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Introduction.

f a gas is enclosed in two vessels communicating with
I each other by a tube, the:gas will, as known, be in
equilibrium if its pressure is of the same magnitude through-
out. True, this condition of equilibrium only holds good
if we disregard the differences in pressure produced by
the effect of gravity. This we will do in the following. If
the two vessels are given a different temperature, the con-
dition of equilibrium will still hold good in many cases,
even if the temperature is varied through the .communi—
cation tube, and this fact is made use of, e. g. in thc; gas
thermometer, it being a well-known fact that the 'gas in
the manometer may have a temperature quite different
from the gas in the thermometer bulb.

If, however, we employ the word equilibrium as a term
for the state in which the amounts of the masses of gas
found in the two vessels do not change any more if the
temperature of the vessels remains unchanged, the con-
dition of equilibrium mentioned may in cerlain cases he-
come quite wrong. This was already shown by O. Réy;
nolds?', who by’means of the kinetic theory derives the
equation P (%

Pa
being pressure and temperature respectively on one side

>§ as valid in the case of p; and T,

of a porous plate, while p, and T, are the corresponding

1 0. Réynolds, Phil. Trans. p. 727, London 1879.
1*
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quantities on the other side of the plate. Putling p, = p,
and T different from 7T, the gas will not be in equilibrium,
there will be a flow of gas through the plate from the
cold to the warm side. This flow of gas which Reynolds
called “thermical transpiration” was demonstrated experi-
mentally by Reynolds himself in experiments with plates
of gypsum and meerschaum. The temperatures 7} and T,
were not, however, measured directly, so thalt Reynolds
did not obtain a numerical confirmation of the equation
given above. Such a confirmation I have achieved by means
of a glass tube in which a magnesia plug had been firmly
fixed, and the thermical transpiration was demonstrated in
the following way.

I used a vessel holding from /2 to 1 litre, and which
was made of porous porcelain (a filtration bulb). The neck
was closed with a rubber-stopper through which was
passed a glass tube ending under a water surface. The
gas in. the bulb was heated by an electric current sent
through a coil placed inside the bulb. The walls of the
bulb being thus heated from the inside, and continually
cooled on the outer side, a fall of temperature will take
place in the porous wall, and this will cause gas to be
sucked through the wall into the bulb. Gas bubbles will
then rise through the surface of the water so that, in the
course of a few minutes, more gas can be collected than
the porous vessel holds. It will be noted too that the flow
of gas will continue with constant velocity as long as the
temperatures on the inner and outer sides of the walls
are kept constant, and that the velocity increases when
the heating current is increased or the cooling velocity of
the bulb is angmented by blowing cold air on to it.
 The condition of equilibrium stated by Reynolds is,
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however, only valid when the effect of the collision of the
molecules with each other as compared with the number
of the impacts with the tube walls may be disregarded,
or, in other words, when the cross-section dimensions of
the tube are negligible compared with the mean free path 4

of the gas molecules. For a cylindrical tube with the

radius r the quantity ;t must thus be negligible compared

with 1 if Reynolds’ formula is to hold good.

If 2 is negligible compared with r, the condition of
equilibrium will, as known, be that the pressure is the
same throughout the whole system whatever is the distri-
bution of the temperature. '

The case when 4 is small but not negligible compared
with r has been theoretically dealt with by MaxweLn®
who made use of the results of Kunpt and WARBURG's
experiments on the slipping of the gases. By a consider-
ation which I have formerly® explained I have arrived at
a relation which formally agrees perfectly with Maxwell’s.
The constants found by me deviate somewhat from those
found by Maxwell. A series of experiments previously made
by me shows that the formulas in question are formally
right, but that the constants found by experiments are
again somewhat different from the theoretical ones, which
is easily explained.

The theoretically found formula corroborated by experi-

ment may be written as follows:
pit—pst = (T —T,%,

where p, and T; are the pressure and absolute temperature
in one vessel, p, and 7, the corresponding quantities in

* J. Clerk Maxwell, Phil. Trans. p. 231, London 1879.
? Martin Knndsen, Ann. d. Phys. Bd. 31, p. 214, 1910.
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the other, while ¢ is dependent on the radius of the tube
and the mean free path 1; of the gas at a pressure of 1 bar.
It may be expected too that ¢ will in some degree be de-
pendent on the temperature. For the cases when r is
either negligible or very large compared with 2 we have
neither theoretical nor experimental investigations of the
relation between p and T, yet a knowledge of this relation
may be ol great importance e. g. when the gas thermo-
meter is to be used to measure the lowest temperatures
that can now be produced.

In the following I shall give an account of a series of
experiments performed by me for the purpose of Ie:irning
more of this relation.

