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PREFACE

he present treatise contains a series of theorelical in-
Tvestigations on the properties of the jet-wave. The lalter
has during recent years achieved a certain significance
through its various applications.® A special importance
may be ascribed to the periodic jet-wave owing to the
predominant part it plays in the jet-wave rectifier, the
first high capacity mechanical rectifier ever produced.?
The present paper in the main confines itself to this
type of wave. In the first chapter the theory of a wave
of small amplitude is considered. The latter theory per-
mits a rather complete discussion of the properties of
the wave under various conditions. Some of its results
have already been stated in a previous Danish treatise
(Nye Ensrettere og periodiske Afbrydere). For the sake
of completeness and in order to have the said results

' The Jet-wave and its Applications. Paper read before Section G
of the British Association at Glasgow, September 11, 1928. “Engineering”
Sept. 14, 1928. )

> 1) Nye Ensrettere og periodiske Afbrydere. Jul. Gjellerups Forlag,
Kebenhavn 1918.

2) Development of the Jet-Wave Rectifier. Paper read before Sec-
tion G of the British Association at Leeds, September 5, 1927. “Engi-
neering” September 9 and 16, 1927.

3) Den konstruktive Udvikling af Straalebglgeensretteren. “Elektro-
teknikeren” Nr. 23 1927.

4) GUNTHERSCHULZE: Die konstruktive Durchbildung des Queck-
silber-Wellenstrahl-Gleichrichters. Elektrotechnische Zeitschrift 16. Au-
gust 1928,
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4 Nr. 2. JuL. HARTMANN:

presented in a language generally known, the theory has
here been given at full length, including the earlier results
and some additional discussions. — In chapter II the com-
plete theory of a jet-wave of partly arbitrary amplitude is
represented and in addition it is shown how an approximate
theory sufficient in most practical cases may be produced.
Finally graphical methods for the production of pictures
of the wave are considered. — In chapter Il special pro-
perties of the jet-wave are made the subject of investigation
and formulae for the electric resistance of the wave, for
the heating of the same by an electric current etc. are
derived. Finally, in an appendix, a preliminary test on the

statements of the theory has been given.

In conclusion I desire to express my thanks to the
Trustees of the Carlsberg Fund for having enabled me to
take the time necessary for the completion of the work.

Physical Laboratory II, The Royal Technical College.
Copenhagen, October 1928.
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CHAPTER 1
The Jet-Wave of small Amplitude.

1. The -Jet-Wave.

If the nozzle N of a liquid jet is moved to and fro

perpendicularly to the axis of the nozzle, the jet assumes

the shape of the wave-line indicated in fig. 1. The jet thus

deformed 1is called a jet-
wave. In the case considered
the wave is produced in
the following way. The in-
dividual jet-particle will, in
passing the nozzle, assume
the velocity of the same and
keep it on its Way onward
together with its original
velocity 1. e. that of the
original jet. It will therefore
follow a straight line, say
ab in fig. 1, which forms
a cerlain angle # with the
direction of the axis of the

I'ig. 1. Jet-Wave produced by an
oscillating Nozzle.

original jet depending on the velocity of the nozzle at the

moment of departure of the particle. The direction thus

varies from particle to particle. If the nozzle performs har-

monic oscillations, the direction will also vary in a har
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monic way and the consecutive particles must arrange
themselves along a simple wave-line, the amplitude of
which inereases proportionally to the distance from the
nozzle (or nearly so). The jet-wave moves on as a unity
with the velocity v of the
original jet. Its wave-length
is obviously determined by

(D) A=uv-T,

if T is the period of the
oscillations of the nozzle.
Now, if the jet is made
of an electrically conductive
liquid, say mercury, a jet-
wave may be produced in
another very simple way in-
dicated in fig. 2. The jet J
passes a constant magnetic
field F, the lines of force of
which are perpendicular to the jet and in the figure also

Fig. 2. Jet-Wave electromagnetically
produced.

to the plane of the picture. An alternating current, the
auxiliary current, supplied by a sunitable transformer V, is
passed through that part of the jet which is inside the
field at any time. The current may be led into and out
of the jet through the nozzle and a special electrode,
the auxiliary electrode, touching the jet: Owing to the inter-
action between the current and the field the consecutive
particles will be attacked by a periodic, mechanical force
which is nearly perpendicular to the jet and to the mag-
netic field, thus situated in the plane of the picture. Ac-
cordingly they will be sent out along a line ol a direction
# varying periodically with the time as in the former case,
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and consequently a similar wave will be produced. Ob-
viously, instead of employing a constant field and an alter-
nating current, an alternating field in interaction with a
constant current may as well be employed for the pro-
duction of the wave. The subject of the presenl paper is

mainly the theory of the electromagnetically produced

periodic jet-wave.

2. The Jet-Wave with small Amplitude and a laminar Field.

In the first instance we shall confine ourselves to waves
of such small amplitude that the mechanical force pro-
duced through the interaction of field and frar
current may be considered as perpendicular 1;_ a0
to the axis of the original jet during the whole
passage ol a particle through the field. Further- %
more we will assume that the extension dl ¥

fig. 3 of the field in the direction of the original

jet is small compared to the wave-length. This AR
is the same as to assume that the cuorrent o

Fig. 3. Theory-
may be considered constant during the pas- of the Jet-
Wave with

. small Am-
we shall base the following theory on the plitude.

sage of a small particle #x of the jet. Finally

supposition of the individual particles moving
independently of each other. We shall thus neglect the
cohesion and friction between the particles of the jet.

The mechanical force acting on the particle #a passing
the field at the moment ¢, is

1

¢} K = {si, H de

provided H, is the intensity of the field and i, the value of
the current at the said moment. We shall thus preliminarily
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assume that both vary with the time. As indicated the
force is perpendicular to the original jet, that is to say, to
the x-axis in fig. 3. During the passage it will give the
particle considered a velocily v, perpendicular to the said

axis determined by

dl
) m-dzv, = K-

m indicating the mass per cm of the original jet, and >

being the time which the passage takes. From (1) and (2)

is found

(3) ” 1 dl

v =10 b e g
The direction of the paﬂl of the particle after the field
is left is determined by

12
(4) tgo = -1 . at

y 10 Z‘D‘H"’.m v®’

The coordinates of the particle at the moment ¢ (f > ¢;) are

(5) x=v({d—ty)
and
(6) y = Uy'(t_to)
from which
L gy dl
() y=% = g0, mv? ¥

If the field is constant and its intensity equal to H and
if the current varies with time according to

(8) i=f
(7) becomes

1 Hdl
(9) y = Tﬁ m Uz'x'f(to)-

The equation of the wave line at an arbitrary moment
t is found by eliminating #, from (9) and (5). It is
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: 1 Hdl x
10 = — —rx-flt——).
(10) y IOmUfo<t U)

In the following way it is seen from (10) that the wave
proceeds in the direction of the z-axis with the velocity
v, thus the velocity of the original jet. The intersection
with the wx-axis is determined by

@x
11 —=)=0.
(11) f<i U> | 0

If now t——% = a is a value salisfying (11), it follows
that alter the lapse of df the point of intersection has
heen moved forward by dx where

(12) df—‘if ~0.
from which
dx

The expression (10) may also be looked on as repre-
senting the motion of the point of intersection between the
jet-wave and a line or plane perpendicular lo the x-axis
at a distance x from the field. It is seen that the said

motion is given by just the same function of time as the
current, only it is delayed by > seconds in relation to

the currenf.

The motion thus pictures the current. On this fact the jel-
wave oscillograph is based. In the latter an image of the
jet-wave is projected on to a wall parallel to the plane of the
wave. In the wall is a slit perpendicular to the axis of the ori-
ginal jet. Behind the slit a photographic plate or film is moved
with constant velocity in a direction perpendicular to the slit.
On the plate the projection thus traces a picture of the current
passed through the jet.



10 Nr. 2. JoUL. HARTMANN @

3. The Wave produced by a simiple alternating Current.

We shall now consider some few particular cases. In
the first instance we shall assume the wave to be produced

by a simple alternating current.

1) i = Isinwl = [sing%ft.

" The equation of the jet-wave then becomes

) _ 1 Hl-dz-x-si11w<t~”ﬁ).

Y= 10 m o v

The expression obviously represents a sine-shaped wave
fig. 4 which travels on with the velocity », the amplitude
at the same time increasing proportionally to the distance
from the field, that is to say,
the starting-point of the wave.

During its motion the wave-

tops touch the two lines

1 HI

@ y=F7p np

which form an angie 6,, with
the axis of the original jet

\ given by
1 HI
b‘l Wig 9’":“+ﬁ mo® I=te.
&l
' Obviously (3) represents the
£ 9 ) lines which the jet would

Fig. 4. Wave produced by a simple  stationarily follow if direct

alternating Current. currents -4 I, thus currents
equal to the maximum value of the alternating current,
found from (4) is

taken to measure the amplitude of the jet-wave and is denoted

were sent through the jet. Generally fg6

by . If introdaced in (2) this latter expression becomes
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(5) yzax-sinw(t—g—),

while the equations of the lines liniiting the wave track
may be written

(6) y=4ex.

From (5) is seen that the wave will, at a given moment,
cut the x-axis in a series of points, the zero-points, deter-
mined by

@) sin w <t~§> — 0.

Obviously these points are situated at a distance from
each other given by

T
= p=

® 3

T

A is called the wave-length of the wave. On -the other

band it is seen from (5) and (6) that the points ¢, £, &,

fig. 4, at which the widve touches the lines (8) are deter-
mined by

(9) sin (t—‘3> =1.

124

They are thus to be found half-way between the con-

secutive zero-points of the wave. The tops of the wave,
. . . ood

my, my, I, fig. 4, that is fo say the points at which ﬁ: 0,

are situated a little farther on in the direction of the motion.

In order to see this we may preferably consider the wave
s A .
at the moment { = 0. At this juncture :1—1— = 0 at the points

determined by
(10) tg— = ——.

As known, this equation is solved graphically by

finding the point of intersection between the curves



12 Nr. 2. Jur. HARTMANN:

y= z‘gfo—:f and g = —wa. It is seen that the solutions are
12
given by
WX 7w
(11) —U"-PE—F@,

where p stands for the odd numbers 1,3, 5... while d is a
quantity which tends to zero and is the less the higher the
number p. From (11) follows

_ k9

7T

A
2,

while the zero-points in the case considered are given by
' , A

(13) x=phg,

where p’ indicales the numbers 0, 1, 2, 3...

The expression (2) may, as indicated above, be con-
sidered as describing the motion of the point of intersection
between the wave -and a plane at a distance x from'the
field and perpendicular to the axis of the original jet. It
is seen that the said point performs harmonic vibrations.
The zero-point of the latter is the point of intersection
‘with the original jet. The vibrations are of course syn-
chronous with the alternating current from which the wave
originates. But they are delayed in phase with regard to
the current, and the phase-lagging is

(14) p = w: = 27~

|8

From (14) it is seen that the vibrating poinl of inter-
section will pass the zero-point simultaneously with the

current at a series of distances of the plane given by

(15) 2%'% =pw
or by
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; — .t

where p indicates the numbers 1, 2, 3, 4 ... The points deter-
mined by (16) may be called the nodes. With a short
field they thus form a series of points separated by the

) . .
constant distance 5° Obviously, if the wave is produced by

a current { = Isin wf, being zero at the moment ¢ = 0, the
nodes are simply determined by the points of intersection
between the x-axis and the wave al the moment ¢ = 0.

It should be noted that the wave considered in the
presenl paragraph might as well have been produced by
intersection of an alternating field and a constant current
flowing in the jet.

On the vibratory motion of the hitting point of the jet-wave
in a plane perpendicular to the axis of the original jet, and on
the easily adjustable phase-displacement between the said mo-
tion and the current by which the wave is produced, the jet-
wave commutators and rectifiers are based. The commu-
tator generally serves for commutation of a voltage synchronous
with the said current. The commulation is, as a rule, to take
place nearly at the moment at which the voltage changes its
sign. This is achieved by moving lhe commutator-electrode, con-

sisting of two insulated parts symmetrically placed with regard to
the axis of the jet-wave, in the direction of the said axis.

4. Geometrical Construction of the Jet-Wave.

From the expressions (2) and (4) in the previous para-
graph it is seen that the angle ¢ which the path of the
consecutive jel-particles forms with the axis of the original
jet V.aries periodically with time according to the expression

(1) lgh = tg0, -sinwt

m
a suitable zero-point for the time being assumed. It is

therefore a simple matter to construct the paths.of a series
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of consecutive particles. In fig. 5 this has been done in an

easily comprehensible way for 16 particles following each

T
other with a time-difference 6 The paths are marked

0,1, 2...16. Now let the first particle 0 have reached the

Fig. 5. Construction of Jet-Wave.

point 0 of the axis at a given moment. The next particle 1

will then be 1;L_6 behind the particle 0 on track 1, the

particle 2 again 16 behind particle 1 on path 2 and so
on. In this way a series of points of the wave at the mo-
ment considered is found, and the wave itself is easily

traced. The picture in fig. 5 does not, however, give a true
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conception of an electromagnetically produced wave with
an amplilude of the size shown. For the theory on which
the construction is based holds good only for quite small
amplitudes. The figure is therefore merely to be taken as
illustrative of the way of constructing waves with small
amplitudes.

