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Introduction .

T f a gas is enclosed in two vessels communicating with

1 each other by a tube, the gas will, as known, be i n

equilibrium if its pressure is of the saine magnitude through -

out. True, this condition of equilibrium only holds goo d

if we disregard the differences in pressure produced by

the effect of gravity. This we will do in the following . If

the two vessels are given a different temperature, the con-

dition of equilibrium will still hold good in many cases ,

even if the temperature is varied through the communi-

cation tube, and this fact is made use of, e . g. in the gas

thermometer, it being a well-known fact that the gas i n

the manometer may have a temperature quite differen t

from the gas in the thermometer bulb .

If, however, we employ the word equilibrium as a term

for the state in which the amounts of the masses of ga s

found in the two vessels do not change any more if the

temperature of the vessels remains unchanged, the con-

dition of equilibrium mentioned may in certain cases be -

come quite wrong. This was already shown by O. Rey-

nolds 1 , who by means of the kinetic theory derives the
1 ~

equation pl - (1 J as valid in the case of p i and T1
pz

	

T2
being pressure and temperature respectively on one sid e

of a porous plate, while p2 and T2, are the corresponding

' O . Reynolds, Phil . Trans . p . 727, London 1879 .
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qûantities on the other side of the plate. Putting pi = p2

and T1 different from T2 the gas will not be in equilibrium ,

there will be a flow of gas through the plate from the

cold to the warm side. This flow of gas which Reynold s

called "thermical transpiration" was demonstrated experi-

mentally by Reynolds himself in experiments with plate s

of gypsum and meerschaum . The temperatures Ti and T2

were not, however, measured directly, so that Reynold s

did not obtain a numerical confirmation of the equatio n

given above. Such a confirmation I have achieved by mean s

of a glass tube in which a magnesia plug had been firml y

fixed, and the thermical transpiration was demonstrated i n

the following way .

I used a vessel holding from 1/2 to 1 litre, and which

was made of porous porcelain (a filtration bulb) . The neck

was closed with a rubber-stopper through which was

passed a glass tube ending under a water surface. The

gas in. the bulb was heated by an electric current sent

through a coil placed inside the bulb . The walls of the

bulb being thus heated from the inside, and continuall y

cooled on the outer side, a fall of temperature will tak e

place in the porous wall, and this will cause gas to b e

sucked through the wall into the bulb . Gas bubbles wil l

then rise through the surface of the water so that, in th e

course of a few minutes, more gas can be collected tha n

the porous vessel holds . It will be noted too that the flo w

of gas will continue with constant velocity as long as th e

temperatures on the inner and outer sides of the wall s

are kept constant, and that the velocity increases whe n

the heating current is increased or the cooling velocity o f

the bulb is augmented by blowing cold air on to it .

The condition of equilibrium stated by Reynolds is,
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however, only valid when the effect of the collision of th e

molecules with each other as compared with the numbe r

of the impacts with the tube walls may be disregarded ,

or, in other words, when the cross-section dimensions of

the tube are negligible compared with the mean free path 2

of the gas molecules . For a cylindrical tube with the

radius r the quantity - must thus be negligible compared

with 1 if Reynolds' formula is to hold good .

If i is negligible compared with r, the condition of

equilibrium will, as known, be that the pressure is th e

same throughout the whole system whatever is the distri-

bution of the temperature .

The case when 2, is small but not negligible compare d

with r has been theoretically dealt with by MAXWEL L

who made use of the results of KUNDT and WARBURG' S

experiments on the slipping of the gases . By a consider-

ation which I have formerly 2 explained I have arrived a t

a relation which formally agrees perfectly with Maxwell's .

The constants found by me deviate somewhat from thos e

found by Maxwell . A series of experiments previously made

by me shows that the formulas in question are formally

right, but that the constants found by experiments ar e

again somewhat different from the theoretical ones, which

is easily explained.

The theoretically found formula corroborated by experi-

ment may be written as follows :

131 2
13

22 = c (T12 - T2 2) ,

where p i and Tl are the pressure and absolute temperatur e

in one vessel, 13 2 and T2 the corresponding quantities in

J . Clerk Maxwell, Phil . Trans. p . 231, London 1879 .

Martin Knudsen, Ann . d . Phys . Bd . 31, p . 214, 1910 .
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the other, while c is dependent on the radius of the tub e

and the mean free path 2 of the gas at a pressure of 1 bar.

It may be expected too that c will in some degree be de -

pendent on the temperature . For the cases when r is

either negligible or very large compared with a, we have

neither theoretical nor experimental investigations of th e

relation between p and T, yet a knowledge of this relation

may be of great importance e . g. when the gas thermo-

meter is to be used to measure the lowest temperature s

that can now be produced .

In the following I shall give an account of a series o f

experiments performed by me for the purpose of learnin g

more of this relation .

Experiments with the Gas Thermometer .

To solve the problem mentioned above I have trie d

using a gas thermometer and carrying out measurement s

e8

	

at constant pressure

•

	

and varying volume .