Experiments with the Gas Thermometer.
~ To solve the problem mentioned above I have tried
using a gas thermometer and carrying out measurements

> H at constant pressure

1 T and varying volume.
The glass apparatus
is sketched in fig. 1.
' The volume V of the

thermometer tube

1 was measured, and
M likewise the radius r

of the communica-

@] tion tube to the hot-

wire manometer M,
and the volume v of a pipette continued at the bottom
in a graduated tube closed with mercury. H is a stop-cock
through which hydrogen is introduced into the apparatus

until the desired pressure is obtained.
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Let us suppose that the whole apparatus has the abso-
lute temperature 7; and that the pipette is filled with
mercury up fo the mark a. There will' then be the same
pressure p, throughout the apparatus. Now the vessel V is
heated to the temperature T,  while the remaining part of
the apparatus is kept at the temperature Ty. The mercury
is made to sink in the pipette until the manometer again
shows the initial pressure p,. If the volume of the mano-
meter and communication tube be designated v, and the
new pressure in the heated vessel p,, the expression for
the constancy of the mass of gas gives that

pr bv P2V+P _‘_leU

PR U TR R

from which we get that

Py _ (1_@> _

T 14
Here p, and p; designate the pressures in the communication
tube with the radius r in the state:of equilibrinm in those
places where the temperatures are T, and T respectively,
and p; and all quantities on the right side of the sign of
equation being measured, the equation gives the sought
relation between p, and p,.

We know that for large values of the pressure, that is

to say abt. 1 cm. mercury pressure, we ought to find p, = py,
and that for small values of the pressure, that is to say

small values of £ 7 we ought to find small deviations from

the equatlon = V . The first of these requirements

was fairly well satlsﬁed which showed that the errors of
observation were small. But from the second equation such
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great deviations appeared that the method must be con-
sidered unsuitable.

The reason for this is that in each measurement great
accuracy in the determination both of temperatures and
volumes must be demanded, but of decisive importance
are the adsorption phenomena that manifest themselves
vigorously at lower pressures. This source of error I have
not been able to eliminate, and my experiments seem to
me to have shown that the gas thermometer is not suited
for temperature measurements when the gas pressure in
the vessel must necessarily be very low. Heating of the
thermometer bulb and the use of Gerite glass somewhat
reduced the error, though far from sufficiently.

Plan of the Experimental Investigation.
The method used for the final series of measurements
was the following.
M (fig. 2) is a hot-wire manometer as previously de-
scribed., By a series of glass tubes of unequal widths the

Fig2
manometer is connected with a large glass vessel the volume
of which has been measured to be V,. The widest tubes

! Martin Knudsen: Det Kgl. Danske Videnskabernes Selskab. Mathe-
matisk-fysiske Meddelelser VII, 15, 1927.
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in the system have a radius of abt. 1 mm. The two pieces

of tubing.marked R in the figure have equal radii:

R = 0.099655 cm.
and the two pieces of tubing marked r have equal radii, viz.
r = 0.026845 cm.

These four pieces of tubing were as circularly cylindrical
as they could be found in a large collection of tubes. Their
upper joints, which during the experiments should have
the same temperature, were surrounded by a rather large
water bath, K, contained in a rectangular copper box. The
vessel with the volume V,, abt. 1.2 litres, was likewise
placed in a water bath the walls of which were well in-
sulating for heat. Y is a pipette, the gauge vessel, placed
in a water bath. It may be filled with and emptied of
mercury through the tube at the bottom, and it serves to
calibrate the hot-wire manometer, its volume between the
marks being measured to 8.8746 c¢cm® F is a trap which
is kept in liquid air during the experiments, and L is a
mercury seal with a ground glass float which can shut
oftf the apparatus from the pipette system serving to intro-
duce a gas of known pressure info the apparatus. The
glass float very effectnally prevents the penetration of mer-
cury vapours into the apparatus, and the tube helow the
small gauge vessel is very nmarrow, so that by this way
too the entrance of mercury vapours will be negligible.
During the first measurement on the potentiometer the
two joints between the tubes R and r are placed each in
a separate bath, the temperatures of which are measured
or known. Thereupon the two baths are interchanged and
a second measurement is made. Irom the two measure- .
ments the ratio between the two pressures may be found.
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Let fig. 3 be a circnlarly cylindrical tube closed at both
ends. Let the radius of the tube be r and let one end of
it have the absolute temperature 7, the other 7,. In the

state of equilibrium the

~(].7zp 7 E I2p )2 pressures of the gas con-
E ‘ tained in the tube will be
F{g 3 different at the two ends.

If they bhe designated p,
and p,, as indicated in the figure, p;— p,, i. e. the quanlity
which I term the thermal molecular pressure will differ
from 0 when T,— T, does so.

We may know beforehand that the thermal molecular
pressure must be a very complicated function of the
temperature, the pressure, and the radius of the tube,
therefore 1 have considered it advisable to make a series
of measurements at such small temperature differences
that p; —p, may with sufficient approximation be put pro-
portional to T,— T, at all pressures. Hence for the tube
with the radius r we put p,—p, = f(T,—T,), and for
the tube with the radius R we put p;—p, = F(T,— Ty),
on the assumption that the mean pressures in the two
tubes may with approximation be put equal.