5. The Jet-Wave in the Case of alternating Current and
alternating Field.

If both current and field vary periodically say accord-

ing to
(1) [ = Isinw!?
(2) H = Hysin (0t + ¢)

it is found from the general theory in paragraph 2 that
the wave produced may be represented by

2 IH,

. Yy=10 mUZ-dl~x-cosga
1 IHO . X T
-|~%1—mdl:x:sn'1(2w<t U>+ 2].

From this expression it is seen that a wave is formed
which has half the wave-length of that produced by a con-
stant field. The wave proceeds in a direction which forms an
angle 6, with the direction of the original jet determined by

2 IH,
€Y tg 8, = 10 o dl-cos ¢.
The angle is thus zero for ¢ = %T In that case the wave
becomes
_ 1 IHy o _z
(5) 7=13 mvzdlmsm2w<t v>

- and moves on in the direction of the original jet.
It is seen that the deflection 6, or rather fg6, might
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be taken as a measure of cos . An indicator for phase-

displacement might obviously be based on the relation (4).

6. Jet-Wave produced by a direct Current and a
rotating Field.
Finally we shall consider the wave produced if a direct
current I, is sent throught the jet while the latter with the
original direction x, fig. 6, passes a rotating field H, of the

( « period T, thus of the cyclic frequency

® = We may assume that direc-
lion of rotation as positive which seen
against the positive direction of the

x-axis coincides with that of a watch.

Fig. 6. Theory of Wave
produced by direct Cur-
rent in Interaction with  direction the mechanical motive force

With a field rotating in a posilive

a rotating Field. 1 .
@ rotating e F = 10 I, H, acting on one cm of the

jet is delayed with regard to the ficld-vector by the angle g

The field may be produced by means of two periodgic
fields in the direction of the y-axis and z-axis respectively.
The two component fields may be represcnled by

D H = H, coswnt

)

)] H = H,sinwt.

Each field produces its motion and the actual motion
is the resultant of the two. The problem has thus in a
way already been solved. The two component waves are

1 I,H, . ( 13)
— = 0l R
(3) =10 m o dl-x-sinw|t o)
1 I,H, < x)
- 2= — 90 gl pcosw|t—2).
(€5)] 10 m dl-x-cos w |t -

The resultant wave, obviously, has the shape of a screw-
line with a radins increasing in proportion to the distance
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x from the field. Its point of intersection with a plane per-
pendicular to the x-axis traces a circle with the radius

. 1 LH,
! 10 m v®

®) dl-x.

The radius to the point of intersection is delayed with
regard to the motive force by the angle

(6) 97:%'276.

On the motion here considered the rotating jet-wave

commutator is based.

7. Jet-Wave of small Amplitude with non-laminar Field.

We now proceed to consider the wave with a field of an
" -extension L which is not small compared to the wave-length

4. The amplitude again is assumed to Tl 7
DG Do

2
3

be relatively small as in the previous

cases and again a current i = Isin et

is sent through the jet. One way of

treating the problem is to divide the
field into laminae dI as indicated in
fig. 7 and to sum up the deviations

Ay to which the said laminae give

I N

rise. The total deflection at a distance ',;7( *
x from the entrance of the field and i AR
. . A i
inside the same, x<</I., is thus, ac- ‘A‘é‘;z&gﬁ;jm%

cording to the theory given above,
TFFig. 7. Theory of Wave

determined by with non-laminar Field.

(1) y= L IH R (x—10) Sinm(t—%——% dl.
L2

10 m v o

Outside the field the deviation is given by

vid. Selsk. Math.-fys, Medd. X, 2. 2
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L
1 IH . x—1
(2) y = -l‘b'm—vzgo(x—l)sulw(t——*"—> dl.

In both cases ! indicates the distance from the entrance
of the field, which is assumed homogeneous, to the arbitrary
lJamina dl.

8. The Jet-Wave inside the Field.
From (1) in paragraph 7 is found by integration

A

_ 1 IH 505 .

1 y*mmUZVA + B*sin (wi—¢)
where
(2) A="TsnT 4 s 2% 1

12 1 U
(3) B = 2% c0s ¥ gin ©F

1 12 D
(4) gy = B

Again the point of intersection of the wave with a plane
perpendicular to the original jet will vibrate synchronously
with the alternating current but lagging in phase with regard
to the same. The point will pass the zero-point simultane-
ously with the current at a series of positions x of the said
plane;, the nodes, represented by

- wr  ox
(3) tg——= -

The nodes are, thus, no longer equidistant. Practically,
however, they become so atl greater distances from the en-
france to the field, as will be seen from the well-known
graphical way of solving (5). The final distance between
two nodes, is, as with a short field,

(6) - =U%z.
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The amplitude-curves, that is to say, the curves inside
which the wave proceeds, are given by

_ 1 IH s 2
Y=%10 m o VA% B =

Q)

+ L I e A (T —cos ),

10 mo

B’ being introduced for ? Obviously with increasing dis-
tance « the curves approach the two straight lines

8 . y=iim-

10 mw?

8.
A good approximation is

1 IH .
Td IilTx)é (/3’ — S1n ﬂ’) .

¢ y==£

The curve y = 8'—sin 4’ is shown in fig. 8. It forms a kind
. . . 1 IH
of staircase profile ascending along the line y = 10 mo? A,

and having ‘horizontal y= sing’
A5

tangents at the equidis-

tant points

(10) =0,2m,4mw... s

or at distances from

the entrance to the field

o5

given by
A1) x=20,2, 24...

The same is true for

the curve represented

by the exact expression 2 7 */;"
(7). We may conclude Fig. 8. Amplitude-Curve for Wave in-
that if the field is cut side the Field.

off at one of the distances given by (11), we shall obtain
a wave with a constant amplitude outside the field.

2*
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9. The Jet-Wave outside the Field.

For the jet-wave outside the field the following ex-

pression is found by integration of (2) paragraph 7:

LoL L L
= 3 IH ?Ecos féﬁ—sinw—2 cos l—t 2
0 Y =10 mel\ o ) v @ v
< L> wL - L
wlex—= = —_—
2
+ Y sin—sine \ f———
v ) v

For « = L this expression gives the same value for y
as does the formula (7) paragraph 8 for the wave inside
the field. It shows that the motion of the point of inter-
section with a plane perpendicular to the original jet is
synchronous with the current by which the wave is pro-
duced. The phase-lagging, however, is now given by

_eles)

p) =g ———
(2) =9 o
where
L L L
w2 (?2 ‘ 012
Tp Ces T, TSI
3 ta o = v
3 ge L L
P\*T3) P9
— Ss1n —
12 1
or

- COS pud sin
), — Y ——— Ve~
(4) tg g)/ 5555

. T
: ,@HSIH}/;

. .y A s
if the length of the fleld measured with 5 as unit is in-

&~

dicated by y and if the distance from the centre of the
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r—
field to the plane measured in the same unit, thus 5

R~

2

2
is denoted by 8. We shall now discuss the wave considered

in detail.

10. Amplitude of Wave outside the Field.

As will be seen, the amplitude-curve may be expressed by

2 / o\ .om\?
1) g= 10m ' ( COSy——Slllyi)—f—(,@rcSln;f§>.

With increasing distance £ from the centre of the field
(1) tends to

2 IH 7T
2 V=90 ma — Amsin; vy
or to

siny -

2

1 IH 2

@) Y= 10 m o2 L~oc0——7t—,
73

x, standing for x~]2—
This expression may be compared with the formula
for the amplitude with a short field, thus with (3) para-

graph 3. The two expressions are identical apart from the

.7
siny —

factor provided the distances, in the case of the non-

y=
laminar ﬁzeld, are measured from the centre of the field.
Thus at greater distances the formula corresponding to a
short field may be used provided the result is reduced by
applying the factor

€Y F=—2%.
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With special extensions of the field particular waves
are obtained. If for instance y assumes such values that
the first member under the square root in (1) vanishes,
that is to say, if

' 7T 7T
(5) tgry =715

then (2) is exactly true for all distances @ and the phase- -
displacement ¢’, (3) paragraph 9, also vanishes so that

ek

the whole phase-lagging is that expressed by ————=. In
[

the said case, therefore, the wave is identical with the wave
with a short field, the length d! of which is determined by

- i
siny =
(®) dl = L——.
_717
"2
The first length of the field satisfying (5) is obviously

7€

determined by a value of yg somewhat smaller than 32

thus by y a little smaller than 3.
If on the other hand y has such a value that

(7 Sinyg =0

thus if y is equal to 2, 4, 6 etc. then

© yo L (3

T10mo® 7 \2

That is to say, the amplitude is constant outside the
field as predicted in paragraph 8. At the same time g ¢’ =

or ¢’ = p-g'(p = 1,3, 5...) and the formula for the

wave becomes
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1 IH ,1>2 ( x0>‘
= L. T 2 t— o),
(9) Y= 10mt w (2 cos @ v

A wave with constant amplitude may thus be eleclro-

magnetically produced, but a rather long field must be
employed. It is easy to see how the amplitude becomes
constant. The shortest field giving the wave in question is
just a wave-length 1. It thus takes a particle a period to
pass the field. The velocity in the posilive direction of
the g-axis which the particle obtains during the one half
of the passage is therefore lost during the other. So the
particle arrives at the boundary of the field with no velocity
perpendicular to the direction of the original jet. But ob-
viously it arrives with a cerlain deviation, the deviation
due to the first half of the field not heing compensated
by the opposite deviation to which the second half gives
rise, simply because the latler part of the field is closer to
the exit of the field than the former.

11. The Variation of the Amplitude with the Extension of
the Field at a given Distance from the Centre of the Field.

In addition to the general discussion in the preceding
paragraph we may consider the variation of the amplitude
with the extension of the field at a given distance from

the centre of the field. We may in (1) paragraph 10 write

s

¢)) vy = ¥ and (2) Bmw =g

with which notations the amplitade is

2 IH
(3) y = ;

10 mw?

V(5" cos y' — sin y')* 4+ (B sin y*)%.

We find that y is minimum for the values of / given by
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(4) siny’ =0
or for
(5) L=pi(p=1,23...)

thus for the values of L giving waves of constant amplitude,
the latter, as shown, being expressed by

(6) y 1 1 Z(&)z

T1omo® 7 \2

The amplitude is maximum for the field-extensions
determined by

(7 (87— cosy' + ' siny = 0
thus for

2 o2
®) gy =5

The equation (8) may be solved graphically by deter-
mining the points of intersection between the two curves

€)] y =1tgy

and : , \ ,

(10) y="1 _,£:7’<1~(£,>>-
7 7

If for instance ' = g8 = 3, corresponding to the am-

. . . . 32
plitude being considered at a distance o from the centre
of the fleld, it is found that the amplitude is maximum

for values of ' close to o and 2—” thus for extensions L

&

32 . .
nearly equal to * and —-. In both cases the amplitude is

2 2
about the same, namely approximately
2 IH ———0pfs
(11 U= 10 mat VITA®

thus for 8 = 3w very nearly

2
(12) y= Ly

1 IH
T 10me? P T 10 mo?

AR,

e
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Finally the amplitude
in the case considered is
maximum for a value of
7 somewhat greater than
b

Sy This is seen from fig.9

representing the graphical
solution of (8) with regard
to the root considered. It
is seen that the solution
is y = 20.95-; corres-
ponding to L == 5.24’;.
In fig. 11 a comﬁlele
graphical representation of
the variation of the am-
plitude with y* is given for
B = 37 (8 = 3). All three

maximum-values of the

A Sotution of the ELguation

i
. ey /’//-/f;f/ Pl
0 2/ 29 23 24 25

[
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™~

~
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I —
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I

%]
g

Fig. 9. Graphical Solution of Maximum-
Problem.

amplitude are very nearly identical. The value of the mini-

mum-amplitude increases according to a straight line. From

these facts it follows that

the difference between maximum

and minimum becomes the less the greater the extension of

B ' on o, 2 rrs
y =/ cay' —siny P uifbing)” o pe3%

L~

i / \ //
6 =
AL/ NV e
A / /
; L

/ =
VAN =

[
4 T r TR A A A ] 202777 75 % o5l

Fig. 10. Variation of Amplitude with Field-Extension, 8’ = 3#.
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the field. Furthermore the conclusion may be drawn from
fig. 10 that if the greatest possible amplitude with the cheapest

possible magnet is aimed al, an extension of the field equal

1o g(y’ = ;I> should be chosen.

12. Position of the Nodes with Fields of various Extensions.

We may finally discuss the positions of the nodes in
their dependency of the extension of the field. According
to paragraph 9, (2) the nodes are determined by

(1) 9’:9’1“—/8/:]3'775([):0: ]-) 2’ 3"-')3
where with the notation in the previous paragraph

y' cos y' —sin y’

tg g =
(2) g g) /9/ Sin ;/I

The nodes are thus determined by

/ e 3 /
,__y'cosy’—siny
(3) A =,
The values of 8 satisfying (3) are found graphically

as points of intersection between

) y = amd () g =igh,
where
. — 7' cos ' —siny’
sin 3/ )

In fig. 11 the solution is given for a series of values of

, 0T

. For y* = 0(L = 0), c assumes the form % The

no|
||

value is, however, easily seen to be 0. The nodes are thus
determined as the points of intersection between the axis
of abscissae and the tangent-curves or by & = zg8 = pn,
(p=1,2,3...) éorresponding to distances from the field
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equal to L
a9 9
discussion of the wave with a short field. If now the length

and so on, as already found in the

_ . rensylsing
Salotion of tgs -'—‘Lf—ﬂsmf
i i Aida F
o Extension of Fleld L'?’F %

& : - L:—3—.’B" :_gf
J.f: d - - L=%A;)’=5z't?'
' 1
\
\
2 I! \ ] ; |
// A d ;’ / - /I
- | </ T /
3’—_ g E3 _:. E ;ﬁf k _ﬂl-f_'ﬁ’_éy
” L""”—’ ’/Hf,ﬂ
71 — =7 /
Y I / /
1] j ]
1/ | f |
/
/

Fig. 11. Graphical Determination of the Nodes.

of the field is increased, ¢ will become, and remain, nega-

tive and numerically increase steadily as long as
yr<m

that is to say as long as

L<i.
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The positions of the nodes are determined by the points
of intersection between the tangenl-curves and hyperbolas
situated below the positive part of the axis of abscissae.

