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1. In a recent paper' I have introduced certain poly-
nomials 9::),1’ defined by having to satisfy the equalions

Jx,:un = x::),_n1—1 (1)
ZI Ton = VCC::l, (2)

besides the initial conditions
a:(:m“—" 1, oo =ax@—w) ... (@—vot+eo). (3

These polynomials are the natural instrument for dealing
with some of the most-important problems of the theory
of interpolation, such as expressing a difference of a cer-
tain order and with a given interval in terms of differen-
ces with another given interval, or expressing a sum of a
certain order and with a given interval in terms of sums
with another given interval. In lhe present paper we intend
{o occupy ourselves with the latter problem. '

2. Proceeding in a way similar to that followed in
deriving the generalized Euler—Maclaurin summation-for-
mula?, we begin by defining a function =, ,, distinguished
by a bar above the argument, r being a positive integer,
which in the semi-closed interval 0<<x<(r is identical with
xzm that is

' On a Generalization of Noérlunds Polynomials. Det Kgl. Danske
Videnskabernes Selskal, Mathematisk-Tysiske Meddelelser, V1I, 5 (1926).
Quoted below as “G. N. P.”

* NérLUxD: Differenzenrechnung, pp.154—161; Transactions of the
American Mathematical Seociety, Vol. 25, No. 1, pp. 36—46.
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- L

Xyp = Ty 0 <x<r), €
while for all x (positive, negative or zero)
Lxy, =0, - (5)

As the latter relation is a linear relation between Ez,r,
m:,,,, .‘.EZ,,, it is seen that ;Z)r is completely
determined by (4) and (5).

It is easy to form an explicit expression for the cal-
culation of 5;’” Let k& be an integer (posilive, negative or
zero), and let 0 <6 < 1. We may, then, always write
a« = k-+6, and it may be proved that, putting (;}) =0

for s > v,
r—1

RN (g) SR 0<6<1). (6

s=0

We only have to show that this expression satisfies (4)
and (5). Now, performing 4 on both sides of (8) with
respect to k, all the terms on the right vanish, so that (5)
is satisfied. As regards (4), we assume for a moment
0<k+6<r sothat 0 <k <r—1. As K then vanishes
for s > k, (6) becomes

i o Y\ (s) v—s
k+4, = } (s)k By, r—s

s=0

v

s> vanishes for s > », and £ for s > Fk,

or, as (
v

— S "y sy v—s
k+ Owr = (S)k Hw,r~s:

or, by G. N. P. (5), ‘

k+ Ollur = (k -+ H)wr’

so that (4) is also satisfied.
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It should be noted that if ¥ < r, (4) is valid for all x,
as in that case 4 x,,, = 0 for all x, so that (5) is satis-
fied by «,,, itself. The formula (6), though valid in all
cases, need therefore only be applied if » > r.

3. We are now able to prove that

—py—1

' 74
AXyp = VX r_13 (7

— )
as x,p has not yet been defined, we may put

Xy = 0, ] (8
so that (7), owing to (), also holds for r = 1.
We need only difference (6) with rvespect to k, the
result being

r—1
— e (s—1) v—s
Ak+ by, = E (S)Sk O, r—s
§=10
r—1
T (v —1 (s—1) v—s
=¥ , (3_1 k 9(0,1‘——3
s=1
r—2
§“] y—1 {5) v—s—1
=V , < s )k 9(u,r—s—1
s=10
»—1
= Vk+ 0:),1-__1,

or (7).

4. It follows evidently from (4) and (6) that the
function Ez,r is continuous in the interval 0 < ax < r and
also in the interval between any two consecutive integers.
If »<r, EZ,, is identical with ;r:”. and, therefore, continu-
ous for all x. If » > r, it can be proved that EZ,. is still
continuous for all x; but in the case of ¥ = r we shall

. - N .
arrive at the result that x,, possesses points of discon-
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tinuity when a is an integer > r or <0; olher points
of discontinuity do not exist.
Let us first assume » > r. The relation (5), written in

full, is
:TJFT’;,—({)xw—ﬁoﬁ(;)xqtr—%f- A (1T, = 0. (9)

This is valid for all . Pulling = = 0, and making use of
(4), we have

7-(1) (r— D+ (;) (r—2yp— . (1) 0, =0
or
A 01— 1 = 0.
But if v >r, //"OZN = 7/('")0:;3" vanishes, and we have,
therefore,
Tar = Tor (v > ).