With the designations of pressures and temperatures
given in fig. 2 we may then note the following set of
equations:

Pi—py = f(Ty—Ty)
P,— P = F(Ty—Ty)
Py— Py = F(Ty—Ty)
Py—Py = f(Ty—1Ty)
P —P, = F(T,—T,)

If now we interchange the two baths whose temperatures
were designated T; and T,, the pressures will change
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throughout except in the large vessel V,, for compared to
its volume the rest of the volumes are negligible. If the
new pressures are designated p with the same indices
which P had before, we shall get the following set of

equations:
pi—po = f(T,—Ty)

Po—ps = F(Ty—Ty)
Po— P = F (T, —T,)
Pi— P2 = f(T,—1Ty)

p —ps= F(I3—1T)
If the two sets of equations are added separately, we get:

P—py = F(Ty—T)+ f(T1— Ty) + F(Ts— 1)
p—py = F(T,— To) + f(To—T)) -+ F(T3—Ty),

from which by subtraction
1
g(P—P) = (f—F)(T,—T,)

1
and hence, E(P—P) being designated by #p and T, — 7T,

by 4T, r Up
T 4T

The quantity f may be characterised as being equal to

dp . . L s dp
4T the tube with the radius r, while I is equal to aT

in the tube with radius R, in which the pressure is very
nearly equal to that in the first-mentioned tube.

In the series of experiments in question in which F
and [ were determined, the temperatures (T0-¥273°) of
the water baths were kept at 20° centigrade. T, was kept
at the temperature of melting ice, the bath consisting of
scraped ice in a Dewar vessel. Ty was kept 40° higher by
a water bath which was continually stirred by a current
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of air, while the loss of heat to the surroundings was
compensated by electric heating. The temperature of this
bath was read on a mercury thermometer graded /10 and
bent in an angle so- that it could be placed under the
copper box K. The two baths were both placed on a re-
volving stand, so that they could be easily and quickly
interchanged.

The temperature of the manometer was throughout that
of melting ice, but as will be seen, neither this temperature
nor T,, that of the water baths, enters into the equation
by which f—F is determined. Besides this the method
further presents the advantage that the volumes changing
temperatures are not altered by the interchange, and thus
changes in pressure caused by Gay-Lussac’s expansion are
avoided. Finally, what is most essential is that the areas of
the glass surfaces subjected to the changes in temperature
is here reduced to a minimum of abt. 8 cm®. For it is only
in the comparatively narrow and short pieces of tubing
that the temperature changes cause the harmful adsorption

phenomena.

Example of a Measurement.

All measurements were, in all essentials, made in the
same manner, so we shall here only describe one chosen
at random from the entire material.

The whole apparatus with pipette system and mercury
manometer was exhausted by means of a mercury diffusion
pump. Between this and the apparatus was inserted a trap
cooled in liquid air. When after pumping for a short time
the apparatus was almost devoid of air, electric heating
coils were placed round each of the bends of the tubes
under the copper box. Thus these tubes were baked ouf,
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being kept heated to a temperature of aht. 330° centigrade
for 10-—12 hours while the pump was at work now and
then. This heating was intended to diminish the harmful
adsorption effects, and was to some extent successful,
though unfortunately not absolutely. The tubes used were
of good Thiiring glass, an experiment with Gerédte glass
and Pyrex glass having shown that these kinds did not
present such advantages that it would be profitable to use
them.

‘When the heating was finished and also the exhaustion,
the result of which was followed on the hot wire mano-
meter and in some cases on an absolute manometer,
hydrogen was brought into the apparatus. This hydrogen
was taken from a steel receptacle and had been tested
and proved sufficiently pure. It was dried by passing
through a trap cooled in liquid air. Its influx could be so
accurately regulated that the desired pressure in the mer-
cury manometer could be produced with great approxim-
ation. In the experiment to be described here the reading
on the mercury manometer was 21.514 cm. mercury pres-
sure at 20°. By means of the pipelte system a fraction
hereof was introduced into the apparatus, liquid air being
placed round the trap F (fig. 2). From the known volumes
of the pipette system and the apparatus the pressure in
the apparatus was found to be 718.6 bar. The mercury
seal L (fig. 2) was closed, and a water bath of 20° centi-
grade placed round both bends of the tubes, r and R.

The resistance of the manometer wire was 743.3 ohms
at 0°. Whealstone’s bridge was adjusted so that there would
be no current in its galvanometer when the wire was
heated so much that its resistance would be 900 ohms.
The mean temperature of the wire is then abt. 60° centi-
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grade. The potentiometer whose total resistance was 11000
ohms was shunted with a resistance of 310 ohms in order
to obtain a suitably large reading (between 9000 and
10000 ohms). This is of importance for the interpolation
which is made by measuring the deflection of the galvano-
meler mirror caused by a change of 1 ohm in the potentio-
meter.

The table below shows a column indicating the hour
when the measurements were made. The next two columns
show the temperatures ¢, and 4 in degrees centigrade of
the baths surrounding the bends of the tubes, and under

Comp., finally, are given the readings on the potentiometer.

Time i ta Comp.
C 1145 20° 20° 9656,97
57 40°,63 0° 9745,47
12810 0° 40°,40 9568,88
23 40°,58 0° 9745,10
35 20° 20° 9656,32
47 0° 40°,54 9568,60
59 40°,40 0° 9744,32
1811 0° 40°,20 9568,92
24 200 20° 9655,14

From this series it will be seen that the measurements
were made at very nearly equal intervals of time. This
was. done on account of the adsorplion effects. Between
the measurements are interposed some with both bends
of the tubes at the same temperature 20° so as to follow
the slow changes of pressure in the apparatus. It was as
far as possible attempted to do away with these by grouping
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the measurements three and three together as shown in
the table.