In fig. 11 the hyperbolas are drawn corresponding to

y = Z—r (a), y' = ;—E (b), and ;' = 3;—T (¢) or to L equal to

32
4
tances of the nodes from the centre of the field are ap-

A . .
Y and respectively. It should be noted that the dis-

I

proximately the same as with a short field all up to
L = ?% or even above. This is especially true for the nodes
at greater distances from the field. For ;' = n (L = 1), fg¢’
is o thus ¢ = (2p,+ l)g where p, stands for 1, 2, 3...

The positions of the nodes are now determined by

(6) y=@p+ D5 —f =pn,
from which
2 —p)+1 2p, + 1 /
(7N 8= P2 21?) = ‘pd‘) = ﬁ’
2 7T

where p, stands for 1, 2, 3... The nodes are thus all dis-
placed by 1 with regard lo the positions with a short
field. This is also seen from fig. 11 if we imagine the hyper-

bolas extended infinitely. Now if ;" is increased beyond
7t (L beyond 1), ¢ becomes posilive and the hyperbola

y = ’/gr: is situated above the axis of abscissae. For
y' =%n<L — iz) the hyperbola is d fig. 11. Again the

nodes are distributed approximately as with a short field.
The constant ¢ remains positive until the first of the field-
extensions (greater than 0) which satisfy

(8) gy’ =y
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is reached. Al the said extension L, which is a little less

3 . .
than -4, the nodes are dislributed exactly as in the case

2

of a short field. If the extension is made still greater the
constant ¢ again becomes negative and so on.
In tab. I which is derived from fig. 11 the distances

B, By, B; from the centre of the field of the three first

nodes are given corresponding to four values of the field-

extension.
Table- 1.

L B1 B2 B85 Ba—pL | Ps—pa
0 1.000 2.000 3.000 1.000 1.000
% 0.981 1.988 | 2.994 1.007 1.006
2

Z 0.894 | 1.950 2.975 1.056 1.025
32 ) )

= 0.695 1.830 2.918 1.135 1.088

It is seen from the last two additio-
nal columns how nearly equal to% the
distance between consecutive nodes is,
even with fields of rather great ex-

tension.

13. The Jet-wave produced by an
oscillating Nozzle.

A jet-wave of the kind considered
above, but subject to no restrictive
assumplion with regard to the size
of the amplitude, may be produced
by means of an oscillating nozzle. In
fig. 12 N indicates a nozzle which pet-

Fig. 12

. Wave produced

by an oscillating Nozzle.
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forms a translatory motion perpendicular to the axis of
the nozzle, the motion being determined by

(1) Y=Ff@®.
A jet-particle which leaves the jel-hole at the moment
f, will, at the distance x from the nozzle, exhibit a devi-

ation with regard to the axis of the said nozzle determined,
as seen from the figure, by

& /
@) g = F+2 1 @,
f/ () standing for the velocity idllé at the moment f,, and

v for the velocity of the jet. If furthermore the distance x
has been reached at the moment ¢, then

(3) x=v({—1).

The expression for the wave produced is found by
eliminating f, from (2) and (3). It is

) y = f(t—%)—lr%f’ <t~:>

If now, particularly

(5) Y=Y, sin wt
then '
y=1yY, [Sin ® (t—f) + L ocosw (f—«gﬂ
©) v D )
/ T N2
= YO‘/I—I—(%—QE) sin (wt—¢),

where

0T wxr’
(7 {p——v——alcth.

The amplitude-curve of the wave is expressed by

(8) y =Y, ]/1+(“’7x)2



The Jet-Wave. 31

or by
2 2
vy _xr
(]
. : . . 2
It is thus a hyperbola with the axis Y, and 2 P
2 . @
(Z =oT, T= j) At greater distances from the jet-hole
®

the amplitude-curve may be representied by

(10) p= 1,5 — 1y,
v Y3
thus by two straight lines.

The formula (6) may also be conceived as the equation
of the motion of the point of intersection between the jet-
wave and a plane perpendicular to the axis of the original
jet. The motion is harmonic like that of the nozzle but
lags in phase with regard to the latter. The phase-displace-
ment is zero or s al the points at which the wave cuts

the x-axis at the moment { = 0, that is to say, at the points .
determined by

(11) gl = w0,
v - v
Attention may be drawn to the fact that the nodes in-
side the field of an electromagnetically produced wave were
determined by just the same equation ((5) paragraph 8),
a being the distance from the entrance to the field.
If the deviation of the particle is measured relatively
to the axis of the moving nozzle it is expressed by

o x

(12) g =2 )~ [FO—rt)]

[y

(compare fig. 12). With harmonic oscillation of the nozzle
the equation of the jet-wave in the oscillating system of
coordinate is
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y=1Y, [(w L cosw <t——§> —sinwt-+sinw <t—£>}
v v v

(13) = Y, Kwi‘silwxwf—l—coswf—l)sinwl‘
v v v
+<w gzcosmi]c——sinmic>c'os a)l‘} .
v v v

The wave is seen to be identical with an electromag-
netically produced wave of small amplitude inside the field
provided (paragraph 8)

L IH

(14) )’0 = *1*6 m 002‘

It has thus already been discussed above.

On the wave-motion considered in the present paragraph the
jet-wave accelerometer is based® If f(#) in (12) is replaced
by the first three terms of the series

15y SO =FfU)+{E—0) )+ 5T — 02" (L) + —

.where t—f = %, (12) may be wrilten

o \2 A\ .
(16) p= 1[5 w == (L (=2,
it being assumed that the displacement of the nozzle is small
and that y is measured so close to the nozzle that the members
of higher order of (15) may be neglected. It is thus seen that the
acceleration f” (f)) of the nozzle or of any body to which the
nozzle iIs attached may be registered by the relative motion of
a point of the jet-wave close to the nozzle.
On the other hand it is seen that (12) al greater distances
assumes the shape

(a7 y=Tf W

provided again that the displacement of the nozzle is kept within
certain limits. The velocity of a body to which the nozzle is at-
tached is thus registered by the relative motion of a point of the
jet-wave chosen not too close to the nozzle.

! Nature, June 6, 1925, and Phil. Mag., vol. IlI, 1073.
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CHAPTER 1I
The Jet-Wave of larrge Amplitude.

1. The Jet-Wave in the Case of a laminar Field.

We now proceed to consider jet-waves of larger am-
plitudes and shall commence with a wave produced by a
laminar field i. e. a field the

. T 53 P
extension dl of which is so

e
! oﬁs
[ -

small that the current used in ‘”ﬁ

the production of the wave may |
be considered constant during re
the passage of a small particle A |

Ax of the jet. While, in the I

building up of the theory in the L

case of small amplitudes, we

were justified in assuming the 1
mechanical force, acting on the ,

Jet-particle, perpendicular to the
Fig. 13. Theory of Wave with

axis of the original jet, this as- short Field.

sumption can now no longer be
maintained. During the passage the particle 4/ x of the jet
will be attacked by a force

(1) K 1 iHAx,

T 10

where i is the value of the current during the passage and
H is the intensity of the homogeneous field. The force K

Vid. Selsk. Math.-fys. Medd. 1X, 2. 3
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is perpendicular to the field and to the direction of 4/x
or, what we shall assume to be the same, to the direction
of motion of the said particle. It is therefore unable to
alter the original velocity v of the particle, but it will
force the latter to follow a circular path the radius ¢ of

5

which is determined by

o) - omedx v K,
- e
m being as in Chapt. I the mass per c¢cm of the original

jet. From (1) and (2) we derive

1 1 Id
® ¢ 10 me
After having left the field the particle will proceed
along a straight line forming an angle § with the direction

of the original jet, where obviously

. dl 1 IH
(4) sin § = ? = E m l)z

If the current through the jet is determined by
(5) i=1Isinwt
and if the particle which passes the field at the moment
fy is considered, the deflection of the path is expressed by

. 1 IH .
(6) sin @ = E-I;—Jé-dl'smwto.

At a laler moment 7 the particle will have reached a
distance r from the field, where

(7) r=v{t—ty).

Eliminating {;, from (6) and (7) we find the formula
of the jet-wave. Il is
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... 1 IH . 1')
sinf = 10 o2 dl smw(t ’

(8) oo
’ = sin 6, -sin o (t— —E> .
Obviously (8) represents a wave proceeding between
two straighl lines 8 = -6 where 6 is seen to be the sta-
tionary angle of deflection for a jet carrying a constant
current I. The wave-length is determined by

(9) A=uvT

as in the case of a wave of small amplitude. The equation
derived for the latter wave was
y 1 IH

(10) g =<

m—l—o-mwll-smw<i‘—;>:tgem-smw(1‘—— L

The latter formula may be used instead of (8) for the
delermination of the amplitude 6, as long as the difference
between sin 6 and lg 8, may be neglected. For 6§ = 10°
sinf,, = 0.1736 and tg6, = ();1763. The difference in this
case is 0.0027 or ab. 1.5 per cent. For 6 = 20° the differ-

ence is already 6.3 per cent.

2. Construction of the Jet-Wave,
' Fig. 14 illustrates how a jet-wave of given angular am-
plitude 6, is constructed. The angle ¢, is laid down to
each side of the direction of the original jet OP. With an
arbitrary part O4A of the line OP as diameter a circle is
drawn. It cuts the line OC limiling the track of the wave
in the point B. The chord AB is swung down round A on
the line CC perpendicular to OA. In this way the end of
the chord AB comes down at B. We may now for in-
stance consider 17 consecutive particles of the jet follow-
3%
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ing each other at a mutual distance of Té In order to
determine the rectilinear paths of the said particles, 17 pieces

are set out on the line B’B’ from the point 4. The pieces

. T, m 7T L. T 7T
are as sin 0--, sinl-—, sin2-—, ..., sin15-=, sin16-<.
8 8 8 8 8

Fig. 14. Construction of Jet-Wave.

AB’ is taken to represent the unit length. The well-
known construction of the pieces is indicated in the figure.
Now the ends of the same pieces (0), 1,2, 3, ..., 15, (16)
are swung back round 4 on the circle OBA. Through the
* points thus obtained the tracks of the particles in question
pass. They may be numbered 0, 1, 2, ..., 15, 16. Now as-
suming that at a given moment particle 0 has arrived at A
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on the track OA, then particle 1 will be on track 1 nearer

to the point O by the distance liﬁ’ particle 2 will be on

2 .
track 2 nearer by 16 to O than particle 1 ete. The way

Fig. 15. Jet-Wave, phot.

to find the positions of the consecutive particles is thus

obvious. Backwards from A we may divide OA in parts,
2 . N

each of the length 16’ and mark the points of division by

1, 2, 3,... Then in order to find the position of a certain
particle, we shall only have to project the point of division
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of the corresponding number on to the track of the same
number by means of a circle with its centre at O.

A main difference between the construction of the wave
with small amplitude (or of the wave produced by means
of a mnozzle performing translatory -oscillations) and that
of the wave with large amplitude lies in the .way of pro-
jecting the points of division of the jet-axis on to the tracks.
In the first case the projection takes place by lines al right
angles with the said axis, in the second by circles. The
first type of waves may accordingly be characterized as
the rectangular type while the second may be termed
the circular type. The latter type has the peculiarity
of the wave-fronts being markedly convex in the direc-
tion of the motion. How close the actual jet-wave comes
to the shape of the constructed wave is seen from fig. 15,
representing an instantaneous photograph of a wave pro-
duced electromagnetically from a mercury-jet. ‘

3. The Jet-Wave in the Case of a non-laminar Field.
» General Theory.
We now proceed to consider the wave with a fleld
which is not laminar. Again we shall assume the wave to

be produced by the current

i = Isin @f in interaction

=" with a constant and homo-

,L __,,,,——;‘.'3:'\-’9: geneous field. The extension

AP sac of the latter in the direction

of the original jet is L,

fig. 16.
During the motion through
Fig. 16. Theory of Wave with the lamina dx of the field
' non-laminar Field. the path of the particle con-
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sidered will suffer a change of direction df, given, as will
be seen from the figure, by

) ag =& _vdt
0 o’
where
mv? 1 .
{2) =1 Hlsinwt,

m indicating as above the mass per cm of the original
jet. From (1) and (2) is found

1 HI .
3) | de—mmug v-sinewt-dt,
and by integration
1 HI 4
= — .2 (cosel—
@ 10 m o 2ﬂ(cosmlo coswl)

= 0, (coswl,—coswt),

t{, being the momenl at which the particle enters the field.
The equation (4) gives the direction of the motion of a
particle at any point of the path provided it is known at
what moment { the particle is at the point in question.
Especially it is possible to determine the direction of the
motion al the lower boundary of the field if the time of
passage of the field is known. We shall now derive a for-
mula expressing the distance a from the upper boundary
of the field as a function of time.
From fig. 16 it is seen that

(5) dx = ds-cos 8 = vdicosf.
If 4 is kept below a certain limit we may put

92
(6) cost?:l—?.
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4

. . 7] .
The error commilted is of the order of thus, with
§ = 1

g L
27 384 ,
If the value of cos 6 determined by (6) is introduced

or (0.3 per cent.

in (5) and if the value of 6 is then taken from (4), an

integration gives

02 02
¢ = <1~Z°—;°cos2wto>u (t—1ty)

' h . .
(7) +v ;09 cos wl, (sin w t—sin w fy)

2

— 1);?—0,(sin 2wt sin 2wl,)
. )

[o X1
or .
— _Hj 60 2 ‘[_’Lo
= <1 1 g cos wly) A 7
82
(8) Jrlg—;’;coswl‘o (sin o t— sin @ #;)

2

62 .
- 2 y L& E) .
A 16 (sin 2w t—sin 2m t,)

"Finally a formula for the deviation y perpendicular to
the original jet of the particle is derived. From fig. 16 it
appears thal '

(9 df = ds-sin® = p di-sin 6.