It follows that ;:,,. is, for » > r, continuous in the closed
interval 0 <z <r, and (9) shows clearly that EZ” must
then be continuous for all x, as was to be proved.

It remains to investigate the case » = r. We obtain by

(6) for v = r
r—1
—T ry, () r—s
k_}_ewr: j (s>k gw,rgs
s=0
r
B 1'> () r—s )
= S (3/ k ch,r—-s""k
§==0

or, by G. N. P. (5),

)

E+ 6y, = et 6, — k" O<6<1). (10

Hence we have, for ¢ = 0,
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E:ur = k;r—k(r) (1)
and for 6§ — 1
FF1=0,, = (k+ 1), — "
or, replacing k by k—1,
0, = K —(e— 1. (12)
Subtracting (12) from (11), we have
]—CZJrA_k_:dr(;Jr = (k_ 1)(’.)*]6(”
= — a7
or finally ‘
B0, = —r—1)" ", (13)

This expression shows that Ef,,, has discontinuities at
all the points x=r, 41, r+2, ... and x = 0, —1,
—92, ... ; other discontinuities do not exist, as the ex-
pression on the right of (13) vanishes, if k has one of the
values 1,2, ..., r—1 (r > 1).

It is worth noting that the amount of the discontinuity,
or the height of the ‘“jump”, is independent of w, as
appears from (13).

H. The relation G. N. P. (34), or

xZ)n = (_ 1)7 (n'—x>iw,n | (14’)

also holds, with an obvious reservation, for the functions
_,

x,,. We hegin by noting that instead of (6) we may use
the following relation for the calculation of EZ),.

r—1

PR e = D > @ =6 (15)

s=10

where I and # have the same meanings as before. For,
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putting & = r—k—1--6, it may be proved that the ex-
pression (15) satisfies (4) and (5), as we proceed to show.

As regards (5), it is seen at once that, differencing r
times on both sides with respect to —/k, all the terms on
the right vanish, so that (5) is salisfied.

Next, we assume 0 <z <p, that is 0<r—Lk—1+6<r, ‘
so that 0<r—k—1<r—1, or 0<k<r—1. If k is
comprised belween these limits we may, as above, replace
the upper limit of summation in (15) by », so that

v
r—k—i+6,, = (—1" K (V> e a—ey;
K L~ VUur — s/ — ), P—3§

s=0

or, by G. N.P. (5),
r—k—1F Oy = (—1) (k+1—0)",,
or finally, by (14),
r—k—1+8,, = (r—k—1+6),,.

so that also (4) is salisfied.

Having thus established (15), we may, if we exclude
the value 6 = 0, replace 8 by 1—6 in (15). Changing the
sign of w, we thus obtain for 0 < 6 <1

r—1
———— ¥ "y (s) v—s
R, = 0" D e as)
s=10 i
But comparison of this relation and (6) shows that
—y Y ——y -
Luor = (_"1) r—xX__g,r» (1 />
provided that x is not an integer. If x is an integer, (17)
is still valid for » Z= r, as in thal case E:r is continuous

for all x. Bul the case » = r must be treated by pulting
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= 0 in (6) and letting §—> 0 in (16), the result being
the relation

-r r

kyr = (*l)r"'—k—o——m,r‘ (18)
6. We shall now assume that
0<<w<1, 0<h<1l—w, (19)

so that 0 < 04w < 1. It follows that (6) remains valid,
if 6 is replaced by 0+ w, and we therefore obtain

r—1
7
—e p—5—1
Akt 6, = _S_ (:) B (v—s) 6.5,
w - —

71
-

r—1 s) r—s—1

=y §,( s )k B, r—s
s=0

= vE+e,,
or
—y —p—1 / O< w << 1
f,,xw" = YTy, —1<ax<k—a (20)

where k& has one of the values 0, +1, =2, . ..

If, in this formula, we lel @ — 0, the symbol /0/ may be
replaced by the symbol of Differentiation D at every point
where the derivative exists; at points where it does not
exists .,0/ means the differential coefficient to the right.

For x - k—w we find from (20)

7 2 y—1
= (T 0,k o) = vk wys

whence
v v—1 1 /- ——y
Adk—wy,, = vk—w,, + - (/{‘M.‘k—~ O(,,r) . (21)

]
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It follows that, if » 4= r, (20) is still valid for x = k—w,
while in the case ¥ = r we obtain, by (13),

— g —1) .
AT gy = rk— m’m,1~’;(1«—1)" )

(22)
The supplementary term in (22), representing the dis-
continuity, vanishes for k=1, 2, ..., r—1, (r>1),
that (20) is still valid for vy =r, @ = k—w, if k has
one of the values 1,2, ..., r—1, (r > 1). ‘
1. After these preliminaries, the problem of summation

1. .
may be atlacked. We assume henceforth that  is a posi-

tive integer > 1 whence follows, in particular, that the
condition 0 << w << 1, implied in (20), is satisfied.