By taking means the table is reduced to the following two

Mean values

4 ta Comp. 4 Comp. = A Comp. A Corhp.
Comp.; ,—Comp., . H—1 h—t
20° 20° 9656,65 :
40°,61  0° 9745,29 + 88,64 2,1827 0 6
0° 40°,40 9568,88 — 87,77 o725 2177
20°  20°  9655,73 ’
40°,40 0° 9744,32 -- 88,569 2,1928 '
2,1736

0° 40°,37 9568,76 - 86,97 2,1543

The two measurements made independently of each other,

and which were almost independent of the measurements
A Comp.

h—t
2.1776 and 2.1736, hence the mean value, f;,—1%, being de-
signated by # T.

at 20°,20°, have thus given the following values for

A Comp.

T = 2.,1756 = Measurement,

In connection with these measurements gaugings were
made, as a rule two, one before anid the other after the
measurements at different temperatures had been made.
During the gauging measurements the bends of the tubes
were kept at the same temperature abt. 20°, both bends
being placed in a single large water bath. In connection
with the above-mentioned measurements the following
gauge-measurements were made, partly with the gaunge
vessel Y empty (fig. 2) partly when it was filled with
mercury



16 Nr.-3. MarTIN KNUDSEN:

Comp. Mean
Comp. {empty-full) d Comp.
Y empty. ... .. 9655,14
Yfall ... ... .. 9622,79 32,28
Y empty. ... .. 9655,00
32,30 = gauge
Y empty... ... 9650,49
Y full .. ... ... 9618,04 32,32
Y empty. ... .. 9650,22

The compensation change thus produced, viz. d Comp.
= 32.30 = gauge is due to the fact that the volume V
= 1219.04 + 8.8746 cm? of the gas content of the whole ap-
paratus has been diminished by the volume /o = 8.8746 cm?
of the gauge vessel. This reduction of the volume produces
an increase of the pressure dp which, when the pressure
in the apparatus is designated p, is determined by

dp _ 8.8746
p 1219.04

= 0.007280.

Since here, where the relalive changes are small, we
can put the changes in pressure proportional to the changes
in compensation we get

A4p _ A4Comp. 4T measurement
dp d Comp. gauge
and consequently

104_{1)_ — 79.80 - measurement
pA4T ’ gauge

In the example here considered, where measurement = 2.1756
and gauge = 32.30 we thus get

4p

4
10 pAT

= 4.904.



Thermal Molecular Pressure in Tubes. 17

Such a determination was made at eleven different pres-
sures p, which very nearly formed a geomeirical pro-
gression, 19082 har being the highest pressure and 27.15
the lowest, while the quotient was equal to the square root
of the ratio between the radii of the two tubes used in
the apparatus. Judging from repetitions following imme-
diately after one another the uncertainty of the values
found only amounts to a few per mille, but as we shall
see later, the real uncertainty is much greater, especially
at low pressures. ‘

Results of the Measurements and their provisional
Treatment.
The measurements made with the temperatures 0 and

40 degrees centigrade at vglrious pressures p’ gave the

following values for'l()*pilf;T

number n = 0 1 2 3 4 53

p' Bar = 19082 9920 5142 2705 1388,9 718,6

10% z’/p — 0,0790 0,2628 0,7456 1,648 3,314 4,904
p AT

numbern= 6 7 8 9 10

p/ Bar = 373,b 193,2 100,76 52,22 27,156

10012 _ 5400 4719 3,481 2,542 1,786
p AT

The measured values of p’ agree very closely with the

r\#

R>2 so that
interpolations may be made with great certainty which
Ap
AT
progression. The interpolated values are given in the fol-

pressures calculated from the formula p = po(

give 10* for the pressures p given in the geometrical
lowing table, together with some other quantities to be

mentioned later on.
Vidensk, Selsk. Math:-fys, Medd. VIIL, 3. 2
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19082 0,0790 0,0857 0,00502
9904 0,2537 0,2774 0,01626
5140 0,7464 0,8321 0,04878
2668 1,678 1,955 0,1146
1385 3,323 4,155 0,2436

718,7 4,904 6,859 10,4021
373,0 5,422 9,577 0,5614
193.6 4,724 . 11,683 0,6790
100.,5 3,474 13,0561 0,7650
52,15 2,542 14,125 0,8280
27,07 1,782 14,833 0,8695

For the further treatment of the observation series we re-
mind the reader that for a tube with radius r, in which
there is the pressure gradient dp originating from the

temperature gradient d7, we have put dp _ f, while for

dT
. . . , dp
the wide tube with radius R we put ar = F.
FFurther it was proved that :
;4D
f=F=77
or
of 8 F _ 10t AP
10 b 10 P 10 AT
where #p and # T are just the quantities that with the
same designation enter into the tabulated values for 104p47pT.

Hence we may consider f— F as the quantity observed at
different pressures. Our problem is now to find both f
and F from the differences observed, which may be done
by theoretical considerations that have been found tenable
by previous experiments.
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For a tube with the radius r I have previously® found
"an expression for f or % which by inserting the constants
gives
0,02996

f= 5001191 2

If r in this expression be replaced by R, we get F, and
from the values thus found we calculate 104Z and 1041—J

and from these again 1045— 1045, which is a provisionally

found value for 104%. If we compare the values of
7 . .
104})1711)], thus calculated with those observed, we find, in

the case of the three greatest pressures, deviations not

amounling to more than 5 p.c. of the values. For a

pressure of 19082 bar 1045—; is calculated to be 0.0067 and

for a pressure of 9904 bar 104§ is calculated to be 0.0237.