The glass apparatusr

	

is sketched in fig. 1 .

Air

	

The volume V of the

thermometer tub e

V - was measured, and

likewise the radius r

of the communica

- tion tube to the hot-

wire manometer M,

and the volume z/ v of a pipette continued at the botto m

in a graduated tube closed with mercury. H is a stop-coc k

through which hydrogen is introduced into the apparatu s

until the desired pressure is obtained .
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Let us suppose that the whole apparatus has the abso-

lute temperature T1 and that the pipette is filled with

mercury up to the mark a . There will then be the same

pressure pi throughout the apparatus . Now the vessel V is

heated to the temperature T2 while the remaining part of

the apparatus is kept at the temperature T1. The mercury

is made to sink in the pipette until the manometer agai n

shows the initial pressure p l. If the volume of the mano-

meter and communication tube be designated v, and th e

new pressure in the heated vessel p 2 , the expression for

the constancy of the mass of gas gives tha t

p1 V + p i v p 2 V ~ p1 v_=	 + pi a v
T1

	

T1

	

T2

from which we get tha t

p 2 =
T2 /1 vl

p i

	

Ti

	

V
)
J

Here p2 and pi designate the pressures in the communicatio n

tube with the radius r in the state of equilibrium in those

places where the temperatures are T2 and T1 respectively ,

and pi and all quantities on the right side of the sign of

equation being measured, the equation gives the sought

relation between p2 and p t .

We know that for large values of the pressure, that i s

to say abt . 1 cm. mercury pressure, we ought to find p 2 = p i ,
and that for small values of the pressure, that is to say

	

small values of

	

we ought to find small deviations from

the equation P2

= V T22 The first of these requirements

	

p1

	

Ti
was fairly well satisfied, which showed that the errors o f

observation were small . But from the second equation such
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great deviations appeared that the method must be con-

sidered unsuitable .

The reason for this is . that in each measurement great

accuracy in the determination both of temperatures and

volumes must be demanded, but of decisive importanc e

are the adsorption phenomena that manifest themselve s

vigorously at lower pressures . This source of error I hav e

not been able to eliminate, and my experiments seem t o

me to have shown that the gas thermometer is not suite d

for temperature measurements when the gas pressure i n

the vessel must necessarily be very low. Heating of the

thermometer bulb and the use of Geräte glass somewhat

reduced the error, though far from sufficiently .

Plan of the Experimental Investigation .

The method used for the final series of measurement s

was the following .

M (fig. 2) is a hot-wire manometer as previously de -

scribed'. By a series of glass tubes of unequal widths th e

	 X	 I

K Ps	 På	 To

manometer is connected with a large glass vessel the volum e

of which has been measured to be V o . The widest tube s

1 Martin Knudsen : Det Kgl . Danske Videnskabernes Selskab . Mathe-

matisk-fysiske Meddelelser VII, 15, 1927 .
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in the system have a radius of abt . 1 mm. The two piece s

of tubing marked R in the figure have equal radii :

R = 0.099655 cm.

and the two pieces of tubing marked r have equal radii, viz .

r = 0.026845 cm .

These four pieces of tubing were as circularly cylindrical

as they could be found in a large collection of tubes . Their

upper joints, which during the experiments should hav e

the same temperature, were surrounded by a rather larg e

water bath, K, contained in a rectangular copper box. The

vessel with the volume V0 , abt. 1 .2 litres, was likewise

placed in a water bath the walls of which were well in-

sulating for heat . Y is a pipette, the gauge vessel, place d

in a water bath. It may be filled with and emptied o f

mercury through the tube at the bottom, and it serves to

calibrate the hot-wire manometer, its volume between th e

marks being measured to 8 .8746 cm 3. F is a trap which

is kept in liquid air during the experiments, and L is a

mercury seal with a ground glass float which can shu t

off the apparatus from the pipette system serving to intro -

duce a gas of known pressure into the apparatus . Th e

glass float very effectually prevents the penetration of mer-

cury vapours into the apparatus, and the tube below the

small gauge vessel is very narrow, so that by this way

too the entrance of mercury vapours will be negligible .

During the first measurement on the potentiometer th e

two joints between the tubes R and r are placed each in

a separate bath, the temperatures of which are measure d

or known. Thereupon the two baths are interchanged and

a second measurement is made . From the two measure-

ments the ratio between the two pressures may be found .
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pressures of the gas coh -

tained in the tube will b e

F13

	

different at the two ends .

If they be designated p i

and P2, as indicated in the figure, p i - p2 , i . e . the quantity

which I term the thermal molecular pressure will diffe r

from 0 when Ti - T2 does so .

We may know beforehand that the thermal molecula r

pressure must be a very complicated function of th e

temperature, the pressure, and the radius of the tube ,

therefore I have considered it advisable to make a serie s

of measurements at such small temperature difference s

that p i - p2 may with sufficient approximation be put pro-

portional to Ti - T2 at all pressures . Hence for the tube

with the radius r we put pl - p2 = [(T1 - T2), and for

the tube with the radius R we put p i - p2 = F (T1 - T2) ,

on the assumption that the mean pressures in the tw o

tubes may with approximation be put equal .