Let h be a parameler, posilive, negative or zero, of
which we may dispose afterwards, and let us consider the
expression

1

—1
(2]

——v+s
r() 2 —"Lh(l)""‘h < 2 41
1 - — @ TSS):—ZI f(x%—l—w%,wm). (23)
p=10

This expression may be transformed in the following
way which is equivalent with partial summation. As

e )
A= S A, we have
) ®w
1
6_1 _I__]'z/»\~s
() Tww Ty s v .
S N A" —
Vs e (vt 9! p flet1—pm)

L=

N ,u,erh s
+ g (V*F:))' (/] f(a:—kl—w——‘uw)
u=20

or, if in the first sum we replace v by w1,
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1

) =

w _—

) Mm~‘—w+h

Ve = — E (Hs),“s 4 fl@+1—w—po)
.

o“w+hws ey
—I-ZO __—-—M(V-FS)I ?U fe+1—ow—po)

o=

which may be reduced to

i—i

o 'r// {Lm—‘rhws
Ve —wu/=0 (:u+s)‘ g/ f(%+1~w~u,w)
——v-+s SV S
1Ay P s
s @ s D).

Assuming s > 1, we have, by (7),

—»+3 zf—l—s —1

hws = Iy +(7/+3)hw s-——1 s

so that VS/) may be written

Ly

o dpo TR
o —— _S_ BET L et 1= o o)
g ¢ / (V + 3)! 0 ! i
p=0 (24)
=+ s—1 1‘1'7/+S
w,s—1 2 ws 4
Totsonia (O T A e

We now assume that v > 1 and that h is a multiple
of w, that is, h = pw where p denotes an integer (positive,
negative or zero). In that case we have, according to No. 6,
as v+s=Es,

s +5—1
J‘ww%—hfos = (V—l-s)ww—i—hwbs ,
w
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so that we obtain from (24), by (23),

¥ s —1 —V- s
(r—1) hm s—1 h,

(V) /! ) §
=V, + 1)1 A f(x)— ot )v‘l/l f(x). (25)

. . —1 .
Performing the operation v on both sides of (25)
and summing from s = 1 to s = r, we find, putting

R, = § P (26)

and taking account of (8),

—v -
wr

R,=R,_{— Y A zl "1 (x). @n

Summing on both sides of this equation from » = 1 to
» = m, we obtain

n —V—l—r

-

Rm = RD (vm 4/ // f(oc) (28)

p=1

It remains to investigate R, According to (24)

1

. -1
0) Juo + s
Vi = —w fx+1—o—pmn)

st
a="0 (29)

=5s—1
w, s—1

1 Tys
(S 1)’f( )4‘— ’/f(r)

Now it follows from No. 6 that we have generally

s s—1
Adpw+h,s = spot+h, ,
o

exception being made at the point



A General Summation Formula. 13

wot+h = k—wo (30)
where the term

— L e—1)¢Y
w

must he added to the right-hand side, producing a term

+ ("* 1>f'(x+ {—k-+ k)

s—1

in Vi‘”. We therefore oblain from (29), performing the

. s—1 . - 3
operation on both sides and summing from s = 1 to

s=r
. Ly
r w_%] +h.\'———]
W ws s—1
Ry= —o 21 ‘>O G—D! a4 fx+1—o—po)
5§ = (u':

(31)
C 7.
N L

s=1

This expression may be simplified, if we assume
0 <h <r. In that case EZ,, may be replaced by h;,., and
it may be concluded from (30) that r > k > 1, so that

r

Z (f:}> A 1 —k+h)

s=1

k
S D TN AT e k) = [ b,

s=1

as follows from the identity

—k+1

fx+h) =0+ N E f(x+ )
= (1 +" 1=k +h).