An approximation which will suffice in most cases is

obtained by replacing sin 6 by 6. The error is of the order
03

%i. e. ab. 2 per cent. for & = 1. Apparently this error is

not quite small but as y in most practical cases is small,
the error is only of relatively small influence on the am-
plitude outside the field at greater distances from the same.
Introducing the value of ¢ from (4) and integrating, we find

6o, . .
(10) gy = vh,{(t—1):cos wt0~%9 (sin wt—sin wt,)
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or
(1) g =16,

-

T

by
27

cos wly— 4 (sinwt—sin wty).

For small values of 6, the theory now developed coin-
cides with the theory for a wave of small amplitude in-

e

N

Fig. 17. Difference hetween Waves calculated from the exact Theory
and from the Theory with small Amplitude.

side a fleld of great extension. If the members with 6} of

(7) may be neglected, the formula is reduced to

(12) x = v({—1,)

and by eliminating #, from (11) and (12) we find for the
equation of the wave
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= L I <—l>2 2Tm:cosw(z‘~§>—sinmz‘
=10 mo®\2n 2 v

+sinw<t—x>] s
v

which may be shown to be identical with the formula (1)

(13)

in Chapt. I, paragraph 8. With large amplitudes the ex-
pression (13) leads to a false picture of the wave both in-
side and outside the field. Fig. 17 illustrates this. The wave
A is calculated on the basis of the complele theory, while

B is found by applying the theory for small amplitudes.
IH A

2

1
In both cases the same value for -— .
10 mv® 27

sumed. By employing the theory for small ampliludes a

= f, is as-

too small value of the amplitude is found, and at the same
time the zero points or nodes are displaced somewhat with
regard to the true nodes, i. e. the points of intersection
between A and the axis of the wave. The points K| and K,
represent the positions of the nodes as they would be with
a laminar field in the centre of the actual field. How pic-
tures like A in fig. 17 are produced, will now be explained.

4. Production of Wave-Pictures on the Basis of the
complete Theory.

By means of the theory of paragraph 3 it is compara-
tively easy to trace jet-waves corresponding lto various
values of field-length and amplitude. It is done by calcul-
ating the path of a series of particles characlerised by the
moment #, at which they enter the field. The particles are
appropriately chosen equidistant, distributed over half a
wave-length, i. e. the values {#, are distributed evenly over
half a period. Corresponding to each value of #, a series
of equidistant values are ascribed to f in the formulae (8)
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: ‘ A
Fig. 18. Jet-wave Diagram L = 5> 8y = 0.250.
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-4 .
L7 6035/

0 |

A
— = 0.351.
7 6o 35

Fig. 19. Jet-wave Diagram L =
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) )
Fig. 20. Jet-wave Diagram L = e p = 0.250,



46 Nr. 2. Jur. HARTMANN:

and (11) of paragraph 3, and so a series of x- and y-values
of the path is found. Furthermore the moment of arrival
t, of the particle at the lower boundary of the field is
found by extra- or interpolation. If then £ is introduced
in (4) paragraph 3, the direction of the outside rectilinear
path is determined. It being known that the particle moves
on in the path with the velocity v of the original jet, it
is also known al what point of the path the particle is
found at any moment. If now the positions of a series of
particles at a given moment are marked, the wave at the
said moment may be drawn by tracing a curve through
the said positions.

In the way here indicated the wave-pictures in fig. 18
—20 have been produced. The direction of the paths out-
side the fields are stated in tab. I. Fig. 18 corresponds to
a field of half a wave-length and to 6, = 0.250. The paths

numbered 0, 1, 2, ..., 15, correspond to particles entering
T T T

i t — 2, L. S,

the field at the moments 0, 1 16 2167 " 15 16 (The

current is supposed to be i = I'sinwt). On the paths the
positions at which the particles are found half a period
after their entrance into the field are marked by circles.
It thus takes a little more than half a period for a par-
ticle to pass the field, and the more time the more sloping
the path is. The wave proceeds within certain symmetrical
boundary-curves, the amplitude curves, which of course
are envelopes of the outermost paths. In fig. 18 the said
curves are stippled. Their points have been determined
graphically by measuring at a series of distances from the
cenire of the field the distances y from the axis of the
wave to the various paths. The values of y have then been
marked eut in a rectangular system of coordinates in their
dependency of the number of the path, and so the maximum-
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value of y has been found. In fig. 18 the amplitude-curves
deviate markedly from the outermost paths. In fig. 19 cor-

Table I
& ¥
T Ty 4 lg 6
(16 (16

0 8.44 0.496 0.542

4
1 9.43 0.443 0475 | p A p o950
2 10.52 0.314 0.324 2
3 11.28 0.166 0.168 | g6, = 0.546
4 12.14 0.013 0.013 | path 4y = — 0.95 I
5 13.02 —0.195 — 0.201 16
6 14.10 — 0.360 —0.376 | 2, = 0.500
7 15.25 — 0.470 — 0.508
0 4.06 0.360 0.376

l .
1 5.12 0.473 0.512 |, A, 35y
9 6.20 0.515 . 0.566 4
3 7.17 0.466 0.503  lg 6, = 0.566
4 8.13 0.350 0.366 | path 4, — 32—
5 9.06 0.186 0.189 16
6 10.00 A 0.000 0.000 | 6, = 0.515
7 11.02 —0.193 —0.195
0 1.04 0.253 0.259
1 4.06 0.333 0.346 | ; — * . g950
2 410 0.360 0.377
3 410 . 0.330 0.243 | t9 6, = 0.377

T
4 4.06 0.250 0.255 | papy f, — 2L
5 4.04 0.134 0.134 16
6 4.01 —0.001 — 0.001 6, = 0.360
7 4.00 —0.135 —0.136
A

responding to a field-length ~— the amplitude-curves coin-

4
cide almost exactly with the oulermost paths, for which

f, is 2% and 101—Té respectively, so the amplitude curves

are not drawn. The same is true in the case shown in fig. 20,

where the outermost paths likewise correspond to {, equal
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to 2z and IO-IZ6 respectively. In the table 6 and fg#@

16

m

indicate maximum-values of # and tg# respectively.

b. Geometric Construction of the Jet-Wave in the Case
of a non-laminar Field.

The paths of the particles and so the wave may also

be approximately determined purely geomelrically as in-

& dicated in fig. 21.
B The field is divided
% into  conveniently

thin laminae or

zones 1, 2, 3, ...

Inside each of the
Fig. 21. Geometric Construction of Wave. said zones the path

is assumed to be a circle with a radius determined by

1 1 iH

(1) E = E moe’

i being the average value of the currenl during the pas-
sage of the zone. The centre of curvature C, for the path
through the first zone is situated in the uppermost houndary
of the field. The centre of curvature C, for the path through
zone 2 is assumed to be on the line C;a,, a, being the
last point of the path inside zone 1 ete. In fig. 22a—b an
example of the construction is given, fig. 22 a showing 16
equidistant paths inside the field and fig. 22 b giving the
corresponding paths outside the field and a complete wave-
picture. In the construction the field was divided into 8

zones and it was assumed that the passage of each zone

T . .
took 16 Se¢ The current was supposed to be i = sinwf and

the radius of cuivature, measured in c¢m, was chosen 10
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times the reciprocal value of sin w! at the moment at which
the particle is in the middle of the zone in question. Fur-
thermore 1 was taken to be 16 cm. With these dimensions
8, is very nearly the same as in fig. 18, namely ab. 0.250.

H
For to the factor 10 corresponds the value 1 of - 12 and
1

g0 8/ 772

Fig. 22 a. Instance of Construction.

| o v H A2, .14
thus with 2 = 16, the value of Tomot 22 P15 9,

0.254. Very nearly the same paths and the same wave
should therefore be expected in fig. 18 and in fig. 22 a—b.
In a comparison it was found that path 1 in the original

construction fig. 22a cuts the lower boundary of the field
5.26 cm. from the axis of the wave, while the corresponding
distance in fig. 18 was 5.16 cm., the difference being thus

ab. 2 per cent. i. e. the same as between the values of 8,.

Vidénsk. Selsk. Math.-fys. Medd. IX, 2. 4
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P %
Qplu 7r264 s 4i55)12.0
T
)

Fig. 22b. Instance of Construction.
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The influence of the width of the zones in the geometric
construction was examined. It was found that in a field of
%the slope of path 1 outside the field varied as follows

with the number of zones.

Table II.
Number of Zones
with field of é tg o ¢
4 0.551 0.504
8 0.536 0.493
16 0.517 0.477
0.500 0.463

The values of {g# and 6 corresponding to an infinite
number of zones was found by means of an extrapolation
of rather large uncertainty. From the preceding paragraph
we conclude that the frue value of # should be ab. 0.452.
It thus seems that the construction employing zones of

Ao, . . .
16 o the case considered, that is to say with a rather

large amplitude, leads to a comparatively large error, say
8—10 per cent,, in the determination of the slope of the
paths and thereby also in the determination of the am-
plitude. Otherwise the construclive method has the ad-
vantage of affording a general means for the determination
of the wave also in cases where the field is not homo-
geneous.

6. Approximate Theory of the Jet-Wave with a
non-laminar Field.

If the non-laminar field is nol too long in the direction
of the jet, say notl longer than %, and if furthermore the
4*
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amplitude is not too large, compare tab. IV, the equation
of the wave may with fairly good exactness be determined
as follows.

It is assumed that the wave will be nearly the same
as would be produced if the current during the passage
of each particle were constant and equal to the average
value of the actual current during the said passage. Further-

more it is assumed that the passage of all particles takes
. L .
the same time, namely > thus the time for the passage

of a particle of the original jet. For the particle which at
the moment 7, is at the middle-plane of the field the said
average value of the current is

_ T .
[ (et siny—
(1) I = — Isinwt-dt =1 sin e,
g I ulo—yz Z
" ! , "9

]

y standing for e
5
The slope of the path due to I, in interaction with
the field is
‘ siny
ye
. 1 .

(2) sm@z——I—I!— L-—-sinwl,.

10 mv? T
2

Prolonged backwards the path will generally intersect
the axis of the original jet nearly at the centre of the field.
If therefore the distance from the said point to an arbitrary
point of the wave is indicated by r, it may be concluded
from (2) when compared with (6) paragraph 1 that the
equation of the jet-wave may be written
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.
sin y—

2 sin w <t— L)
D

. . r
= gin 6 -smw(t—*).
m v

1 IH

N E.m UZ.

3 sin -
"9

The angular amplitude 4, of the wave is thus deter-

mined by
siny 2
ye
. 1 IH 2
(4) sing,, = 0 mo? -
"2
or it is the same as with a fictive laminar field of length
.7
siny 5
L-~——7T—". As in the case of waves with small amplitudes
&

we find with waves of larger amplitudes that the wave
with non-laminar field may be considered identical with

waves produced by a laminar field as long as the factor

sin ;/E

—, may be considered small compared with 1', Some
"2

values of the said factor are given in tab. IIL

Table III.

. T

s 3/5
Y 7
7y

0.1 0.994
0.2 0.984
0.3 0.962
0.4 0.936
0.5 0.902
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7. Comparison between the general and the approximate
Theory.

In Tab. IV below, the absolute amplitude gy at various
distances B from the cenire of the field, and calculated
from the approximate theory in the preceding paragraph,
is comparcd with the corresponding amplitude measured
in the wave pictures in fig. 18—20. The latter amplitude
is stated under A4, the former under B. The B-figures are

determined from

A
(1) y:/glaltgem’

where 6, is found from (4) paragraph 6. Obviously the
approximate theory agrees excellently with the general

theory for field-lengths up to % and for amplitudes o = fg 6,

up to 0.5 or even above.