With the designations of pressures and temperature s

given in fig. 2 we may then note the following set o f

equations :
Pi -po = f (Ti - To)

P'2- Pt = F (T0 - T1)
P2 -P2 = F(T2 -To)
P4-P2= f(To -T5 )

P -P4 = F(7 3 -T0)

If now we interchange the two baths whose temperature s

were designated T1 and T2 , the pressures will chang e

Let fig . 3 be a circularly cylindrical tube closed at bot h

ends. Let the radius of the tube be r and let one end of

it have the absolute temperature T1 , the other T2. In the

state of equilibrium the
Ts pr

	

12p2
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throughout except in the large vessel Vo for compared to

its volume the rest of the volumes are negligible . If the

new pressures are designated p with the same indice s

which P had before, we shall get the following set o f

equations :

If the two sets of equations are added separately, we get :

P -po = F(T2 -T1 ) f(Tl -T2) +F(T3 -Iå)

P Po

	

F(I'1 -- T2 ) +f(T2 -T7)-I-F(T3 -To) ,

from which by subtraction

2 (P-p) = (f F) (T, - T2 )

1
and hence,

2
(P-p) being designated by zip and T1 - T2

by zIT,

The quantity f may be characterised as being equal t o

dT in the tube with the radius r, while F is equal to dT
in the tube with radius R, in which the pressure is very

nearly equal to that in the first-mentioned tube .

In the series of experiments in question in which F

and f were determined, the temperatures (To -273') of

the water baths were kept at 20° centigrade . T1 was kept

at the temperature of melting ice, the bath consisting of

scraped ice in a Dewar vessel . 'T2. was kept 40° higher b y

a water bath which was continually stirred by a curren t

P1 - Po = f( T2 -To )

p '2-p i = F (To- T2 )

P2 -P2 = F(Ti- To )

P4P2 = f(To- Tl )

p -P4 - F ( T 3 - To)

zip
f-F

= z/T
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of air, while the loss of heat to the surroundings wa s

compensated by electric heating . The temperature of this

bath was read on a mercury thermometer graded r/io and

bent in an angle so that it could be placed under the

copper box K. The two baths were both placed on a re-

volving stand, so that they could be easily and quickl y

interchanged.

The temperature of the manometer was throughout tha t

of melting ice, but as will be seen, neither this temperatur e

nor To, that of the water baths, enters into the equatio n

by which f-F is determined . Besides this the method

further presents the advantage that the volumes changin g

temperatures are not altered by the interchange, and thu s

changes in pressure caused by Gay-Lussac's expansion are

avoided. Finally, what is most essential is that the areas of

the glass surfaces subjected to the changes in temperature

is here reduced to a minimum of abt . 8 cm'. For it is only

in the comparatively narrow and short pieces of tubin g

that the temperature changes cause the harmful adsorption

phenomena .

Example of a Measurement .

All measurements were, in all essentials, made in the

same manner, so we shall here only describe one chosen

at random from the entire material .

The whole apparatus with pipette system and mercur y

manometer was exhausted by means of a mercury diffusio n

pump . Between this and the apparatus was inserted a tra p

cooled in liquid air . When after pumping for a short tim e

the apparatus was almost devoid of air, electric heatin g

coils were placed round each of the bends of the tube s

under the copper box . Thus these tubes were baked out,
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being kept heated to a temperature of abt . 330° centigrade

for 10-12 hours while the pump was at work now and

then. This heating was intended to diminish the harmful

adsorption effects, and was to some extent successful ,

though unfortunately not absolutely . The tubes used were

of good Thüring glass, an experiment with Geräte glass

and Pyrex glass having shown that these kinds did not

present such advantages that it would be profitable to us e

them.

When the heating was finished and also the exhaustion ,

the result of which was followed on the hot wire mano-

meter and in some cases on an absolute manometer,

hydrogen was brought into the apparatus . This hydrogen

was taken from a steel receptacle and had been teste d

and proved sufficiently pure . It was dried by passing

through a trap cooled in liquid air . Its influx could be s o

accurately regulated that the desired pressure in the mer-

cury manometer could be produced with great approxim-

ation. In the experiment to be described here the readin g

on the mercury manometer was 21 .514 cm. mercury pres -

sure at 20° . By means of the pipette system a fraction

hereof was introduced into the apparatus, liquid air bein g

placed round the trap F (fig . 2) . From the known volumes

of the pipette system and the apparatus the pressure in

the apparatus was found to be 718 .6 bar. The mercury

seal L (fig. 2) was closed, and a water bath of 20° centi-

grade placed round both bends of the tubes, r and R .

The resistance of the manometer wire was 743 .3 ohm s

at 0°. Wheatstone's bridge was adjusted so that there would

be no current in its galvanometer when the wire was

heated so much that its resistance would be 900 ohms .