We thus obtain from (31)
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14 Nr. 7.
7_1
T ww Tk _
Ry = 2 2, MSLSSY A et 10 —ww)| -
s=1 [Lc~—0 (32)

Finally, we insert this expression in (28) where h,,
Noting that pe- hm1

may now be replaced by h,,
according to No. 2, and writing o = 1—w

= (1“’[‘)_’_ h)fu:l
— v, we find
r E-‘L_i (1 L1 )s—l
-+l —o—vw),s s
flx+h) = g 2 = LT et rw)
§ = y =0 (33)
_i‘, l1/+r ‘
+2 A4 A [(@)+R
— (r+n!
where
0<h=po<r (34)

and, by (26) and (23),

m + 8

T Y0y —1 m+1, -
LTS f @ vw). (35)
2]

1

r ol
R z ? 2 th+1—ew )
m (m+ s)! o

s=1 »=0
8. The formula (33) is a generalization of Euler-Mac-
laurin’s formula which is obtained for r = 1, w = 0.
in several ways.

Our formula may be transformed in
Thus, by G. N. P. (38), it may be written
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r—1 E

f(x+h) = MZ Z ( "”"’) 4 flx+ ve)

§=0 »=0 (36)

7/~I—r

+2 ® J“:),z/ A f(x)+ Ry,

The formula is in reality an identity between the
m-- ;Jr 1 equidistant values of f ()
f@, fet+w), fx+2w), ... flx+me+r). (37)

If, for f(#), we take a polynomial of degree not exceeding
m, we have R, = 0, and comparison with G. N. P. (59)
shows that we have

r—1 .,

o D ey = D ’g/”“” F@). (38)

§ = v = v =10

This relation has thus been proved for a polynomial. In
order to extend this formula to other functions than poly-
nomials, we note that /lrélvrf(ac) has a definite meaning
whether f(x) is a polynomial or not, as the various
meanings of élﬁrf(ac) only differ by a function which is
cancelled by the subsequent application of A 5} being an
integer. We have, in fact

. 1
A d = {(1 + wz])a—l]rz]_r (39
w w

@

or, on comparison with G. N. P. (17),

G

A a = g sk (40)
w ) s! W
8§ =
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which may also, by G. N. P. (39), be written

1
(Eu _1) /]ros +r
—r N/ w0 s
/[ = A 1
A= G n

s=10

so that the operation ._/Iri)l_r has a well defined meaning
whether it is applied to a polynowial or to any other
function.

It is now seen that (38) is an identity between the é
values of f(?)

f@), fe+w), f(x+2w), ... flxt+r—o),

both sides being linear functions of these values with
coefficients that are independent of f(#). It follows that
although (38) was only proved for polynomials, it is valid
for any function f(¥).

We may therefore write (83) or (36) in the form

r+m .,

Ror + wer
fle+h) = § - A f f@)+R, . (42)
=10

For w - 0 we obtain from this a formula due to NOr-
LunDp (Differenzenrechnung, p. 160).
9. If we impose certain restrictions on f(t), the re-

mainder R may be put into the convenient form

R = Smj Aoy /M (43)
m @ — (In“;ilw)Tﬁv/ / f(.’L + 7)00)

The assumplion we make about f(¢) is that the ex-
pression
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®

7 m+r
Z VO f(Z + vm) (44)

v =10

must be convergent for z > x. This condition is, for in-

stance, satisfied, if

lim £ fD =0 (s > 0); (45)

t—>

for it follows from (6) that ;Z,, does not increase more
rapidly than |m|r_1. The condition (44) does not imply
any analytical property of f({) but only concerns the ra-
pidity with which the function must decrease for f—- ce.
It is clear that if (44) is satisfied for a given value of r,
it is also satisfied for any smaller value of r.

We may now prove (43) by induction, writing Rﬁ,rl) in-
stead of R, in order to indicate that R, depends on r.
Let us first prove the formula for r = 1. We have by (35)

m+1

“h-+1—w—ve
(1) 2 wl m+1
e [ _ ! ~ -}_ va).
R, = —a m 1) zlw [(x+vw)

3 =0

If to the right-hand side we add the expression

® m+1 ————————m-+1
Th+1—w—vw,y —h—o—vo, m1
) — A flx+ vo)
< (m+1)!