F O-Lﬂ

Having 104%:-104; =1 - we find by adding the

pAdT

Ap.

calculated Valueé for 104E to those observed for 10* -
p : pA1

that for the pressures
19082 bar we get 10"‘i = (.0857
and for p
9904 bar we get 10*% = 0.2774.

These values have been tabulated and are employed to
calculate the rest of the values given for 104i.

In this calculation we avail ourselves of (l?he fact that
! at the pressure 19082 is equal to L at the pressure
19082 -IL{’ that is to say, at the pressureF514O, for which
we have an observation of 104;—104;. Hence to this

! Martin Knudsen, Ann. d. Phys. Bd. 83, p. 1444, 1910.
2*
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observation, the tahulated 0.7464, we need only add 0.0857
to find 10"’I valid for the pressure 5140. This proceeding
is continued throughout the table so that for each pressure
we have the corresponding value for 104£. In view of the
following calculations and considerations the next column
in the table is formed, 15 = 2 T-i where T is the mean
temperature 293.1° at which the measurements were made.

P | . .
The quantities o thus calculated indicate how great is the

effect of the thermal molecular pressure in a tube of the
given radius r.

2
The formula [ = 14——8,%1?%171)

ceeding in the case of the large pressures. Hence for a

warrants this pro-

tube with radius r and pressure p and another with

. ) _ 7 . 0,02996

radius B and PleSSuIC P we have P rp 001191 )
g 29¢ . g

and r 0,02996 From this we see that r_r

P~ RP+0,01191 (RP)* p P
when rp = RP which was just whal was made use of in
the calculation.

That this proceeding holds good for all pressures may
be seen by the following consideration. We will take it
for granted that when a closed circularly cylindrical tube,
containing a gas at the pressure p, has different lempera-
tures at the two ends, the difference in pressure found
between the two ends in the state of equilibrium will be
independent of the way in which the temperalure varies
from end to end. From this it follows that when an in-
crease of temperature dT is found on the length dI of the
tube, this will involve an increase of pressure dp, which
is independent of dI, but determined by other quantities.
‘What these are may be determined by considering the
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d
b
d7°

T
mensions of the tube and on the physical properties of

quantity This quantity is dependent both on the di-

the gas. Since the dimensions of the tube only comprise

its length and radins and since the length, as we just
di’lg" the radius r will be the

only dimension of the tube of which dp

stated, does not influence

may be a function.

dp dr
Hence we may put de = @ (r, the physical properties of
| ap &
the gas). Since ?Ip? is a pure number the physical proper-
T

ties of the gas that can be taken into account can only

be a length I which enters into the equation so that we
dp

can put L CD(

dT =
T
series of tubes of different radii and assume that they all

r

L

r

i_g(
> or2Tp—J7)L

). If we have a

_of them have the same temperature and all contain hydro-

gen, their hydrogen content will be determined entirely
by the dimensions of the tubes and the mean free path 2
of the hydrogen. The quantity L in the above-mentioned
formula may therefore be put identical with A. If now we

remember that we have pi = 4,, we get %, = %B and hence
1
f_o1ly (Ui),
p T\

Here 1, is the mean free path of the hydrogen at the-
pressure 1 bar and the temperature 7, that is to say, in-

dependent of r and p, so the expression shows that when



22 Nr. 3. MARTIN KNUDSEN:

r and p vary in such a way that their product is kept
constant ! will remain unaltered at constant temperature.

As has been mentioned, the calculations made have been
based on this rule, and it is important in giving expressions

for the thermal molecular pressure to keep to the formula

dp _p <P>
ar = 12\7)

. 1

The tabulated quantity L 2 Tz =2T= dp,
r u p pdl

function of .- alone, and our next problem will be to find

v

i1s thus a

an expression for this functional dependency. For the
solution of this problem it must be remembered that the

. 1 .
values found in the table for ., were calculated successively,

so that any inaccuracy in one of the measurements at
high pressures will make its influence felt at all the lower
pressures. For these, therefore, all the errors will be added
up. This unfortunate circumstance may, however, be entirely
avoided, as will be shown in the following.

Theoretical Considerations in the Formation
of a Formula for the Thermal Molecular Pressure.

Reynolds” formula, which was given in the introduction,
may be arrived at by the following simple kinetic con-
sideration. Let N be the number of gas molecules in each
em.?, m the mass of each molecule, and ¢ the molecular
velocity. ¢ denotes the mean value of the molecular velo-
cities, and ¢ the mean value of the squares of the velo-
cities. n denotes the number of impacts that is to say, the
number of molecules which in each second passes through

2

a.cm.” coming from one side of it. If the pressure of the

gas be p, its absolute temperature 7, and its molecular
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weight M, the kinetic theory in conjunction with the
simple equation of state will give the following fundamental
expressions

1 1

p 3ch—2 and n:ENE

and it follows from Maxwell’s law of the distribution ‘of

2 - T
(e) ¢ = 14550 ]/'M'