The mean temperature of the wire is then abt. 60° centi-
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grade. The potentiometer whose total resistance was 1100 0

ohms was shunted with a resistance of 310 ohms in order

to obtain a suitably large reading (between 9000 an d

10000 ohms) . This is of importance for the interpolation

which is made by measuring the deflection of the galvano -

meter mirror caused by a change of 1 ohm in the potentio-

meter .

The table below shows a column indicating the hou r

when the measurements were made . The next two column s

show the temperatures ti and 12 in degrees centigrade o f

the baths surrounding the bends of the tubes, and unde r

Comp., finally, are given the readings on the potentiometer .

Time ti l 2 Comp .

11h45 20° 20° 9656,97

57 40°,63 0° 9745,47

1 2 11 10 0° 40°,40 9568,88

23 40°,58 0° 9745,10

35 20° 20° 9656,32

47 0° 40°,54 9568,60

59 40°,40 0° 9744,32

1 h11 0° 40°,20 9568,92

24 20° 20° 9655,14

From this series it will be seen that the measurements

were made at very nearly equal intervals of time . This

was done on account of the adsorption effects . Between

the measurements are interposed some with both bends

of the tubes at the same temperature 20° so as to follow

the slow changes of pressure in the apparatus . It was a s

far as possible attempted to do away with these by grouping
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the measurements three and three together as shown in

the table .

By taking means the table is reduced to the following tw o

ti t 2 Comp .
J Comp. =

Mean values
4 Comp .

	

4 Comp .
Comp .t tzComp .ao, zo

t l - t2 t l -t2
20° 20° 9656,65

40°,61 0° 9745,29 + 88,64 2,1827

0° 40°,40 9568,88 -87,77 2,1725
2,1776

20° 20° 9655,73

40°,40 0° 9744,32 + 88,59 . 2,1928

0° 40°,37 9568,76 -86,97 2,1543
2,1736

The two measurements made independently of each other ,

and which were almost independent of the measurements

at 20°, 20°, have thus given the following values for
z/ Comp.

In connection with these measurements gaugings were

made, as a rule two, one before and the other after the

measurements at different temperatures had been made .

During the gauging measurements the bends of the tubes

were kept at the same temperature abt . 20°, both bend s

being placed in a single large water bath . In connection

with the above-mentioned measurements the followin g

gauge-measurements were made, partly with the gaug e

vessel Y empty (fig. 2) partly when it was filled with

mercury

tl-t2 '

2.1776 and 2 .1736, hence the mean value, 4-4 being de -

signated by .1 T.

A Comp .
T = 2.1756 = Measurement.
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Comp .

	

Mean
Comp .

	

(empty-full)

	

cl Comp .
Y empty	 9655,1 4

Y full	 9622,79

	

32,28

Y empty	 9655,00

32,30 = gaug e
Y empty	 9650,49

Y full	 9618,04

	

32,32

Y empty	 9650,22

The compensation change thus produced, viz . d Comp .

= 32 .30 = gauge is due to the fact that the volume V

= 1219.04 + 8 .8746 cm 3 of the gas content of the whole ap-

paratus has been diminished by the volume dv = 8.8746 cm 3

of the gauge vessel . This reduction of the volume produce s

an increase of the pressure dp which, when the pressure

in the apparatus is designated p, is determined b y

dp _ 8.8746
= 0.007280 .

p

	

1219.04

Since here, where the relative changes are small, we

can put the changes in pressure proportional to the change s

in compensation we ge t

z/ p _ a Comp.
=

	

measurement
dp

	

d Comp. - ~̀ T

	

gaug e

and consequentl y

104
d p

= 72 80 . measuremen t
p zI T

	

gauge

In the example here considered, where measurement = 2 .1756

and gauge = 32 .30 we thus get

10 4p1/T = 4.904 .
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Such a determination was made at eleven different pres -

sures p, which very nearly .formed a geometrical pro-

gression, 19082 bar being the highest pressure and 27 .1 5

the lowest, while the quotient was equal to the square roo t

of the ratio between the radii of the two tubes used in

the apparatus. Judging from repetitions following imme-

diately after one another the uncertainty of the value s

found only amounts to a few per mille, but as we shal l

see later, the real uncertainty is much greater, especiall y

at low pressures .

Results of the Measurements and their provisiona l
Treatment .