Table IV.
. JS£
. 5 (L) A B
2
- A
0.50 5.21 4.62 L= 5 A= 32 cm.
0.75 715 6.91
1 IH )
1 1.00 9.18 9.22 | 26p = —-——— = 0.500
10 mov2 7
1.50 13.18 13.84 _ T
2.00 17.44 1847 | 190, = 0.546 with fo=—0.25 -7&
)
0.50 4.50 4.58 L= T 2 = 32 cm.
0.75 6.74 6.85
1 IH 1
I 1.00 9.02 912 | 28y = — ——-— = 0.702
10 mov2 =
1.50 13.60 18.72 i ) T
2.00 18.12 18.929 lg ﬁm = (0.566 with t() == 21—6“
A
0.50 3.03 3.02 L= T A = 32 cm.
0.75 453 4.54
1 IH 2
I 1.00 6.04 6.04 26 = —-——-— = 0.500
10mv: n
1.50 9.07 9.06 ) T
2.00 12.10 1210 | 196, = 08377 with fp =2+



The Jet-Wave. 5%5)

We will now consider the question of the nodes. The
wave represented by the approximate theory has its nodes
at distances from the centre of the field given by p-%,
where p stands for 1, 2, ... In figs. 18—20 these points
are marked as K,, K,. With the field-length %, fig. 18,
K, and K, are displaced rather considerably with regard
to the nodes of the actual wave, that is to say, the points
of intersection with the axis, the wave being represented
at the moment = 0. And it may be noted that K; and
K, are farther from the field than the actual nodes. With
the shorter field 14 in fig. 19 the displacement of K; and
K, is much smaller, and the same is true in the case shown
in fig. 20, in which the field-length is also —/}1 while the
amplitude is essentially less than in fig. 19. With field-

A
lengths below 3 the nodes have very nearly the same po-

sitions as with a laminar field, and obviously the said po-
sitions practically do not depend on the amplitude.

It is also of some inlerest to compare the positions of
the nodes determined from the general theory with the
positions as found from the theory in chapter I for small

Table V.
Length of General Small Ampl.

Nodes Field Theory Theory
A

1 o 0.878 0.894
A

2 2 1.934 - 1.950
A

1 T 0.980 .0.981
A

2 ry 1.988 1.988
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amplitudes. A comparison with a field-length of % is made
in fig. 17. It may be supplemented by the figures in tab. V.

The figures given are the distances from the centre of
the field measured in half wave-lengths. Those of column
3 are derived from fig. 18—20. Obviously the small am-
plitudes give very nearly the same positions of the nodes
as the general theory, from which again may be concluded
that the position of the nodes depends very little on the
amplitude, a fact of great importance in the application of

the waves in certain commutators.

8. The Jet-Wave with an inhomogeneous Field. The
effective Length of the Field.
In all the cases considered above, the field was assumed
to be homogeneous inside the space between the pole-pieces

t

/ w ,‘,00+
3 .
-, N
S g Auis of feela'
gy — g — g — Ja— T e = =z X

. Fig. 28. Actnal Field.
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and of zero intensity oulside the same. The actual mag-
netic fields are not homaogeneous, the intensity varying along
the axis of the jet in a way of which fig. 23 may convey
an idea. The picture originates from a magnet the width
of the field of which was 6.4 mm while the height of the-
pole-pieces in the direction of the jet was 23 mm and the
maximum intensity of the field 9350 Gauss. The contour
of half of a pole-piece is indicated by halching. Obviously
the field already commences to decrease inside the space-
between the pole-pieces. On the other hand a considerable
stray-field is present outside the latter. The result hereof’
is that as a rule the field acts as a homogeneous field of
a greater extension than the height L of the pole-pieces,
even if an intensity equal to the maximum value of the
actual field is ascribed to the fictive homogeneous field..
The length L, of the latter may be spoken of as the effec--
tive length of the actual field. According to what has been

stated we may write
H L,=L+4L.

We now proceed to show how L, or #L may be derived
in cases where the field-curve of the actual field and the
wave-length of the jet-wave are known.

Passing a zone of the extension dx in the direction of”
the original jet, fig: 24 a, the path of a particle suffers a
change of direction d 4 determined (compare paragraph 3) by

‘ ds 1 iH
2 = — = —-d >

@) a6 e 10 mv® s v

i being the value of the current during the passage and
H the intensity of the field within the zone in question.
Furthermore

(3) dx = ds-cos 6.
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Hence
1 iH dx
@) 90 = 15" o* cos b
0T -
) 1 iH
{(5) d(sin ) = 0 ot x.

We shall now, as in the development of the approxim-

ate theory in paragraph (6), assume that the amplitude

I

S

Fig. 24 a—b. Calculation of effective Field-Length.

is determined by the path of greatest slope and that the
latter corresponds to the particle which is at the centre of
the field at the moment of maximum current. Furthermore
we shall assume that the time it takes for a particle to

. d. . . .
pass the zone dx is —Zz A cosine-curve i, fig. 24 b, covering
A, s
half a Wave-length; is drawn with its top over the centre

of the field 0. Under the circumstances assumed it repre-
sents the variation of the current during the passage of
the particle the path of which determines the amplitude ¢ .
The latter amplitude is now calculated from
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. 1 1\ 27
{8) sinf = 0 m 1)2& H{(x) cos f[x-doc,

LS

where I stands for the maximum value of the current and
2
A
The integration is to be taken from the abscissa x; of the

where H (x) and cos ——x are read on the curves in fig. 24 b.

nozzle to a point x, where the field intensity is practically

zero. The amplitude given by (6) is now identified with

the amplitude produced by the fictive homogeneous field
Lo . . . .

of length L, = y,- b and with the maximum intensity H of

the actual field. The latter amplitude is determined by

sin T
y =
1 IH €

I3 2

sing, = E.m v? e.——ﬂ,’

@ Yeg
T SO
T10 mo? w W

Hence from (6) and (7) we gel for the determination of »,

(JooN
(8) sin ye-%r = L]‘& H(x)cos QTH:C ~dx.
Y HEY
7T
With a view tlo illustration the effective length of the field
was calculated for the case in fig. 23 and for a wave-length of
13.30 cm. The nozzle was assumed to be at the abscissa —1.9 ¢cm
and on the other side the integration was carried down to + 4.3 cm
where a prolongation of the curve, not given in the figure, showed
the field-intensity to be negligible. By means of an integration in
which dx was chosen equal to 0.2 cm. it was found that '

+43 v
§ H () cos 2 Sedx — 25770
J_19 .

from which
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. b 7 25770
siny, o 2 = 1350 9350 — 0.651,

Yer 2 = 0.709, y, = 0.451 and L, = 0.451-6.65 = 3.00 cm, while
L was 230 em and thus #L = 0.70 cm.

9. The eifective Field-Length with stationary Deflection
of the Jet.

It is of interest to determine the effective field-length
in case of the jet carrying a conslant current I so that a
stationary deflection of the jet is produced. As seen from
() in the precediﬁg paragraph, the said deflection is given by

) 1 I o
(1) sin@, = 10 m 1)2S H(x) dx,

L1

while with a homogeneous field of extension L, it would be
. 1 IH
(2) smf}d:ﬁ-m- a-

Equalizing (1) and (2) and taking H to indicate the
maximum-value of the actual field we find for the effective
field-length L, with a direct current through the jet

1\
(3) L,= FIS H (x) dx.

L1

If sin@, taken from (2) is introduced in (7) of the
preceding paragraph we find

L Sln;/2

4 inf = sing, —°-—0>
4) sin@, = sin T, =
2

>

from which it is seen that the amplitude with an altern-
ating current is no longer identical with the stationary de-

flection produced by a direct current equal to the maximum-
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value of the alternating current as in the case with a short
homogeneous field. In-calculating sinf, we have to mul-

sin ye%
tiply sin 6, with two factors, of which the one —

7T
735
originates from the field not being a laminar field while

L
the other fe is due to the field not being homogeneous.
d

20490

9350

appreciably different from the effective field-length with a wave-
L, 3.00

In the case of fig. 23 we find L; = = 3.15 cm, thus

length of 13.3 em, the [factor I being == = 0.952. With the
d 3.15
sin ¢ z
e
same field and wave-length 2 = 0'§51 = (0.919 so that
y 7 0.709
€2

sin 8, = 0.952-0.919-sin 6; = 0.875 sin 6,,.

10. Damping of the Wave.

The theories stated above have all been based on the
assumption that the several particles of the jet are inde-
pendent of each other in their motion. Now, actually two
neighbouring elements do influence each other and the in-
fluence may probably be conceived in the way illustrated
in fig. 25. Here the original jet is considered as made up
of disks. When a wave is formed, these disks are displaced
with regard to each other. Thus the viscosity 4 of the
fluid comes into action and will cause the amplitude to
be somewhat smaller than predicted by the elementary
theories above.

The wave considered in fig. 25 is of the rectangular
type. indicated in chapter I, and we shall here confine our-
selves to that type of wave. We may consider three adjacent
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T T R T A

m\.
o FEH T

Fig. 25. Damping of Jet-Wave.

elements 1, 2, 3 of which 2 passes the laminar field of
extension dl at the moment #, at which the alternating

current producing the wave is
(D i= Isinwmi,.
In the field the element in question obtains a velocity

perpendicular to the original direction of the jet given by

1 HL
(2) % = 1o oS0 dl-sin wiy,
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where ¢ stands for the density of the liquid while S is the
area of the cross-section of the jet. Outside the field the
element 2 is acted on by tangential forces in the surfaces
of separation between 2 and the adjacent elements 1 and 3.
The force originating from 1 may be written

K s-
(3) : =S
and from the element 3
dv d (du \

— ¥y ®yy

0 E+4K = ”S[dx + dx)dm]
The resultant force is thus
d® v,

(5) AK = 38" e dx.

We now take {, as the independent variable instead of
x noting that

(6) dU’J — ﬁg . f!io, — _l . glﬁ
dr  dl, dx o dlh
and thus
i} dzvy 1 dzuy
@ de? 0 dfl -
From (2) it follows that
d*v 1 HI
Y — .22 gl sin
(8) e 10 gSv dl-@® sinwt,.
Hence
1 HI .
(9) /IK:—Eq-ﬁ-dl-w‘Z-Slnwl‘(,-dx.

The motion produced by «#K is determined by

' 1 1 . -
(10) m% = —~i'6¢/-ﬁ-dl-w“~smwz‘0
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from which
1 HI . 2
(11) y:—TE%;E—ﬂmlmmM¢§+qﬁ+%,
<, and c, being arbitrary constants. Their values are de-

rived from the conditions

y =0 and (cf?t = v, at the moment ¢ = {,
from which
= 1.2 ﬂ dl-®®-sin t; +
0 10 m o0®
a2 1. H “dl-sinwf
10 ¢So @
_ 1 ¢ HI 2
a5 =10 m o0’ -dl-w?sin w i, 5
1 g HI o L HL o
0 m o0 dl-w®-sinmty t; 10 o Sv di-sinwi; ),
which introduced in (11) give
1 H] x no®
(14) =15 (t UMI 2903:5]
it being noted that x = v ({—1t,),
H
r . — . l- 3 - ] 1 3 b
Now 10 mo dl-x is the amplitude y  predicted by

the elementary theory (in the case of small amplitudes).
The actual amplitude may be written

- 1 HI
(15) ¥y=1I1

~dl-x,

0 mp®

where f is termed the inverse damping factor. It is less
than 1 and by (14) may be written

2o

(1)2
i 4
U:i

e

(16) f=1—4% x=1—

0r

cw| IS

s
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17) f= 1—2n2V'%:1-—2n2V'T'

=8
=

v = % being the dynamical viscosity of the liquid.
O})Viously the theory set forth above is based on the
supposition of small damping in that E:zg in (5) is derived
from the expression (2) for the lateral velocity obtained
in the field. It is thus assumed that the lalter velocity is
only altered by a very small amount by the damping forces.
With the mercury jet-waves employed in jet-wave commu-
tators the said assumption is as a rule justified and (17)
should accordingly in the main represent the relation be-
tween the damping and the various quantilies on which

it may depend. Considering a mercury-wave, we have

v = 0.00116 (at 18 Centigrades). Let 1—:

L = 0.685-107%, 1. .

v
very small compared to 1. Practically no damping should

=1,.A=6.cm and

v = 600 cm per sec. then 27"y -

thus be expected. As a matter of fact the damping in a
case like that considered is so small that it is difficult to
measure it, and therefore also to test the theory in order
to see whether the conception of fig. 25 holds good, or
whether one is justified in using for 5 (or ») the value
corresponding to a laminar flow of the liquid. Obviously
the theory now indicated does noi take all forces into
account. Thus also the surface-tension will undoubtedly
give rise to damping. We shall not, however, go further
into the problem of the said damping, it being proposed
to subject the whole question to a special experimental
investigation.

Provided, however, that the expression (17) holds good
in the main, information of considerable interest may be

Vidensk. Selsk. Math.-fys. Medd, IX, 2. 5
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derived from it. In the first place it is seen that the damp-
ing is independent of the diameter of the jet, a fact which
is easily understood, for according to (5) the damping
force acting on an element of the wave is proportional to
the area S of the cross-section, but the mass of the e]emént
is proportional to the same quantity, and so the motion
becomes independent of S. Furthermore it is seen that the

damping observed at a distance which, measured in wave-

lengths, has a definite value (% constant), is inversely as 4%,

The damping thus probably increases very markedly with
decreasing 4 or, with constant velocity v, with increasing
frequency. Finally the expressions (16) and (17) predict a
damping for water which is ab. 10 times greater than for
mercury, v heing ab. 10 times less for the latter liguid than
for the former,
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CHAPTER III
Particular Properties of the Jet-Wave.