If we can disregard the effect of the mutual impacts of

velocities that

=

Wi
®iq

the molecules in the places where the temperature varies
from place to place, we have, when the state is to be a
state of equilibrium, that the number of impactsv n must
have the same value everywhére. For let us suppose that
the two vessels have the absolute temperatures 7 and T,
and that the total temperature difference 7)— T, is found
in a single definite cross-section of the communication
tube. Then, for the molecules coming from one side to-

wards this cross-section we have the number of impacts

1. — ; .
n = ZNl ¢; and for those coming from the other side we

have n, = ZNZE. As it is presupposed that no more mole-

cules pass through the cross-section in one direction than
in the opposite direction, we must have n; = n, and hence
ng1 = Nzc_z. From the fundamental equation we see that
P _ N—lﬁ = El—(c_l—)g and consequently br G (ﬂf It
P2 NycZ  Nyley) P2 o Ty

the difference in temperature 7, — T, is infinitely small and
equal to d7, we get the expression
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This expression can, however, only be expected to be valid
when we can disregard the number of the mutual impacts
of the molecules as compared with the number of impacts
against the walls of the tubes, or, in other words, when
the cross-section dimensions of the tube are negligible
compared with the mean free path 4 of the gas molecules.

If this requirement is not satisfied, %U may be expected

Al

to be less than L and for a cylindrical tube with

2T
. . d .
radius r it may be expected that %P Will decrease when
. 2r 2r
the ratio 7'1 increases. For the case when )_r is small

compared with 1, I have previously® given the following
condition of equilibrium

dp _ 1 de
p 1 +%{ c
Since @ = g the expression is transformed into
o a4 ar
Poogger2l
i

For the correctness of this expression I have previously,
1. c., endeavoured to give reasons. These do not now seem
to me to be conclusive. Hence I will for the time being
substitute an unknown factor for the factor 2 in the de-
nominator.

In all cases in which r is not negligible compared
with 4 there will be currents in the tube in the state of
equilibrium. A current along the wall of the tube from
the cold to the warm end will cause the pressure at the
warm end to be greater than that at the cold end, and

! Martin Knudsen, Ann. d. Phys. Bd. 31, p. 223, 1910.
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this gradient of pressure will cause a current to flow along
the axis of the tube from the warm to the cold end.

For the momentam M received by each surface unit of
the tube owing to the molecular velocity ¢ varying through
the tube, I have previously® given an expression which
with a slight transcription gives

3

-, dc
M = —ﬁpglclﬁkl

where ¢, denotes the density of the gas at a pressure of
1 bar and the temperature 7, while dl denotes an element

of the length of the tube. & is a quantity which for very

small values of )L may be put equal to 1 and increases

with increasing values of T to a limit which according to

previous measurements lies between 2 and 3.

Since
- /8 dT 3 .1dT
e=1 l/ nd = = =g we get M = ~39 p? T dl Iy
For the momentum B received by each surface unit in
. d
each second when the pressure gradient d[l) produces a

current at constant temperature, calculation and experi-

"; ‘/87/

.-1

ments give

where 4 denotes the coefficient of viscosity which is con-
nected ‘with 1 by the equation

l/ﬂ so that B: ﬁl——gﬁ
Pl/@l 60,49 7 dl

¢ Martin Knudsen, Ann. d. Phys. Bd. 31, p. 214, 1910.

5
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If temperature gradient and current are found at the same
time, each length unit of the tube will receive the mo-
mentum 27 r (M- B) so that the condition of equilibrium

will be 27 r(M+B) -+ dp = (. Hence, by the insertion

dl
~of M and B we get
dp _ 1 . P
dT"g].g ZEOBll_f 2T
3 Iy A 160,49 Kk A%

By a previous® series of experiments I have shown that
. . r.
this expression may be assumed to be correct when ;s
large.
An expression of this form and the expression given

for small values of —- may be embodied in the followmg

(3

dp 1

i

and it may then be expected that « for small values of

_P_
2T

]i. will be of the same order of size as 1. For if we put

!

a’ = 1, the expression will be identical with the above-
mentioned dl B —1~_ J_L
ar 1+2% 2T

If we compare the equalion containing e’ with that into
which X; enters, we should expect a’ to decrease with in-

. r . . .
creasing values of --. The following expression satisfies

y)
this requirement .
1+b%
a =a—— where b < c.
1+ ci

Y}
! Martin Knudsen, Ann. d. Phys. Bd. 33, p. 1435, 1910.
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If we insert this value for a', we get the following general

formula for the thermal molecular pressure

dp _ 1 P
dT 27"
11+b7_ : )
l—l-az ' :
1+CI

The mean free path 4 is, however, a function of p and T.
We have Ap = A; where A, is the mean free path at a
pressure of 1 bar and the temperature 7. For the tempera-
ture interval at which my measurements were made the
temperature dependency of the viscosity of hydrogen is
given by the formula

T 0,682
1= ()

/T EL<_T_>%
049| 81/9 049 8]/% 273

where ¢, is the density of the hydrogen at the pressure

and since

1 bar and the temperature of melting ice (T = 273%), we get

1_ p
i 1 - 7o T \L182
0,49 ) 8 Voo <273>
Putting for hydrogen
—= = 8,933
, V@o
we get ) 975 \L18
2_008753P<T> . 2

Determination of the Constants in the General Formula
for the Thermal Molecular Pressure.