The measurements made with the temperatures 0 an d

40 degrees centigrade at various pressures p ' gave the

following values for 104	
ap

p
number n= 0

	

1

	

2

	

3

	

4

	

5

p ' Bar

	

= 19082

	

9920

	

5142

	

2705 1388,9 718,6

104	
d,IpT

= 0,0790 0,2528 0,7456 1,648 3,314 4,90 4
p'

number n= 6

	

7

	

8

	

9

	

1 0

p ' Bar

	

= 373,5

	

193,2

	

100,76

	

52,22

	

27,1 5

10 4 p	
T

= 5,424

	

4,719

	

3,481

	

2,542

	

1,78 6

The measured values of p ' agree very closely with the

pressures calculated from the formula p = po R I2 so that

interpolations may be made with great certainty which

give 10 4p d	 T for the pressures p given in the geometrica l

progression . The interpolated values are given in the fol -

lowing table, together with some other quantities to b e

mentioned later on .
Vidensk. Sels]. Math : fys. Medd. VIII.3 . 2
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p °P10° 104 f 1 - 2 1'f

p JTBar p u

	

p

19082 0,0790 0,0857 0,00502

9904 0,2537 0,2774 0,01626

5140 0,7464 0,8321 0,04878

2668 1,678 1,955 0,1146

1385 3,323 4,155 0,2436

718,7 4,904 6,859 0,402 1

373,0 5,422 9,577 0,561 4

193,6 4,724 11,583 0,6790

100,5 3,474 13,051 0,7650

52,15 2,542 14,125 0,8280

27,07 1,782 14,833 0,8695

For the further treatment of the observation series we re -

mind the reader that for a tube with radius r, in which

there is the pressure gradient dp originating from the

temperature gradient dT, we have put dp = f, while for

the wide tube with radius R we put dp = F.

Further it was proved that

f
-I.

1
zip

T
or

10 4

E

- 104E = 104Ep
where zip and /IT are just the quantities that with th e

same designation enter into the tabulated values for 10 4-LIP

Hence we may consider f-F as the quantity observed at

different pressures. Our problem is now to find both f

and F from the differences observed, which may be don e

by theoretical considerations that have been found tenabl e

by previous experiments .
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For a tube with the radius r I have previously' found

an expression for f or dT
which by inserting the constant s

gives
	 0,0299 6
r+ 0,01191r 2p .

If r in this expression be replaced by R, we get F, an d

from the values thus found we calculate 10 4 f and 104-F
P

	

P
and from these again 1.0 4 f -104

1 , which is a provisionally
P

	

P

found value for 10 4 p~T . If we compare the values of

10 4	 T thus calculated with those observed, we find, i n

the case of the. three greatest pressures, deviations no t
amounting to more than 5 p . c. of the values. For a

pressure of 19082 bar 104 F is calculated to be 0 .0067 and
P

for, a pressure of 9904 bar 104 F is calculated to be 0 .0237 .
P

Having 104 f--104 F = 104 `1P -, we find by adding th e
P

	

P

	

P i i
calculated values for 104- to those observed for I04ÅÅP-

P
that for the pressure s

9904 bar we get 10 4 f = 0.2774.
P

These values have been tabulated and are employed ta

calculate the rest of the values given for 10 4 f
P

In this calculation we avail ourselves of the fact that

at the pressure 19082 is equal top at the pressure

19082 - R, that is to say, at the pressure 5140, for whic h

we have an observation of 10 4 --104 -.-104
-

. Hence to this
P

	

P
i Martin Knudsen, Ann . d . Phys . Bd. 33, p . 1444, 1910 .

19082 bar we get 10 4 f = 0.085 7
and for

	

p

2*
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observation, the tabulated 0 .7464, we need only add 0 .085 7

to find 1 04 -f valid for the pressure 5140 . This proceeding
P

is continued throughout the table so that for each pressure

we have the corresponding value for 1 0 4 f . In view of the
P

following calculations and considerations the next colum n

in the table is formed, 1 = 2T . f where T is the mean
u

	

p
temperature 293.1° at which the measurements were made .

The quantities 1 thus calculated indicate how great is th e

effect of the thermal molecular pressure in a tube of th e

given radius r.

The formula f =	
0,02996

	

warrants this pro-r+0,01191r 2p

ceeding in the case of the large pressures. Hence for a

tube with radius r and

radius R and pressure P we hav e

F

	

0,1)2996
and P =	

RP + 0,01191 (RP)2' Fro
m

when rp = RP which was just what was made use of i n

the calculation .

That this proceeding holds good for all pressures may

be seen by the following consideration . We will take i t

for granted that when a closed circularly cylindrical tube ,

containing a gas at the pressure p, has different tempera -

tures at the two ends, the difference in pressure foun d

between the two ends in the state of equilibrium will b e

independent of the way in which the temperature varie s

from end to end . From this it follows that when an in -

crease of temperature dT is found on the length dl of the

tube, this will involve an increase of pressure dp, which

is independent of dl, but determined by other quantities .

What these are may be determined by considering th e

pressure p and another wit h

f

	

0,02996

p

	

rp + 0,01191 (rp) 2
t

this we see that f =
P
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dp

quantity
dT'

This quantity is dependent both on the di-

T
mensions of the tube and on

the gas. Since the dimensions

the physical properties o f

of the tube only comprise

its length and radius

stated, does not influence

as we just

will be the

and since the length ,
dp
d Î"

the radius r

of which dp may be a function.