=0

which is convergent according to hypothesis, and vanishes
. - —m+1 ., s e . .
identically, as x,; is periodical with the period 1, we
obtain after an obvious reduction

Vidensk. Selsk. Math.- fys. Medd. VIII,7, 2
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h+l—ow—re
(CO N wl m+-1
R, = w E —————(m +———1)! f flx+vo)

3 = -

® 41

2 Th—m—yw e
— 0{ ——(I'm)’ Z) (7c+1/w)

3 =

. 1. . .
or, writing »+ — instead of » in the first sum and reducing,
w

(1) > " h @ Y 41 m+1
- R Sl -t
R, w : CESYY g [lx+vw),

so that (48) is valid for r = 1.
It remains to show that if (43) is valid for r = s—1,
it is also valid for r = s. Now, by (35),

1
.
® —————m+$
N h+1l—o—vrve
(s) (s—1) ws 5— m -1
R, =R — - - A
m m ) EO Gn )1 w [(x+rw);
v =

hence, if (43) is valid for r = s—1,

m4s—1
(a) _’ h—o—ve Y@y, s—1 s—1 m+1
R, = w (m—}—s~1)' A f(x+ vw)

y=10

L

m--s

w
§ Tht1—w—ve,s s—1 m+1
— —- A o).
v / (m+9)! i)j f@+vo)

3 =

But, as

m-+ s m+- s
yp—c S T h+l1—o—ro,;, —h—o—vo,
1—@— PWy s 1 —

w, $—1 m-s ’

we find immediately, on reduction,
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» m+s

R = wz ]l-—(z#fg”’“ fx+ o),
y =10
and the proof is completed.

10. Before proceeding to establish the desired general
summation-formula, we shall make a few remarks about
repeated summation. The symbol 5)I~l is generally de-
fined in such a way that

Z;Iﬁlf(x) = ¢ (T) + Yy, (‘%)’

% (x) being any particular solution of the difference equa-
tion Z)/g)(gc) = f(x), and ¥, (x) being an arbitrary periodic
function with the period w. It will now be advantageous
to fix the meaning of él_l‘ We put?, assuming the conver-

gence,

Z';’—l [(@) = —w 27 f(x+ vo), (46)

¥ =0

and it is obvious that, with this definition, 44 f(x) =
f(x), as it should be. For the applications of the operation
a)lml, thus defined, to summation between finite limits, the
condition that (46) must be convergent is not a re-
striction of real importance; for, as we do nol assume
that f(x) is an analytical function, the summation-process
(46) may be applied to any table of finite extent,
provided we put f(f) = 0 for values of ¢ outside the range
of the table.

The symbol (zu/_l, defined in this particular way, is

commutative with ; for we have
w .

! Compare NorLonp: Differenzenrechnung, p. 41.
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4/1_14/;"(1:) =—w Z flx+rvo+to)—[(x+re)
w «© - @

— ~2f(w+vm+w)+2f($+7’w)

= [(@) = a4 @,

From (46) follows, for o = 1,

—1 N .
4 flx) =— 2 [@-+»), (47)
v =0
and it is easily proved that any two of the symbols .,

—1 —~1 . . . .
A 7, A, E;/ are commutative if, in- exchanging the order

of ’tW(L)U symbols of summation, we assume the absolute
convergence of the double sum.

The operation 6’71 may be repeated, always assuming
the convergence; and we find in the case of absolute

convergence

@
T, r N (v+r—1\,,
@ = caf D U e, @)
y =0
For this formula is valid for r = 1; but being valid for
any particular value of r, it is also valid for the following

one, as
[va)

(913) = (— w)r+1 2 2,_] <V T_I_l ) [+ o+ vm)

u=0 »r=20

S Z( T e sw)

s=0 u=0

N () et s,

P,
§=10
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From (48) we find, pulting @ = 1,

4 f@) = (—1) j (” ff{ 1) flx+».  (49)

=0

11. In order to derive the desired summation-formula,
we will for a moment assume that f(¢) is a function that
vanishes beyond a certain range, say, for { > N. We may
then, in (42) and (43), perform the operation 4 " on both

sides, and thus obtain

r+m
_ N/ h; . v—Tr
A fx D) = > ;’, 4" f(x)+ R, (50)
» =0

®
Th—w0—v0y, m+1

R=uw _>_J Am—f ;’)/ /(CU + vw). (51)

y o=

But this formula evidently remains valid for N — oo, if
all the sums are convergent.

A sufficient condition for the validity of (50) and (51)
is, therefore, that the condition (45) is satisfied in- which
case all the sums are absolutely convergent. In particular,
(50) and (51) may be applied to summation between finite
limits, if we puat f(#) = 0 for values of t outside the range
of the table. The parameter h must satisfy the condition
(34), and é is a positive integer > 1.