1. Slope and Cross-Sectlion. Rectangular Jet-Wave Type.
In the present cﬁapter
we shall consider a series
of special properties of the
rectangular and the circular
jet-waves, discussed above.
The rectangular type may

be represented by ‘
1) yg= axsinw(z‘—£>

D

= qasin (ot —px),

e indicating tangens to the
angle 0> fig. 26. Fig. 26. Jet-Wave, rectangular Type.
The slope of an element :
ds of the wave against the wx-axis is determined by

dy
2 e = —2-
@ lge dx

or from (1) by
3) tge = esin (wl—px) —pox cos (o t—px).

The slope in a certain point x, y is found from (3)
by first determining by means of (1) the moment ¢ at

which the wave passes the said point. The slope in
5*
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the x-axis is of special interest. For points of the latter

y =0 i e
(4) sin(wt—px) =0 and (5) cos(wi—px) = +£1.

Hence
(6) lge = +pax = T waf,

A standing for ‘Z‘ .
)

The element ds of the wave. must contain the same
amount of liquid as the element dx_of the original jet, dx
being the projection of ds on the x-axis. If therefore S,
indicates the area of the cross-section of the original jet
and § the corresponding quantity of the element ds, then

(7) S-ds = S, dx
from which
S
® = o
_ l/ dx
Hence the cross-section of the wave in the x-axis is
(9) S— S

and the diameter
(10) d 4

- %/1 + =2 ag@ ’

d, being the diameter of the original jet.
For « = 05, 3 = 1.8, (6) gives fge¢ = 2.83, ¢ = 70°30’, while,

from (9) S = ﬁ = 0.333-Sp and ¢ = 0.577 dy.

2, 'Slope and Cross-section. Circular Wave-type.

A wave of the circular type may generally be represented by

. , . oo\ . _
(1) sin@ = sinf, sinw (l — ;) = sin @, sin (wt—pr).
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From fig. 27 we see that the slope of an element ds
towards the radius-vector r is determined by

rdé
2 =22
(2) tge = —
Hence from (1)
sinf,, re ;
(3) lge = — v (wt—pur).

Again the slope in a
given point r, 6 is found by
eliminating ¢ from (1) and
(3). For points in the axis
of the original jet, 8 = 0,

(4) sin(wt—ur) =0
and

(5) cos(wt—pry = +1
so that

e

tge = Fsinb_ -
(6) g + mop ‘
= F z8sin gm =F u8a’, Fig. 27. Jet-Wave, circular Type.

2
angular wave is thus that « = fg 4, is replaced by o’ = sin g, .

if 8= @ and ¢’ = sin 6.,. The diﬁerence from the rect-

With the circular jet-wave the element ds of the wave
contains the same volume of liquid as the element dr of

the original jet, dr being now the circular projection of ds.

Therefore

) Sds = S,dr

or i

® s= 2

V41;<£L>2 Vit
"\ dr \

thus for points of the axis
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Sy
( ) V1+7T2a'l2)82
and
10) d = d_

For =18, a = ig6, = 05 i. e. &' = sin¢,, = 0447 we find
from (6) tge = 2.53, ¢ = 68°27" and from (8) and (10) S = 0.367 S,
and d = 0.606 dy. Under the same conditions the rectangular
wave is thus a little more horizontal (vertical jet assumed) than
the circular wave.

3. Electrical Resistance of the Wave. Rectangular Type.
Of very great importance in certain applications (jet-
wave commutators) is the question of the ratio of the re-
sistance of the wave and the resistance of the corresponding
piece of the original jet. We start with the rectangular wave

)} y = axshyg(f—%) = gxsin (wi—px).

The resistance of the wave from its starting-point x =0
to the plane x = [, fig. 26, is determined by

@) R— glk. ds _ LSZ (i"i)zdm
Jo Top T oo dx
4 40
as
(3) & dx = d*ds.
0

In (2) k indicates the specific resistance of the liquid.
The resistance in the length I of the original jet is

@ R, = &

z

The ratio between the resistances of the undulating
and non-undulating jet is thus
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! of
_R I\ fdsV L 1\ [(dy¥
() F= R, ISO<d.r> dx = HISO(dx) dx

or

1
_ L\ [dy Vo
© 1=\ (9 g
From (1)
dy ]
) e asin{(wt—px) —pexcos (wt—upx),
hence

<g%)d = ¢2sin® (wt—px)+ u?e?x?cos® (wt—px)
—2ue®x sin (wt—px) cos (wt—ux)

(® _ 21— cos2(wt—pux)
2

1+cos2(wt—px)
5 .

+ pP e’

71

—welxsin2 (wt—px)

The average value taken over the time of FF—1 is found

by carrying out the integration indicated in (6) for those
members of (8) only which do not contain trigonometric
functions as the latter members are bound lo disappear,

being periodic functions of time with a frequency twice
that of the jet-wave so that the average taken over a period
of the latter is zero. Hence the average value of F—1 is

simply
(9) F—1 =

A

s with [ = 8-

or with ,82
(10) F—1 = —-—+

it heing noted that u = —.

The variations in the- resistance of the jet-wave

are
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found by carrying oul the integration (6) for the periodic
members of (8). The result may be written:

A(F—1)

9o
- [Sm&bl‘cos2(mi—,wl)
41 wl
+/.blsin2((:)[“‘11,1)—}—(‘,052(&)[——-‘41,1)}
(11) = — N I(SIZIZ'& ost8—naBsin2 w8+ cos?2 nﬂ) cos2mi

- <§m ”’8 inng+ 7B cos2x8 -+ sm 2 m@) sin 2 wt}
nf

2 L2 N
= — % (Asin2 wf+Bc0s2wt)=—%l/A2—|—stin Quit+e)

B . - -
where fgg = 1 The amplitude of the periodic variations

of double frequency is

2
« a2 3
| 41/4 +B
‘ o /sm 7 . sin 78
(12) :El < Tﬂ> (n8)?+1—2sin? nﬂ—i—.?)—ﬂ—cos;rﬂ
- %1/(511?) +C°S2nﬁ+‘)sm2”ﬂ+o A)°.

‘With increasing extension g of the wave the latter ex-

062' 2/92

pression tends to Z-n,@ or to

—. Hence for large va-

478
lues of 8 F—1 may be expressed by
o« B2 3 1 \ o
(13) F"“l——*G 1—5 78111(2(0t+(j)) T_'2“

from which it is again seen that F—1 with increasing 8 tends
to a value independent of time, namely the average value
— 2 2 2

1= 'iﬂ —i—* In tab. I the function

S
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zﬂzwz 2,2

=14 —— —|—% *VAZTBZSIH(2(ul‘+g))

is illustrated through numerical values of the constant and
variable part, and of their ratio. The latter ratio measures
the relative vartations .of the resistance of the jet-wave con-
sidered. It is seen that with ¢ = 0.5 and 8 = 2 the resi-
stance of the wave varies with an amplitude of ab. 14 per
cent. of the average resistance. Obviously, in the case con-
sidered, the relative amplitude of the resistance has a max-
imum for some value between A =2 and 8 = 10.

Table 1.
1 ‘ 2, [
o -

B - VA * N ok 1./2.

* T+ T
0.5 0.0856 : 1.228 0.070
1.0 0.206 “ 1.536 0.134
1.5 0.288 V 2.052 0.140
2.0 0.398 2.775 0.144
10.0 3.93 42.195 0.093

4. Resistance of Wave with constant Amplitude.

For the sake of completeness a formula for the resis-
tance of a simple sine-shaped wave of constant amplitude
may be derived. The wave may be represented by

(1) .y = yysin(wt—px)
y Yo B
from which
ds\? 2 2 2
(2) ) = 1+ yiplcos? (wt—px).

Hence from (5) in the preceding paragraph
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Ry
F—1 =20 cos? (wit—px) do

I
(3) b
= Yo Yol (9 (wl—ul) —sin 2wi].
2 4l

The average value of F—1 over the time is thus

U 2,2
4)  Fei=E =R

L
where y = A.

2)

The expression (3) may be written

2 2 .3
(39 F—1= "—02‘1 {1+“?T'I‘”cos(2mt_—m) :

The second member in the brackels is maximum or

minimum at the moments determined by

e

(5) t:p—;_—'g-Tzﬂf—{—piwherep=0,1,2,...

l .
and where 8 = s=+—. The member is zero at the moments
Lig

2
(6) f:—2 T:,BI—%— E\Vhere =1,2,3,...
1 1 7Pg P

For special values of I, resp. 8, F—1 is independent
of time, thus for the values given by sinpl = 0 (except
wl=0) i. e. when
(7 wl=p-m, (p=1,2,3,...)
thus for

(7 B=p,(p=1,2,3,..)
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The greatest variations in F—1 are obtained when !
is determined by

) tgul = lgm = m

that is to say, approximately when

() L Br=pL.(p=38,5,7)
thus for

— P
(10) 8= CR

Fig. 28 illustrates some of the relations indicated.

¥

Li, Iy no variations in resislance.
ly, |y marimum of pariation.

Fig. 28. Jet-Wave, constant Amplitude. .

5. Resistance of a Jet-Wave of circular Type.

We proceed to consider the resistance of a wave of the
type in fig. 27. In this wave the element ds contains, as
indicated, the same amount of liquid as the circular pro-
jection dr of the original jet. Hence the ratio of the resis-
tance of the wave out to a circle with radius I, and the
resistance of the length ! of the original jet is now, com-
pare paragraph 3, l

: R 1\ /ds\?
W F=g = 1§ <d> dr

/0
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or as \ .
@ ) =)
, (", dey

(3) I«~1~ISOI' (ﬁ) - dr.
The wave may be represented by

1) sinf = «'sin(wt—wr).
From (4) _

@ ) e
Thus

!
(6) F—1 = %g pra’®r* cos® (wt—ur) [1 — o' sin® (0 f~—-,wr)]71 dr.
- e
By developing [1— e« sin® (w!{— wr)| ™" in series (6)
may be written
!

PP\ o7
F—1 = — r?1+ea?sin?®(oi—pur) + «*sin* (wt—ur)
™ oo 5 -
+ o sin® (wt—pr) 4+ sin®(wt—pr)—sin(w t—pr)
—&2sin* (o t—pr)—a*sin® (w t —pr)—a'Ssin® (ot —ur) | dr.

After this the powers of the trigonometric functions
are expressed by trigonometric functions of multiples of
(wt—pr) by means of the following formulae.

sin?z = %(i—cos?z)
.1
sin®*z = —S-(cos4z*4cos 2z+3)

—é(cos6z—ﬁcos4z—l—15 cos 2z—10)

_ U
T 128

sin®z =

sin® z

(cos8z—8cos6z+28cosdz—56cos2z+35).
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If, however, as is generally the case, merely the average
value F—1 over the time is required, it suffices to carry
out the integration with regard to those members of (2)
which do not depend on trigonometric functions. In thls
way we find

r4 5 2
R BN I ST R S R
F—1 [a +2+8“ +16a 2 8%

{
__E f6,_3,57 '8 2_1§ 2 1
16% 128" }‘w 1),
(8 J
_ wle '212<1+ R )
= 8“ TeL”
/9 ﬂZ ( ,2
o 14+ + v

As an example we may consider a jet-wave for which
= 1tgh = 05 or o =sing = 0.447. With 8 =2 we
find from (8) F—1 = 1.74 while for a rectangular wave
the expression (10) paragraph 3 gives 1.72. There is thus
only a slight difference between the two types of waves

with regard to resistance.

A good many applications may. be made of the dependency
between the resistance of a jet-wave and the quantities on which
the said resistance depends. The general characler of the said
applications may be thus elucidated. The resistance of the wave
oul to a given distance ! is determined by

{1) R = F-lr,

r being the resistance of one cm of the original jet. On the other
hand we have approximately
'? @

2) F= 14—

or roughly, if the second member is tolerably great compared to 1,

@ 7 a/zﬂzn‘z-
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Now g is, with a constant value of I, proportional to the [re-

quency n = T and so it is seen from (1) and (3) that
AR Adn

(4 —_ = —_—

) R 2 n

i.e.a certain percentage change in the frequency gives rise to double
the percentage change in resistance. A change in frequency may
thus be measured through the corresponding change in resistance.
(Jet-wave frequencymeter). With constant frequency and
B constant field a change in the cur-
"l!" rent producing the jet will produce
M double the percentage change in the
resistance as «’ is proportional to
-U the said current. A more complex
| T system is indicated in fig. 29. The
| £ wave is produced through the inter-
action between a constant alternating
J Jf yos current, supplied by the source V,,
and a constant field produced by
! z the magnet M. The latter has two
! £ windings of which the one may he
] fed from the storage cell or baltery
1 B, while the other may be inserted
in a d. c. circuit I. Now if the cur-
rent in the lalter circuit is raised,
this will, according to the direction ol the current in the winding
on the magnet, give rise either to an increase or a decrease of
the resistance in the wave between the two electrodes E; and Es.
So by the current in I we are able to control the resistance of
another circuit II. Obviously a good many combinations of the
kind in fig. 29 are possible. It may be noted that the resistance
between two electrodes such as E; and E; is given by

¥

BN
)

Fig. 29. Control of Resistance
through magnetising Current.

(5) R = rly-F(g) — rly F(31)

thus approximately by

3
A

(6) R=r{lb—L) 4+ r R (Bt —p3).
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6. Resistance between an Electrode in the Axis of the Wave
and an Electrode perpendicular to the said Axis.