Ø (r, the physical properties of

only dimension of the tub e
dp

we may put P
dT

_

dp T
the gas) . Since ? is a pure number the physical proper-

T
ties of the gas that can be taken into account can only

be a length L which enters into the equation so that w e
dp

can put T = ~L
)

or 2 Tf = 2 m (f) . If we have a
P

l '
series of tubes of different radii and assume that they al l

of them have the same temperature and all contain hydro-

gen, their hydrogen content will be determined entirel y

by the dimensions of the tubes and the mean free path 2

of the hydrogen. The quantity L in the above-mentioned

formula may therefore be put identical with 2 . If now we

remember that we have p î~ =

	

we get
r

= p and hence

f _ 1 ~/rp

p

	

T \ X r

Here i is the mean free path of the hydrogen at th e

pressure 1 bar and the temperature T, that is to say, in-

dependent of r and p, so the expression shows that whe n

Hence
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r and p vary in such a way that their product is kep t

constant f will remain unaltered at constant temperature .
p

As has been mentioned, the calculations made have been

based on this rule, and it is important in giving expression s

for the thermal molecular pressure to keep to the formul a

dp

	

p r
dT T . '

The tabulated quantity 1 = 2T f = 2T1 d-
is thus a

u

	

p

	

pdT
function of

r
alone, and our next problem will be to fin d

an expression for this functional dependency . For the

solution of this problem it must be remembered that th e

values found in the table for 1 were calculated successively,
u

so that any inaccuracy in one of the measurements a t

high pressures will make its influence felt at all the lower

pressures . For these, therefore, all the errors will be adde d

up. This unfortunate circumstance may, however, be entirel y

avoided, as will be shown in the following .

Theoretical Considerations in the Formatio n
of a Formula for the Thermal Molecular Pressure .

Reynolds' formula, which was given in the introduction ,

may be arrived at by the following simple kinetic con -

sideration . Let N be the number of gas molecules in eac h

cm. 3 , ni the mass of each molecule, and c the molecular

velocity. c' denotes the mean value of the molecular velo-

cities, and c 2 the mean value of the squares of the velo-

cities. n denotes the number of impacts that is to say, th e

number of molecules which in each second passes throug h

a . cm . 2 coming from one side of it . If the pressure of th e

gas be p, its absolute temperature T, and its molecular



Thermal Molecular Pressure in Tubes .

	

2 3

weight M, the kinetic theory in conjunction with the

simple equation of state will give the following fundamenta l

expressions

and it follows from Maxwell's law of the distribution o f

velocities that

3 c =
8
- (c

	

c= 14550

p =3Nmc2 and n =4 N

If we can disregard

the molecules in th e

from place to place ,

state of equilibrium ,

have the same valu e

the two vessels have

the effect of the mutual impacts of

places where the temperature varie s

we have, when the state is to be a

that the number of impacts n mus t

everywhere . For let us suppose tha t

the absolute temperatures T1 and T2 ,

and that the total temperature difference T1 - T2 is found

in a single definite cross-section of the communicatio n

tube. Then, for the molecules coming from one side to -

wards this cross-section we have the number of impacts

II I = 4 N1 c 1 and for those coming from the other side we

have n 2 =
4

N2 c 2 . As it is presupposed that no more mole -

cules pass through the cross-section in one direction than

in the opposite direction, we must have nl = n 2 and hence

N1 c1 = N2 c 2 . From the fundamental equation we

(T
I)

,l .

see that

P1 = N1c 2 -
N1

~ci ~ 2 and consequently p1
=

c1
=

P2

	

N2 c 2

	

N2 (c 2)

	

P2

	

C2

	

2

the difference in temperature T1 - T2 is infinitely small and

equal to dT, we get the expression

dp 1 d T
or

dp p 1

p 2 T

	

dT T 2
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This expression can, however, only be expected to be valid

when we can disregard the number of the mutual impacts

of the molecules as compared with the number of impact s

against the walls of the tubes, or, in other words, whe n

the cross-section dimensions of the tube are negligibl e

compared with the mean free path A. of the gas molecules .

If this requirement is not satisfied, dP
may be expecte d

1dT

	

P
to be less than 2	 T , and for a cylindrical tube wit h

radius r it may be expected that
dp

will decrease when
P

the ratio increases. For the case when
r

is smal l

compared with 1, I have previously' given the followin g

condition of equilibrium

dp

	

1	 d c

P
1+2r

c
A

Since
dc

= 2Ï the expression is transformed int o

dp	 1	 d T

P

	

1_}- 2 r
2 T

A

For the correctness of this expression I have previously ,

1 . c ., endeavoured to give reasons . These do not now see m

to me to be conclusive . Hence I will for the time bein g

substitute an unknown factor for the factor 2 in the de -

nominator .

In all cases in which r is not negligible compare d

with A, there will be currents in the tube in the state o f

equilibrium . A current along the wall of the tube from

the cold to the warm end will cause the pressure at the

warm end to be greater than that at the cold end, an d

' Martin Knudsen, Ann . d . Phys . Bd. 31, p . 223, 1910 .
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this gradient of pressure will cause a current to flow alon g

the axis of the tube from the warm to the cold end .