Having tried various formulas I have chosen the one

given above as that which with the fewest constants agrees
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best with the expe'rimental material at the mean tempera-
ture 20.1° centigrade. If we remember that, when describing

the results of our measurements, we put

o1l o 1

p pdT n

we should according to formula (1) be able to put

ry 2
1+bt
dp 1 P r A
—_— = — s e y fmasy 1 a
T —n 27 where u -+ '11_;_ T
i
N 2" 1,182
and 4 = 0,08753 - p- r( }3> .

By formation of differences in the table containing 3—1 as
r
i
provisional values for the constants a = 2.212, b = 2.85,

a function of p and thence of - were found the following

¢ = 20.0. These constants which must be expected to be
influenced by the errors due to summation and to the use
of earlier and uncertain observalions, must now be im-

proved, these sources of error being avoided. This is done

. . / .
by returning to-the directly observed values 104;)-/;/}7 T given

in the table. From this series a new series is formed by
multiplication with 10~*-2 T, where T is the mean tempera-
Ap

pdT
which is regarded as the quantity observed at each single

ture 293.1°. In this way we get a value for 27

pressure.

Forming U from u by replacing r by R we get

Ap 11

9 =
sz/T u U
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that is to say, an equation for each of the ohservations
of the table. From these equations a, b and c¢ are deter-
mined by the method of least squares, and thus we find

a = 2,46 b =315 c = 24.6.

In this calculation it is supposed that all the measurements
of 2 T—{]LT have been made with equal accuracy, so that
occurrili]g systematical errors will influence the constants.

Hence the result of the investigation is that the thermal
molecular pressure in a circularly cylindrical tube with

the radius r may be expressed as follows

dp _ 1 P
_ — L
ar 1131550\ 27

142,46 4

r,
A 1+24,6;—'

when putting for hydrogen

1 0,08753p<

273 1,182
2 > :

T

In the case of such great temperature differences that the
differential formula cannot be directly applied, an inte-
gration may be undertaken, the last equation giving

dp _ 1,182dT dJ
r T A

which, inserted in the last but one, gives
ar  di 1

S PR
u

If in this we insert the value found for n the result will

be an equation which can easily be integrated. Such an
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integration between the limits 293° 4-20° showed that we
are entirely warranted in applying the differential formula
without integration within these limits.

In order to investigate how the experimental results
are rendered by the differential formula with the constants
found the following table was calculated.

A
P Z 2T p JPT observed—
Bar at 20° C. calculated
observed calculated
19082 41,22 0,00463 0,00464 — 0,00001
9904 21,39 0,01486 0,01486 0,00000
5140 11,103 0,0437 0,0425 40,0012
2668 5,763 0,0986 0,1024 — 0,0038
1385 2,991 0,195 0,196 — 0,001
718,7 ; 1,552 0,287 0,285 -+ 0,002
373,0 . 0,8057 0,318 0,317 -+ 0,001
193,6 5 0,4182 0,276 0,278 — 0,002
100,5 0,2170 0,204 0,207 — 0,003
52,15 0,1126 0,149 0,146 4 0,003
27,07 0,0585 0,105 0,107 — 0,002

From the above table it will be seen that the general
‘formula gives a very good representation of the experi-
mental results within the range investigated. The differences
between the observed and the calculated values is of the
order of 1 p. c. of the observed values except for the ob-
servation made at the pressure of 2668 bar, where the
difference amounts to almost 4 p. ¢. This may possibly be
due to an incorrect determination of the pressure which
is confirmed by the following.

As it would be of interest to investigate other tempera-

tures, two other series of experiments were made, simul-
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taneously with those between 0° and 40° at the same
pressures. In one of these the one bath was scraped ice,
the other a mixture of carbonic acid and ether. The
temperature of this mixture was put at —~78.5C. In the
second series of experiments liquid air was used in one
bath, while the other was again a mixture of carbonic acid
and ether. The temperature of the liquid air was deter-
mined by means of the usual small floats. In these two
4p

series of measurements the quantity 2 Tm given in the

following tables was again determined. For comparisdn
with the general formula le—% was calculated by inte-
gration and the result subtracted from the observed values
for 2T§%. The mean temperature T (absolute) of the
baths used is also given in the tables, as well as the

values i— calculated from p and T.

= 233.75° T = 138.3°

Ice and Carbonic Acid Carbonic Acid and Liquid Air
D - : _
r 9 Tﬂ observed- r 9 T——d—}L observed—
A pAd T | calculated 2 p AT | calculated

19082 53,87 0,0031 | 40,0003 ||100,18 0,0010 | -+ 0,0002
9920 28,00 0,0093 0,0000 || 52,08 0,0031 | 40,0001
5142 14,52 0,0288 | 40,0007 | 27,00 0,0008 | — 0,0001

2705 7,636 0,067 — 0,005 | 14,20 0,025 — 0,003
1389 3,921 0,153 — 0,001 7,202 | 0,071 — 0,004
718,6 || 2,029 0,255 -+ 0,004 3,773 | 0,151 — 0,007
373,5 || 1,054 0,313 -+ 0,004 1,961 | 0,254 -- 0,001
193,2 || 0,5454 ¢ 0,203 - 0,001 1,014 | 0,301 0,000
100,8 || 0,2844 | 0,227 — 0,001 0,529 ; 0,274 — 0,002
52,22| 0,1474 | 0,170 -~ 0,009 0,274 | 0,217 — 0,005

