l

distance from the wave to the plate . It is the wave correcte d

in this way which is given in column 13 . The velocity o f

the jet is determined by means of Torricelli's expressio n

(2) v = j/2 gh .

In (2) the influence of the surface-tension on the velo-

city of the jet proper is neglected, which, however, is justi-

fiable' . Neither is the pressure-drop in the jet-pipe take n

into account . It may be found by means of the Osborn e

Reynolds' law of similarity, according to which the pressure -

drop h per cm of the pipe and measured in cm liquid -

column is determined by

(3) h = gd f v
d

where v is the velocity of the flow in the tube in cm/sec ,

d the diameter of the pipe in cm, v the dynamic viscosity

of the liquid which for mercury is 0 .00115 at 20 centigrades ,

while finally f stands for the universal Osborne Reynolds' 2

On the Influence of the Surface 'tension on the-Efflux of a Liqui d
in Jet-Form . Phys . Rev. Vol . XX, p . 728 . 1922 .

2 Compare : A Comparison between the Flow of Water and Mercur y
in Pipes etc . Memoires de l'Académie des Sciences et Lettres de Dane-
mark, Copenhague, 8`nß Série, t . X, Nr . 5, 1926 .
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function of which a picture is given in fig . 33 . By means

of the latter figure and (3) the pressure-drop in the jet -

pipe is calculated, and so again the percentage correctio n

to be applied to the calculated wave-length . We shal l

illustrate the determination of the correction by means o f

Pl. 55. With the latter the velocity of the jet just belo w

the jet-hole was j/2 . 981 . 228 = 668 cm/sec . The diamete r

of the jet was very nearly 0.5 cm, the coefficient of con -

h

a,, g'

OM

a

I od lFig. 33 . Osborne Reynolds' Function f

	

.

`` I
l

traction being 0 .840. The internal diameter of the jet-pip e

was 1 .9 cm. The velocity v in the pipe is thus ~ :9 )~ . 668

= 46 cm/sec. From this we find
ad

= 76000, ànd
//

fro m
` v

the curve referred to above f (
Ud

J = 0 .0026, which again
v

gives the value 0 .0117 cm Hg for h .