For the momentum M received by each surface unit o f

the tube owing to the molecular velocity c varying throug h

the tube, I have previously' given an , expression which

with a slight transcription give s

M = - 1 2
3 Tr

	

- d c

8
PQl c ~ dl k,.

where Q1 denotes the density of the gas at a pressure o f

1 bar and the temperature T, while dl denotes an elemen t

of ille length of the tube . kl is a quantity which for very

small values of f may be put equal to 1 and increases

with increasing values of
f

to a limit which according t o

previous measurements lies between 2 and 3.

Since

/8

	

1

	

dc dT

	

3

	

1 d T
e =

	

- and - = 2 T we get M = - 32 p, T dl .Pi

	

c

For the momentum B received by each surface unit i n

each second when the pressure gradient dl produces a

current at constant temperature, calculation and experi-

ments give

where denotes the coefficient of viscosity which is con -

nected with 2 by the equatio n

B _ 3•0,81 rriAT1
r2

dp
32

	

8 Ti
P dl

1

0,49
so that B=

37r 0,81 r2 dp

256 0,49 ~. dl

i Martin Knudsen, .1nn . cl . Phys. Bd. 31, p . 214, 1910 .
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If temperature gradient and current are found at the same

time,. each length unit of the tube will receive the mo-

mentum 2 Tr r (M + B) so that the condition of equilibriu m

will be 2 Tr r (M+ B) + Tr rz d = 0. Hence, by the insertio n

of M and B we get

dp _

	

1

	

p
dT

	

8 1 r Tr 0,81 1 r2 2 T
3 kl ). + 16 0,49 k, P

By a previous' series of experiments I have shown tha t

this expression may be assumed to be correct when
f

i s

large.

An expression of this form and the expression given .

for small values of 7 may be embodied in the following

dp	 1	 p
dT

(1+a, r)2 2
T

and it may then he expected that a ' for small values o f

f will be of the same order of size as 1 . For if we put

a ' = 1, the expression will be identical with the above -

mentioned

which ki enters, we should expect a ' to decrease with in -

creasing values of f . The following expression satisfie s

this requirement

dp

	

1

	

p_ _
dT

	

r 2T '
1+2- .2

If we compare the equation containing a' with that into

1+b ~
a' = a	

1+c-

where b < c.

' Martin Knudsen, Ann . d . Phys . Bd. 33, p . 1435, 1910 .
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If we insert this value for a' , we get the following

formula for the thermal molecular pressur e

dp

	

1

	

p
dT

	

r, 227'
1, 1+b-

The mean free path n, is, however, a function of p and T.

We have 4 = ) where 2. 1 is the mean .free path at a

pressure of 1 bar and the temperature T . For the tempera -

ture interval at which my measurements were made th e

temperature dependency of the viscosity of hydrogen i s

given by the formul a

and since

_ 1 1 rr N _ 1

	

7c

	

T

2'p

	

0,49 1 8 VPl

	

0,49

	

8 j/ Po (273)

where Qo is the density of the hydrogen at the pressur e

1 bar and the temperature of melting ice (T = 273°), we get

1

1

	

n ryf0

	

T
\1,18 2

0,49

	

j/e o (273 ,

Putting for hydrogen

genera l

T O,ß82

X70 (273 )

p

r0 = 8,933
vQ o

À, (2T

) i,la s

= 0,08753 p (\	

we get

(2)

Determination of the Constants in the General Formul a
for the Thermal Molecular Pressure .

Having tried various formulas I have chosen the on e

given above as that which with the fewest constants agrees
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best with the experimental material at the mean tempera-

ture 20 .1 ° centigrade . If we remember that, when describin g

the results of our measurements, we put

2Tt =2T	
dp = 1

p

	

pdT u

we should according to formula (1) be able to pu t

d T u T' where u =
~

1,182

and

	

),
= 0,08753 p r 2

T

By formation of differences in the table containing 1 as
u

a function of p and thence of
f

were found the followin g

provisional values for the constants a = 2 .212, b = 2 .85 ,

c = 20 .0. These constants which must be expected to b e

influenced by the errors due to summation and to the use

of earlier and uncertain observations, must now be im -

proved, these sources of error being avoided . This is done

by returning to the directly observed values 10' - T given

in the table. From this series a new series is formed by

multiplication with 10' . 2T, where T is the mean tempera -
zip

2T -zip _1- 1

p~IT u
u

ture 293.1°. In this way we get a value for 2 Tpj
T

which is regarded as the quantity observed at each singl e

pressure .

Forming U from u by replacing r by R we get
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that is to say, an equation for each of the observation s

of the table. From these equations a, b and c are deter -

mined by the method of least squares, and thus we lind

a = 2 .46

	

b=3 .15

	

c=24.6 .

In this calculation it is supposed that all the measurement s

of 2 T p	 lI, have been made with equal accuracy, so tha t

occurring systematical errors will influence the constants .