In fig. 30a E and E, represent two adjacent electrodes,
the one in the axis of the jet-wave, J, the other perpen-
dicular to the said axis. The jet-wave will connect £ and
E, during the passage of every second half-wave. We shall

T' L4
"""" PPN

P A
Z | e ]

Fig. 30a—Db. Resistance of Wedge-Commutator.

endeavour to derive a formula for the average resistance
taken over the time of passage of the part of the wave
between E and E,, the problem being of considerable in-
terest in connection with cerlain practical applications of
the wave. (Resistance of the Wedge Commutator).

In order to simplify the problem we shall replace the
wave in fig. 30a by a simple sine-shaped wave of constant
amplitude, J;, fig. 30b. In the position shown the said wave
may be represented by

(1) y =y, sinpx.
The resistance of the element ds may be written, com-
pare paragraph 3,
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X,

K dy \?
(2) dR — S—O[1+<%> d

S, indicating the area of the cross-section of the original
jet. From (1) we get

(3) dR = .—S]i(l + y? P cos® p) de.
0

Thus the resistance from the origin of the wave a, to
the abscissa x is

€T
R = SﬁS (1442 p® cos® ux) dx
0 oo

@ k- k k 'J
* Jm ) v m
5, Thg, T2 ¥y,

sin 2ux).

In order to obtain the average value in question we
now put x = pf and form the integral

2 2

Jm L yln ‘Ll/
" dp

,
) R-— iﬂg

(Z) SO 0
2

This is the same as to assume that the electrode E,

( t+ sin 2 vi) dt.

moves with the velocity of the jet upwards while the wave
is kept in the position shown in fig. 30b. The last mem-
ber in the brackets does not contribute to R. Hence

') ]l 2* ym )
e pu
(6) r= S, ) (1 2
Thus, if F noxf;' indicates the ratio of R and the resi-
A A
stance ) of the length 5 of the original jet, we have
0 N =

_ L1 ¥
(f) I«~2(1+ 5 )
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o ! «
Introducing the notations % = o and le = # and re-
membering that u = _;—c, we may write <§>
1 et B2
3 F= 5(1 + 2 >

In the application of (8) to the actnal wave in fig. 30a
the question is what value should be ascribed to 3. It has
been found that good agreement between observed and cal-
culated values is established if A 1is  determined as

L 1 1
—BO 4’

o

B, being the distance from the starting-point O of the wave

(9) 8=

to the electrode E, measured in half-wave-lengths. Thus
for a wave & = 0.4, 8 = 1.8, d = 4.20 mm (diameter of
jet) the resistance here considered was found by measure-
ment to be 5.0 milli-ohm, while from (8) and (9) was
found 5.4 milli-ohm. The agreement was quite sufficient
for the application. Actually the wave was not of the rect-
angular type indicated in fig. 30a but of the circular type.
On the other hand, the electrode E, was approximalely
bent according to a circle with its centre in O. Judging
from the comparison at the end of paragraph 5, it seems
justifiable to assume that if (8) and (9) hold good for a
rectangular wave in combinalion with a straight electrode
E, as in fig. 30a, they may also be used in the case of

the actual combination described.

7. Temperature—Gradiént in a Jet carrying an electric Current.

- In a jet carrying an electric current the temperature
will rise from the point at which the current is introduced,

Vidensk. Selsk, Math.-fys. Medd. IX, 2. 6
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say the nozzle, in the direction of the flow. An element
. Ax of the jet will commence heating at the moment it
enters the current-carrying parl of the jet, and it will go
on heating as long as it is moving inside the said part. Its
temperature must therefore increase steadily which means
that the temperature of the jet must rise in the direction
of the motion. The amount of heat dQ stored up in the
element #x during the time df is

dx, dt (g. cal),

1y - dQ = 0239k 5

I being the current in Amp., k& the specific resistance of
the liquid in Ohm per cm/em® and S the area of the
cross-section of the jet in em® The corresponding rise of
temperature dJ is accordingly given by

(2) coS-Ax-d9 = 0.239 Izk-//?x dt,

¢ being the specific heat and ¢ the density of the liquid.
During the interval df the jet particle proceeds by the dis-
tance dx where

(3) dx = vdl,

v being the velocity of the jet in cm/sec. Hence the rise

of temperature along a piece dx of the jet is

4) (13“0239£-£-1
19 = 02397 g2 dx
from which follows that the temperature gradient (rise per
cm) is
- : koI
(3) & = 0.239 co S

With a mercury jet k = 0.958-107%, ¢ = 0.033, ¢ = 13.6
from which
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: s I? (Centigrade/cm
9 = 5.10-105 — ;
® 5.10-10 vS? Amp., cm/sec, cm?),

The expression (5) is derived without the conductivity
and the radiation of heat being taken into account. Estimates
of the effect of the said factors show that in most cases
they are practically insigiﬁﬁcant. In a test of the theory
the liquid from the jet was collected in a simple calori-
meter and its temperature measured. With a mercury jel
of 1.5 mm, a velocity of 253 cm/sec and a cwrent of
20 Amp., the two values 0.213 and 0.232 centigrades were
found for % while the value 0.257 centigrades is derived
from (6). The difference between the observed and calcul-
ated values may easily be explained by the great difficulties
of the measurement.

8. Heating of a Jet-Wave of rectangular Type.

In the most important application of the jet-wave, that
of the jet-wave commutator, heavy currents are transmitted
through the wave and it is
thus the heating of the same
which is of interest. We
shall consider a particle s,
fig. 31, which originates
from a length /x of the
jet. The said particle is

emitted from the centre O
of the field at the moment
f, in the direction 4. At the

moment #it has reached the

plane « as #s. We shall as-

sume the wave to have been gy 37 yeating of a Jet-Wave,

produced by a current rectangular Type.
6:1:



84 Nr. 2. Jurn. HARTMANN:

(1) i = [)sinwl.

The direction § of the path of the particle in question
is, compare chapt. I, delermined by

(2) tgh = asinwt,,

where o« = g6 . The length .#s of the particle is deter-
mined by

(3) As® = A2+ Ay,

where the connection between +x and .7y is given by the
equation of the wave at the moment /. The latter is

€3] Yy = axsinw <tm%>.

Hence

(B) Ay = {asi11m<t—£>—a-@cosw<l~ﬁ)} Adx

v v
or, as
(6) x=v(—t)

@) Ay = [a sinwt0~—o¢%c—ocoswio] Azx.
Inserting in (3) we find
2
() A = [1+<o¢sinwlo—ax;0(:oswt0>ldxz.

The resistance of /s is
k

) AR = éds,

where the area of the cross-section § of #s is determined by
(10) Sds = Sydzx,
Sy being the area of cross-section of the original jet. Thus

3 2
k st = ],—‘[1+<a sin @l — a%fl—) coswt0> } dx.
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The amount of heat dQ accumulated in /s during the
. dx .
time di = - s
dQ = 0.239I*4R-dt
(12) 1%k

2
= 0.239 — [1—]—(0& sinwfo—«ax—wcoswl‘o) }//x'd/x
S 7 v

and the corresponding rise of temperature d-9 is deter-
mined by

(13) coSgdx-d9 = dQ
from which

I*f . T 2
(14) d&% = 0'239'583‘7) [1 + (a sin o b, — o=~ Cos @ t0> J dx.

The rise of temperature obtained during the passage
from the centre of the field to the distance x is found by
integration of (14) from 0 to x. The result is

0.239 12k

<

s— |+ xe®sin? wiy— 2= a?sin wf, cos wi,
coSyv v

(15) 2 2
3007 @

1
+ 3 x e cos? w 1‘0} .

For the particle emitted at the moment ¢, = 0, thus the
particle travelling along the axis of the wave, we get

2 2
[ 4 3

O

Here the first member represents the rise of temperature
4, in a non-undulating jet of length x. To this rise is
added an amount /% which, measured in relation to %, is

0239I%k
~ ceSjv

(16) x+§

/I{} — anQZﬂZ’

9, 3

Qa7)

B standing for .

&)

If for instance « = 0.5, # = 2 then
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2

13 . A

i() = % = 3.3. The rise of temperature along the axis is
0

thus more than four times that in the original jet carrying

the same current.

For the particle travelling along the path of greatest

deviation, thus corresponding to wf, = -, is found

2
L 02390% . |, . 02390k =
18 4= coSty ) = coSiv cos®d, '

One would expect to find a rise of temperature equal

to that in a straight jet of length ﬁ?—, velocity ig,

m m
and area of cross-section Sycosé, . Actually the formula gives

‘the value anticipated.

The rise of temperature in a piece of the wave between
two planes perpendicular to the axis of the wave at the
distances x; and x, from the origin of the said wave, is
of course caleulated as the difference between the values found

for % from the formula above by inserting x, and x; for. x.

9. Heating of a Wave of circular Type.
Finally we shall consider the heating of a wave of the
circular type, fig. 32. Again we shall imagine the wave to
be produced by a current

(1) i = I,sin wt{

and we shall fix our attention on a particle .75 originating
from a member 4r of the non-undulating jet. The said
particle may pass the cenire of the field at the moment {,.
It will then be sent out in a direction given by

(2) siné = sinf, -sinwif;.
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The length #s of the wave-element formed by the par-
ticle at the moment # at the distance r from the origin of

the wave is determined by
(3) A8 = rPA4*+ 41,

The connection between 48 and #r is found from the

equation of the wave
4) sinf = sind,_ sinw (t——~ 5)

which gives
cosf v 1
coswly ® sin 8.,

A8 = Ad0

) Adr = —

it being noted that

®) r=rov({—t).
From(3)and (5)is found

(1) 4s* =@+ A a0

The resistance in /s is

A8
(8) Z/R“—ILE‘,

where

¢)) Sds = SyAr.

From (7), (8) and (9)  Fig 32. Heating of a Jet-Wave,
is derived circular Type.

(10) AR = —— (1*+ A%) 16.

During the motion through the distance dr, taking the
. dr . . .
time df = g quantity of heat dQ is stored up in the
element /s, where

11) dQ = 0.239 I* 4 R-

dr
o
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Introducing for #R (10) and identifying dQ with.

(12) dQ = coSydr-d9
we get

‘ 0.239 1%k < >
(13) a9 === s\

The total rise of the temperature during the passage of
the particle from the origin of the wave out to the dis-

tance r thus becomes

939 I* 2
(14) g = 2289k <1+§§@>

COSZU

Indicating by %, the rise of temperature in a length !
of the original jet we see from (14) that ¢ = %, + 4% where

TPRRE 0 R LT IO
9, B3 A% 3 ™

where it should be noted that 6 and {, are interconnecled
through (2). For t, =0, ¢ = 0, we get

49 Latrisin?e, 1
(18) 79;—3*@2 =3

7.52 a/Z/SZ ,

2

&

which should be compared with (17) in the preceding para-

v

graph. With {, = 1 the rise of lemperature in the outermost

particle of the wave is found. It is seen that 4% = 0, that
is to say, the said particle is heated as much as a par-
ticle of the original jet would be. This result might be anti-
cipated since the ountermost particle does not suffer any
deformation.

Again the heating of the wave between two -concentric
electrodes with radii r, and r; is found as the difference
between the values «95 and %, derived from (14) by intro-

ducing r, and ry for r.
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APPENDIX
Experimental Test of the Theory of the Jet-Wave.
1. The Wave-Length.

According to the theory set forth above the length of
a half-wave should, subject to certain conditions, be deter-
mined by ; r

: v

(1) 5 = U5 = 2?,
where T is the period and p the frequency of the altern-
ating current used in the production of the wave, while v
is the velocity of the jet. In order to test (1) a fairly large
number of instantaneous pictures of the jet-wave was pro-
duced. Fig. 15 in chapt. II originates from this investigation.
The wave-picture is seen against a plate of frosted glass
on which the axis of the wave and the boundaries of the
wave-space corresponding to the angular alhplitude e=1g0
= 0.5 are drawn. The scale on the axis indicates the dis-
tance from the centre of the field in cm, thus the distance

from the starting-point of the wave.

Table I.
hy = Distance from Surface of Mercury in Reservoir to the Jet-Hole.
dy = Diameter of Jet-Hole.
x, = Distance from Jet-Hole to Number n Zero-Point of the Wave-
Picture.
x + =
h o= hy+ L“z—ﬁ
A T 2 2
(E)C = oy Ay T Ay
(g) = Observed Half-Wave.
0

/3 = Factor reducing the Scale to the Plane of the Wave.



1. 2. 3. 4. GR G. 1. 8. 9. 10. 11. 12. | 13. 14.
A
Plate @ Ty gy, nV2gh 4 alian lray | \2/,
No. | o | o 5o 1 Ty Ty o T I ) Iy ()) (-5)0 (‘
. \2>c
cm. |mm.|sec.” 1 cm. em. cm. cm. em. cm. cm. | em. | em
55 12280 1 6 50.0 | 0.991 5.57 9.13 711 237.1 6.82 —0.04 —+ 0‘10[ 6.88 | 7.04)1.022
| 12.68 16.15 6.94 244.2 6.93 —0.04 0 , G.89 | 6.8710.997
19.62 23.22 7.20 251.2 7.02 —0.04 0 6.98|7.13]1.020
26.82
(0.6 per cent.) 1.018
66 |228.0 1 4.4 51,0 | 0.991 6.16 9.61 6.89 237.6 G.69 — (.02 - 0.15 6.82 | 6.82 | 1.000
13.05 16.60 7.09 244.6 6.80 — (.02 0 6.78 | 7.021.034
20.14 23.65 7.02 251.7 6.89 —0.02 0 6.87 16.95|1.011
27.16
(0.3 per cent.) 1.015
69 f228.0 | 51 51.0 | 0.991 4.90 8.30 6.79 236.3 6.68 — 0.03 -4 0.14] 6.79 1 6.72 | 0.990
11.69 15.12 6.86 243.1 6.78 ~—0.03 0 6.75|6.79 {1.005
18.55 22.02 6.93 250.0 6.87 —0.08 0 6.84 | 6.86 | 1.002
25.48
(0.5 per cent.) 0.999
136 |145.0 | & 50.0 | 0.962 4.38 7.27 5.77 152.3 5.47 — 0.01 —+ 0.07} 5.53 | 5.55 | 1.002
10.15 13.10 5.90 158.1 5.58 — 0.01 0 5.57 | 5.67 | 1.017
16.05

(092 ner cent.)