The length of the pipe was ab . 226 cm from which

the total pressure-drop is found to be 2.65 cm Hg or
2 .65

226
.100 = 1 .2 per cent. of the head. It means that th e

velocity calculated from (2) must be reduced by 0 .6 per

cent . and the same is true for the wave-length. In tab . I

the corrections found in this way are stated in column 1 0

under the heading ~ 2 .

~~~ =~~~ ~~==~~~~E ~~ ~~~~r~~ =~~~~~~ ~~ ~~
~wn ~=~~~ =i~~~~~ n ~~ M~
--~----.- 1.1111~11111111111,~-n-~-MIN111= -
N r7~N~NN NNNNNNNNNNNIHIMIlliMM~~NNNNNNNN
nnnnnnin~ -~:~::~wn~Nnnnn„ nnnnnn nMnnnnnnnin I1!11nnn
n~nn~ nnnm nnmnn
nn1111 nnnnn11nn111n1n1

.Y /6 20 Ya 28 ' 6

	

0

	

B a 86 96 80 8S 88
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A similar correction due to the pressure-drop in th e

jet-hole should furthermore be applied to the velocity an d

the wave-length . The correction is in all probability small ,

presumably below 1 per cent., judging from a special in-

vestigation. In the experiment Pl . 69 the bore was cylin-

drical of a length of ab . 4 mm .
-, Å

	

The effect hereof is traced in th e
ty	 	

/

/2 the said quantity does not differ

from the values corresponding to

conical bores (55, 66) at the sam e

head by more than ab . 1 .5 per

cent .

Again it should be noted that

the theory of the jet-wave shows

that the half-waves close to th e

magnetic field should be some -

what longer than v . - and the longer, the greater the ex -

tension of the field in the direction of the jet . The cor-

rection to be applied to v .
2

may be taken from fig . 34 .

The abscissa indicates the distance from the centre of th e

field to the middle-point of the half-wave in question. The

ordinate
/ \

means the ratio of the half-wave predicted by th e

theory l 2 I a and the value 2 found as v . 2 . The two curves

correspond to two values of the length y of the field .

The length is measured with the half-wave
2

as unit, and

strictly the length means the effective field-length which

-9 )
small value of	

l
° . But in spite

C 2
of the comparatively long bore

L /

Fig. 34. Correction for th e

Distance to the Field .
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is a little different from the height of the pole-piece. In

tab. I the correction .found from fig . 34 is stated under

lf 2 in column 11 . The correction has obviously only bear -

ing on the half-wave nearest to the field .

If hereupon the ratio of the observed and the calculated

- and corrected half-waves is formed (column 14) ,

values close to 1 are found especially with higher heads .

A systematic deviation, however, makes itself felt, the ob -

served half-wave being, as already stated, greater than tha t

calculated. There is some reason for believing that th e

discrepancy may be explained by the effect of the surface -

tension on the velocity of the wave . It is known that a

disturbance will travel along a cord of a mass per cm ni

and a tension P with a velocit y

(4)

	

v=l
, P

/ m

	

~d

	

j/d '

C being 500 c. g. s . and Q = 13 .55. If now the velocity v c

in the case of the •jet-wave is simply added to the velocit y

v of the jet, a half-wave should be anticipated which woul d
vc

be longer than the theoretical one by - . 100 per cent .
Uhl

	

v

	

In tab. II the values of (	 1100 are stated in column 4 .
v /

They should be compared with the values in column 5 whic h

show how great is the percentage excess of (') over
(2

	

2 C .

Now in the case of a cylindrical jet, produced from a

liquid with the surface-tension C and the density o, P = C;r d

and m = e
4

d a , d being the diameter of the jet . Accordingl y

a deformation should run out along a mercury jet with a

velocity

(5 )

	

v c = /4C

	

12 .2
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The two series of figures run parallelly, from which th e

conclusion may presumably be drawn that most of th e

discrepancy considered is actually due to the surface-

tension. Obviously the correction for the latter would mak e

the calculated half-wave about 1 per cent . greater than th e

observed . This remaining divergence may properly be ex-

plained by the pressure-drop in the jet-hole referred t o

above. So there is some reason for believing that a mor e

exact test would prove the theory to hold good with a

very high degree of accuracy with respect to its predictions

as to the wave-length .

Table II .

1 .

	

2 .

	

3 .

	

4 .

	

5 .

n J•100
~()a -1` •10 0

\(2)c

	

I

Plate

d U C

55

cm .

0 .504

c m ./sec.

17

cm.(sec .

690

p . c .

2 .5

p . c .

1 . 3
66 0 .370 20 680 2 .9 1 . 5

69 0 .420 19 680 2 .8 - 0 . 1
136 550 3 .5 0 . 9

137 420 4 .5 2 . 4

145 a 390 4 .9 4 .2-
145 b 360 5 .3 5 . 8

144 a 370 5 .1 3 . 3

144b 370 5 .1 4.1

2 . The Amplitude of the Wave .

The approximate theory in Chapter II predicts for th e

amplitude of the jet-wave a value given b y

rr
sin y ~

	

1 IH

	

2

	

sin Br=
10 in u 2

	

7r

re 2

(1)
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It was shown that the said theory was in good agree -

ment with the more exact theory for field-lengths up to

and for amplitudes up to tg 9172 = 0 .5 . An experimental

test on the validity of (1) is now recorded .

The test was made with 6 commutators in a three-phas e

series rectifier . The field-curves were known for the magnets

so that the effective field-lengths could be calculated . They

were in all cases 2.79 cm, while the height of the pole-

pieces was 2 .30 cm . The half-wave-length was 5 .90 cm

derived from the head h = 177 cm by means of the formul a

u = 1/2gh and the frequency of the alternating current

which was 50 .0 . The mass m per cm of the jets was cal-

culated from the diameters d of the jets and from th e

density of mercury which was assumed to be 13.40, corres-

ponding to a stationary temperature of 80 centigrades

of the mercury under normal operation of the rectifier .

The diameters d were again foûnd from the diameters do

of the bores, the coefficients of contraction being determine d

for each of the bores by means of an experiment of efflux .

The velocity of the jets was, as indicated, assumed to b e

that found from Torricelli's law . Obviously if the actual

velocity is smaller than the velocity by one per cent ., the

experiment of efflux will give a value for the mass rn pe r

cm which is too small by one per cent ., and the value for

m v z used in the test will be too high by one per cent .

The result of the test is given in table III .

It is seen from the table that the observed values fo r

8722 are found to be on an average 2 per cent . greater than

the values calculated from (1) . The discrepancy could b e

explained by an error of 2 per cent . in the assumed value

for v, due to friction in the jet-pipe and the nozzle . In al l

Videusk. Selsk. Math.-fys. Medd .IX, 2 .

	

7
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Table III .

C om-
1 . 2 . 3 . 5 . 6 . 7 8 . 9 . 10 .

mut.
IA H do sin d sin dB, tg d d sin d 9 .

No.
A a c n nt m nt m

ÎAmp . Gauss cm . cal . cor . obs . ohs . obs . 6 .

1 103 4880 0 .445 0 .844 0 .349 0 .358 0 .399 21°43 ' 0 .371 1 .03 5
2 118 4450 0 .446 0 .840 0 .367 0 .376 0 .418 22°42 ' 0 .386 '

	

1 .03 0

3 114 4650 0 .444 0 855 0 .360 0 .370 0 .395 21°33 ' 0 .367 0 .99 0
4 101 4995 0 .450 0 .826 0 .357 0 .366 0 .396 21°36 ' 0 .368 1 .00.5
5 114 .5 1 4810 0 .451 0,836 0 .380 0 .389 0 .443 23°54 ' 0 .405 1 .04 0

G 108 4790 0 .450 0 .842 0 .352 0 .361 0 .390 21°21 ' 0 .364 1 .01 0

1 .013

probability there is an error which is substantially of thi s

size. On the whole the expression (1) is seen to yield a n

excellent means for the calculation of the amplitude or of

the current necessary for

the production of a wave

of given amplitude.

A small correction is in-

dicated in column (6). The

expression (1) is based on

the assumption that it take s
L

Fig. 35 . Correction to Approximate the time

	

for any of the
Theory .

	

U

particles of the wave to pas s

the field. This, however, is not quite true. The outermost

particle of the wave will, inside the field, follow a pat h

which may approximately be considered a part of a circl e

as indicated in fig . 35. It will travel in this path with th e

velocity of the jet . Owing to this fact the value of Le i n
9 2

(1) should be increased b
y fi t • 100 per cent. or in the cases

considered sin O m cal. should be increased by the sai d

percentage amount .
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The correction may be derived as follows . From fig . 35 i t
appears that

Hm

	

on , =Z	Nn,

	

wino,,,

o0 m -Le

	

z1Le

	

-sino n ,(4)
L e

	

L e

	

sin H,, ,

Or with sufficient exactness from the series-development of

tl Le

	

H ri ,Le -
6

( 2 )

so that

(3 )

and

Le

msin

(5)

7*
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