By keeping the first term on the right of (50) apart,
it is seen that the formula may be used for lhe approxi-
mate calculation of f;/_r f(x) or 4 f(x-+h) if, besides
one of these sums, we know the sums of lower order
4@, @,

12. The simplest and most important case of (50) is
obtained for r = 1. The result may be written
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@ o0 m--1 ],,,
) N/ N/ 1(, v
w } fla-vw) = } fx+h+v) + DA @R (52)
p =0 y =0 p=1 veow
where 0 < h = pw < 1, and
8‘17 7 m-+1
) T 0T VW m+1
B — _ T / Flx - . =&

R=ow % CES T Flx+ vw) (53)

The explicit expression of x,, is, according to G. N. P.

(46),

>

¥ \ v y—5 8
Ty1 == ; (s)Owl Lo s (54)

$=10

and 5:_:,/,1 is a function, periodical with the period 1, which:
in the interval 0 < & < 1 is identical with a,::,l

From (52) and (53), Euler’s summation formula is
obtained by letting @ — 0; we need not go into details.

13. It is not always practical to use (50) for summa-
tion between finite limits, bul another formula may be
derived from (42) as follows. '

Let @ be an integer (this restriction being of no real
consequence), and let y be another integer, supposed to
be constant. We put?, for x < y,

3—1 y—1—x

St@ = f@= D (@t )

x =0
while §'f(x) = 0 for x > y. Hence, on repeating the opera-
tion 8" r times,

1 Compare STeErrENSEN: Interpolation (Baltimore 1927), art. 111
(where # is written for y — 1), -
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y—1 y—l—zx

sOr@ =2 TR T e = T T e, 66)

y o= ¥ =10

as may be proved by induclion, or be concluded f10m (49)
(putting f(H) = 0 for t> y).
It is now easy to prove that.for s <r

(s)z/f()_(—l)[ 'fl >—2< O EaN >}' ©D

v=0

For this formula is valid for s = 1, as, by (55),

I

S A @) =S 4 af(x)
=S4 D=8 A ()
= AT — 4 @)

and being valid for any particular value of s, (57) is proved
to be valid also for the following one, on performing the
operation §" on both sides and noting that

S,,(y—l—x—i—v) <;/—;c~|—1/>
A » v+ 1 :

Similarly, we put
St@=olf@+f@+o)+ ... +[G—)] 8
@
besides .S f(x) = 0 for x> y; whence, by induction or

by (48)

y—

w

e
y=10

Sy VIO N



24 Nr. 7. J. F. STEFFENSEN:

If now, in (42), we interpret /Ipﬁrf(x) for » <r as

(— l)V—r = f(x), this formula may be written

r—1 .,,

fatm = > (—1)”’ ST p )

w
=1

(60)

¥+r

+;g<ffyf/ﬂw+ml

v =10

where R,, has the meaning (43).
Finally, performing the operation 5™ on both sides of
(60), and taking into account that, according to (57),

r—1

Wwﬂ@:eﬂpw—é;FWVﬂZ

vy =0

x*ﬂﬂﬁuﬂ, 61

we find, as S(riw)f(y) =0 for v < r,
w

r—1
§7f(x+ i) —2 (—1)” (’_7’)/( )
» =10
V—I—I
1) ‘;23 il @ 2
r—1
\’ Lt - — "l_ 2 i v
—_ (__‘1)1 (;f 1 ‘U,x [ M)/]‘ 6/ /‘(}/) _!_R
pH=>0 ' . R
where
1 i h—w— WOZ;QLI m+1
R=(Da < ERCEDI A [(x+vw)
r'-—l (63)

—1—=x ! wo o m+1 ,
= 2D e T
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This formula is more cumbrous in appearance than
(50), but has the advantage over the latter that the re-
mainder may tend to a limit for @ — 0 which is not the
case if (50) is applied to summation between finite limits
by assuming that f(f) vanishes beyond a certain range.

14. In the particular case where r == 1 we obtain from
(62) and (63)

1/+1
where
= h v mt
T VW) m+1 .
R = wgo ***Ew[ fxtrm)— J f(2’+7/m)] ;

S f(x -+ h) has the value

Sflx+h) =fl+th+fx+h+D+ ... +fG—1-+h)
while

Sf@) =olf@+tf@ta)+ . +fG—w).
The parameter h must satisfy the condition
0<h=pw<l.

By letting @ — 0 we may, from (64) and (65), derive
Euler's summation-formula.

(64) and (65) may also be obtained directly from (50)
and (51) by writing y for x and deducting.

Feerdig fra Trykkeriet den 12, Marts 1928,
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