1.009

06
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137 805 | 5 50.1 | 0.962 3.50 5.73 4.46 86.2 4.10 — 0 -+ 0.05]4.15 | 4.29 | 1.033
7.96 10.21 4.50 90.7 4.21 —0 0 4.2114.33|1.028
12.46 14.76 4.59 95.3 4.31 —0 0 4.3114.41]1.023
17.05 19.37 4.65 99.9 4.42 — 0 0 4.42 (4,47 |1.011

21.70
(<Z 0.1 per cent.) 1.024
145al 595 | 5 50.9 | 0.962 4.59 6.53 3.87 66.0 3.53 —0 -+ 0.04{3.57 [ 8.72| 1.042
’ - 8.46 10.42 3.91 69.9 3.64 —0 0 3.64 [ 3.76 | 1.032
12.37 14.42 4.10 73.9 3.74 —0 0 3.7413.94 [ 1.053
16.47 (<C 0.1 per cent.) 1.042
145h) 595 | 5 50.9 | 0.962 3.39 5.39 4.00 64.9 3.50 —0 -+ 0.04| 8.54 | 3.84 | 1.085
7.39 9.38 3.98 68.9 3.61 —0 0 3.61|3.821.038
11.37 13.37 3.99 72.9 3.71 — 0 0 3.71 | 3.83 | 1.032
15.36 (<C 0.1 per cent.) 1.058
144 a] 595 | 5 50.9 | 0.962 5.32 7.25 3.86 66.8 3.55 — 0 40 3.655 [3.71 | 1.045
9.18 11.11 3.85 70.6 3.66 —0 0 3.66 13.70 | 1.011
13.03 15.07 4.07 74.6 3.76 —0 0 3.7613.911.039
17.10 19.18 4.16 78.7 3.86 —90 0 3.86 14.00)1.036

21.26 '

(< 0.1 per cent.) 1.033
144b) 595 | 5 50.9 | 0.962 3.80 5.26 3.92 64.8 3.50 —0 + 0 3.50 | 3.77 | 1.076
(6.72) 9.18 3.92 68.7 3.61 —0 0 3.613.7711.043
11.64 13.61 3.93 73.1 3.72 —0 0 3.72 | 3.78 1 1.016
15.57 17.62 4.09 77.1 3.82 —{) 0 3.8213.93 1028

19.66
(<C 0.1 per cent.) 1.041

) Cylindrical on the outmost 4 mm. of the bore,

PABM-IOL 9L,

16
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In tab. I half-waves found from the photographs are
compared with values of -;— derived from (1). The agreement
is fairly good. The observed wave-length seems, however,
to be slightly in excess of the wave calculated from (1).
The fact is explained below by the influence of the surface-
tension on the velocity of the wave. In the table certain
corrections are indicated in columns 10 and 11. They will
be understood from the following discussion of the test.

In the latter the half-wave read on the scale of the
photographic plate is of course corrected for the small
distance from the wave to the plate. It is the wave corrected
in this way which is given in column 13. The velocity of
the jet is determined by means of Torricelli’s expression
(2) v = }2gh.

In (2) the influence of the surface-tension on the velo-
city of the jet proper is neglected, which, however, is justi-
fiable™. Neither is the pressure-drop in the jet-pipe taken
into account. It may be found by means of the Osbhorne
Reynolds’ law of similarity, according to which the pressure-
drop h per cm of the pipe and measured in em liquid-
column is determined by
(3) h = ﬂ’? <ﬂ>’

v
where v is the velocity of the flow in the tube in cm/sec,
d the diameter of the pipe in cm, » the dynamic viscosity
of the liquid which for mercury is 0.00115 at 20 centigrades,
while finally f stands for the universal Osborne Reynolds’?

! On the Influence of the Surface-Tension on the Efflux of a Ligquid
in Jet-Form. Phys. Rev. Vol. XX, p. 728. 1922.

* Compare: A Comparison between the Flow of Water and Mercury
in Pipes etc. Memoires de ’Académie des Sciences et Lettres de Dane-
mark, Copenhague, 8™¢ Série, t. X, Nr. 5, 1926,



The Jet-Wave. 93

function of which a picture is given in fig. 33. By means
of the latter figure and (3) the pressure-drop in the jet-
pipe is calculaled, and so again the percentage correction
to be applied to the calculated wave-length. We shall
illustrate the determination of the correction by means of
Pl 55. With the latter the velocity of the jet just below
the jet-hole was }/2-981-228 — 668 cm/sec. The diameter
of the jet was very nearly 0.5 cm, the coefficient of con-
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Fig. 33. Osborne Reynolds® Function f(ﬂt~).

4

traction being 0.840. The internal diameter of the jet-pipe

2
was 1.9 ecm. The velocity v in the pipe is thus <(1)_s5)> 668

= 46 cm/sec. From this we find % = 76000, and from
the curve referred to above ]‘(UTd> = 0.0026, which again

gives the value 0.0117 em Hy for A.
The length of the pipe was ab. 226 cm from which

the total pressure-drop is found to be 2.65 cm Hg or
%-100 = 1.2 per cent. of the head. It means that the
velocity calculated from (2) must be reduced by 0.6 per
cent. and the same is trune for the wave-length. In tab. I

the corrections found in this way are stated in column 10

under the heading /ng.
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A similar correction due to the pressure-drop in the
jet-hole should furthermore be applied to the velocity and
the wave-length. The correction is in all probability small,
presumably below 1 per cent., judging from a special in-
vestigation. In the experiment PL 69 the bore was cylin-

) drical of a length of ab. 4 mm.
- {2/a
/ A The effect hereof is traced in the
L4 T &
{ 2 . .
Mﬂ’v: [0 small value of ¢, But in spite
/ A
\ <2 >
\ of the comparatively long bore
2 \ the said quantity does not differ
\ from the values corresponding to
v \ conical bores (55, 66) at the same
N head by more than ab. 1.5 per
w71 \\ cent.
g Lo 2o Jo
A Again it should be noted that
Fj

the theory of the jet-wave shows
Fig. 34. Correction for the
Distance to the Field. that the half-waves close to the

magnetic field should be sonle-

sl

what longer than v-é and the longer, the greater the ex-

tension of the field in the direction of the jet. The cor-

]

rection to be applied to 1)-—§may be taken from fig. 34.
The abscissa indicates the distance from the centre of the
field to the middle-point of the half-wave in question. The
ordinate means the ratio of the half-wave predicted by the

=

A
theory <2>a and the value 5 found as v'2£. The two curves
correspond to two values of the length y of the field.
The length is measured with the half-wave o5 s unit, and

strictly the length means the effective field-length which
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is a little different from the height of the pole-piece. In
tab. I the correction found from fig. 34 is stated under
/[fgi in column 11. The correction has obviously only bear-
ing on the half-wave nearest to the field.

If hereupon the ratio of the observed and the calculated
— and corrected — half-waves is formed (column 14),
values close to 1 are found especially with higher heads.
A systematic deviation, however, makes itself felt, the ob-
served half-wave being, as already stated, greater than that
calculated. There is some reason for believing that the
discrepancy may be explained by the effect of the surface-
tension on the velocity of the wave. It is known that a
disturbance will travel along a cord of a mass per cm m
and a tension P with a velocity

(4) _ b = l/%

Now in the case of a cylindrical jel, produced from a
liquid with the surface-tension € and the density ¢, P= Cnd
and m = 9'% d?, d being the diameter of the jet. Accordingly
a deformation should run out along a mercury jel with a

velocity

®) b= /2 =

C being 500 c. g. s. and ¢ = 13.55. If now the velocity n,
in the case of the jet-wave is simply added to the velocity
v of the jet, a half-wave should be anticipated which would

D
be longer than the theoretical one by 76-100 per cent.

(293
In tab. II the values of (7(‘)-100 are stated in column 4.
They should be compared with the values in column 5 which

. . A )
show how great is the percentage excess of <§> over <§> .
2/q ¢
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The two series of [igures run parallelly, from which the
conclusion may presumabiy be drawn that most of the
discrepancy considered is actually due to the surface-
tension. Obviously the correction for the latter would make
the calculated half-wave about 1 per cent. greater than the
observed. This remaining divergence may properly be ex-
plained by the pressure-drop in the jet-hole referred to
above. So there is some reason for believing that a more
exact test would prove the theory to hold good with a
very high degree of accuracy with respect lo its predictions

as to the wave-length.

Table I1.
1 2 3. 4 5
4
Plate v (E)
: 0
d ve | v (f)-loo T 1)100
| (5.
cm, cm./sec. cm./sec. p.c. p. c.
55 0.504 17 690 2.5 1.3
66 0.370 20 680 2.9 1.5
69 0.420 19 680 2.8 —0.1
136 _ — 550 3.5 0.9
137 — — 420 4.5 2.4
145a — — 390 4.9 4.2
145b — — 360 5.3 5.8
144 a — - 370 5.1 3.3
144 Db — — 370 5.1 4.1

2. The Amplitude of the Wave.

The approximate theory in Chapter II predicts for the
amplitude of the jet-wave a value given by

. 7T
siny, o

. 1 IH
) sing,, = 10 mot e .
7oy
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It was shown that the said theory was in good agree-

ment with the more exact theory for field-lengths up to

i and for amplitudes up to fy#é
test on the validity of (1) is now recorded.

., = 0.5. An experimental

The test was made with 6 commutators in a three-phase
series rectifier. The field-curves were known for the magnets
so that the effective field-lengths could be calculated. They
were in all cases 2.79 cm, while the height of the pole-
pieces was 2.30 cm. The half-wave-length was 5.90 em
derived from the head h = 177 cm by means of the formula
v = l/m and the frequency of the alternating current
which was 50.0. The mass m per cm of the jets was cal-
culated from the diameters d of the jets and from the
density of mercury which was assumed to be 13.40, corres-
ponding to a stationary temperature of 80 centigrades
of the mercury under normal operation of the rectifier.
The diameters d were again found from the diameters dy
of the bores, the coefficients of contraction being determined
for each of the bores by means of an experiment of efflux.
The velocity of the jels was, as indicated, assumed to be
that found from Torricelli’s law. Obviously if the actual
velocity is smaller than the velocity by one per cent., the
experiment of efflux will give a value for the mass in per
cm which is too small by one per cent., and the value for
m v* used in the test will be too high by one per cent.

The result of the test is given in table IIL

It is seen from the table that the observed values for
6, are found to be on an average 2 per cent. greater than
the values calculated from (1). The discrepancy could be
explained by an error of 2 per cent. in the assumed value
for v, due to friction in the jet-pipe and the nozzle. In all

-

Vidensk. Selsk. Math.-fys. Medd. IX, 2. /
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Table II1L

c U T O I 6. | 7. | 8. 9. | 10.
om-

mut. i . . .

No I, H dy x, siné,, |siné, [{g 6,, | 6, |siné, = 9.
7 | Amp.jGauss| cm. cal. cor. | ohs. | obs. | obs. 6.
1 103 | 4880 (|0.445(0.844| 0.349 | 0.358 | 0.399 {21°43"| 0.371 | 1.035
2 118 | 4450 |0.446]0.840| 0.367 | 0.376 | 0.418 | 22°42" 0.386‘ 1.030
3 114 | 4650 (0.444|0 855} 0.360 | 0.370]0.395{21°83"| 0.367  0.990
4 101 | 4995(0.450(0.826| 0.357 | 0.366 | 0.396 |21°36°| 0.368 | 1.005
5 114.51 4810 [0.451(0,836| 0.380 | 0.389 | 0.443 [23°54" 0.405 | 1.040
6 108 14790 (0.450(0.842| 0.352 | 0.361 | 0.390 |21°217| 0.364| 1.010

| 1.018

probability there is an error which is substantially of this
size. On the whole the expression (1) is seen to yield an
excellent means for the calculation of the amplitude or of

the current necessary for

the production of a wave
of given amplitude.’

A small correction is in-

dicated in column (6). The
expression (1) is based on
I the assumption that it takes

Fig. 35. Correction to Approximate the time % for any of the
Theory. particles of the wave to pass

the field. This, however, is not quite true. The outermost
particle of the wave will, inside the field, follow a path
which may approximately be considered a part of a circle
as indicated in fig. 35. It will travel in this path with the
velocity of the jet. Owing tg this fact the value of L, in

(1) should be increased by —=-100 per cent. or in the cases
Yy 5 100D

considered sin 6, cal. should be increased by the said
percentage amount.
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The correction may be derived as follows. From fig. 35 it
appears that

® | ¢= sinL ;
so that m
o
@ ¥ = L"'éin”(;m
and
@ ¢m—Le AL, 0p—sing,

L, - L, sin g,,

Or with sufficient exactness from the series-development of
siné,,

® ¢ _
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