27,15| 0,0766 | 0,117 4+ 0,001 0,143 | 0,157 -+ 0,008
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The differences between the observed and the calculated
values are not any greater than might reasonably be ex-
pected. A systematic course in the differences only appears
in the series with carbonic acid and liquid air and is not
marked enough to give reasons for a change of the con-
stants in the general formula. The greatest percentage
difference hetween the observed and the calculated values
appears in both series at a pressure of 2705 bar, that is
to say, at the same pressure at which the greatest deviation
in the series 40°-ice was found. This would seem to
indicate that an error has crept in in the determination
of the pressure, which is not, however, so great that we
should feel justified in leaving the observations at this
pressure out of consideration.

In order to investigate the thermal molecular pressure
at higher temperatures a series of experiments were con-

ducted at a mean {emperature of abt. 260°. The values

observed for 2 T i/pT here proved to be abt. 10 p. c. lower
than those calculated by the formula given above. For
pressures higher than 1000 bar this discrepancy is chiefly
due to the fact that the temperature dependency given in

T \0.682
ﬂ) is not valid at high tempera-

tures. Breitenbach’s” exponent 0.5832 instead of 0.682 would

the formula ¢ = 7;0<

give a considerably befter correspondence. At lower pres-
sures such an alteration of the exponent will not, how-
ever, greatly alter the calculated values, and the explanation
may be perhaps that the harmful adsorption phenomena
make their influence more felt at high than at low tempera-
tures because the adsorption processes take place more
rapidly in the first case. '

! Breitenbach, Ann. d. Phys. Bd. 67, 1899, p. 817.
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In the above I have mentioned that as a guide in the
formation of the general empirical differential formula I

used the theoretical expression
b _ 1 p

dT 1+2r T

|
(&

which I thought must hold good when r is very small
but not negligible compared with /4. For this case the
empirical formula gives

dp_ 1

dar

v
2T.
1+2a T

r
X
If the theoretical formula were correct, the measurements
should thus have given a = 1. They have, however, given
a = 2,46, which is a considerable discrepancy. Whether
this is due to an incorrect determination of the quantity a
" on account of adsorption phenomena or whether some
error attaches to the theoretical formula I dare not say.

In order to elucidate this latter question, a theoretical
derivation of the formula ought to be made, based solely
on the kinetic theory of gases. Such a derivation would
presumably be very difficult in the general case, but would
seem feasible here where we are considering the case
of r being small compared with 4. In case this calculation
were made and in case it would in future be possible
to avoid the adsorption phenomena so that a could be
determined with sufficient accuracy, this method presents
a direct measurement of 4, this quantity, the mean free
path, of which it is now hardly possible to give an exact
definition, would in that case be directly compared with

the radius r of the tube, and we should have another
Vidensk. Sclsk, Matli.-fys, Medd. VIIL, 3. 3
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means of obtaining information of the direction in which
the molecules moved after the so-called mutual impacts.

With regard to the influence of the adsorption the fol-
lowing remark may be made. In the way the apparatus
was arranged we can hardly suppose that it contained
mercury in other places than in the trap which was cooled
in liquid air. It may be supposed, however, that there
will be adsorbed water all over the walls of the glass,
which will pass at an extremely slow rate towards the
trap with liquid air, This passage will presumably be so
slow and regular when the temperature of the apparatus
is kept constant that the hydrogen pressure will practically
be the same throughout. Otherwise when the joint of a
tube is heated or cooled. In the former case water is
liberated from the walls, in the latter case water is ad-
sorbed. Both processes will produce currents which are
different in the wide tube from those in the narrow tube,
and these currents may be expected to produce differences -
in pressure which will become sources of error in the
measurements.

Finally, it cannot be precluded that the hydrogen it-
self may to some extent be adsorbed to the glass wall.
Even if such an adsorption is not appreciably altered at
the small differences of temperature employed in the ex-
periments, it will, however, cause 4 to be smaller close to
the wall of the tube than it is at the axis of the tube,
and thus explain that the constant ¢ has been found
greater than 1.

It might perbaps be supposed that the harmful effect
of the adsorption phenomena would appear less at high
than at low temperatares. My measurements do not indicate

this, however. The adsorption phenomena cause currents
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in the tubes lasting at least twenty-four hours and pro-
bably several days and nights, so that a stationary con-
dition is not obtained within a reasonable time. Hence it
is a reasonable supposition that even if the adsorbed
masses are much smaller at high than at low tempera-
tures, the liberation of adsorbed substance at increased
temperature will take place at a much quicker rate with
a high than with a low temperature, and produce just as

strong or perhaps stronger currents in the tubes.

In the execution of the above-described measurements
and calculations Mr. K. Thiesen and Mr. G. Nergaard have
rendered much valuable assistance for which I offer sincere
thanks. My grateful acknowledgments are also due to the
directors of the Carlsberg Fund who have granted financial
aid without which it would have heen impossible for me
to carry through these investigations.

Forelagt paa Medel den 6. Maj 1927,
Fzerdig fra Trykkeriet den 30. Juni 1927.
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