Hence the result of the investigation is that the therma l

molecular pressure in a circularly cylindrical tube with

the radius r may be expressed as follows

p
2 T

when putting for hydroge n

1

	

/273`1,182
= 0,08753 p j

In the case of such great temperature differences that the

differential formula cannot be directly applied, an inte -

gration may be undertaken, the last equation givin g

dp

	

1,182 dT d2._

p

	

T

which, inserted in the last but one, give s

dT d?

	

1

2T

	

2,
2364- 1 .

u

If in this we insert the value found for a the result wil l

be an equation which can easily be integrated . Such an
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integration between the limits 293° + 20° showed that w e

are entirely warranted in applying the differential formul a

without integration within these limits .

In order to investigate how the experimental results

are rendered by the differential formula with the constants

found the following table was calculated .

p
r 2 T

zip

observed-p4 T
Bar calculate d

at 20° C .
observed calculate d

19082 41,22 0,00463 0,00464 - 0,0000 1
9904 21,39 0,01486 0,01486 0,0000 0
5140 11,103 0,0437 0,0425 + 0,001 2
2668 5,763 0,0986 0,1024 - 0,0038
1385 2,991 0,195 0,196 - 0,00 1
718,7 1,552 0,287 0,285 + 0,002
373,0 0,8057 0,318 0,317 + 0,00 1
193,6 0,4182 0,276 0,278 -0,002
100,5 0,2170 0,204 0,207 - 0,00 3
52,15 0,1126 0,149 0,146 + 0,003
27,07 0,0585 0,105 0,107 -0,002

From the above table it will be seen that the genera l

formula gives a very good representation of the experi-

mental results within the range investigated . The differences

between the observed and the calculated values is of th e

order of 1 p . c. of the observed values except for the ob-

servation made at the pressure of 2668 bar, where th e

difference amounts to almost 4 p . c . This may possibly be

due to an incorrect determination of the pressure which

is confirmed by the following .

As it would be of interest to investigate other tempera -

tures, two other series of experiments were made, simul -
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taneously with those between 0° and 40°, at the sam e

pressures. In one of these the one bath was scraped ice ,

the other a mixture of carbonic acid and ether . The

temperature of this mixture was put at -78.5 C. In the

second series of experiments liquid air was used in one

bath, while the other was again a mixture of carbonic acid

and ether. The temperature of the liquid air was deter -

mined by means of the usual small floats . In these two

series of measurements the quantity 2 Tp~T given in the

following tables was again determined . For comparison

with the general formula u -Û was calculated by inte -

gration and the result subtracted from the observed value s

for 2 T~7 . The mean temperature T (absolute) of th e

baths used is also given in the tables, as well as the

values
f

calculated from p and T.

T = 233 .75° T = 138 .3 °

Ice and Carbonic Acid Carbonic Acid and Liquid Air

P

r
2T ep

observed-

calculated

r
2T

zip

pdT
observed-

calculate dpa T

19082 53,87 0,0031 =, 0,0003 100,18 0,0010 + 0,0002
9920 28,00 0,0093 0,0000 52,08 0,0031 + 0,000 1
5142 14,52 0,0288 + 0,0007 27,00 0,0098 - 0,000 1
2705 7,636 0,067 - - 0,005 !

	

14,20 0,025 - 0,003
1389 3,921 0,153 - 0,001 7,292 0,071 - 0,00 4
718,6 2,029 0,255 + 0,004 3,773 0,151 - 0,00 7
373,5 1,054 0,313 + 0,004 1,961 0,254 + 0,001
193,2 0,5454 0,293 -F- 0,001 1,014 0,301 0,000
100,8 0,2844 0,227 -0,001 0,529 0,274 - 0,002
52,22 0,1474 0,170 -I- 0,009 0,274 0,217 - 0,005
27,15 0,0766 0,117 + 0,001 0,143 0,157 + 0,008
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The differences between the observed and the calculated

values are not any greater than might reasonably be ex-

pected. A systematic course in the differences only appear s

in the series with carbonic acid and liquid air and is no t

marked enough to give reasons for a change of the con-

stants in the general formula . The greatest percentage

difference between the observed and the calculated value s

appears in both series at a pressure of 2705 bar, that i s

to say, at the same pressure at which the greatest deviatio n

iii the series 40°-ice was found . This would seem t o

indicate that an error has crept in in the determinatio n

of the pressure, which is not, however, so great that w e

should feel justified in leaving the observations at this

pressure out of consideration .

In order to investigate the thermal molecular pressur e

at higher temperatures a series of experiments were con -

ducted at a mean temperature of abt . 260°. The values

observed for 2

	

T here proved to be abt . 10 p . c . lower

than those calculated by the formula given above . For

pressures higher than 1000 bar this discrepancy is chiefl y

due to the fact that the temperature dependency given i n
T

the formula

	

273)

0 .682
is not valid at high tempera -

tures . Breitenbach's 1 exponent 0 .5832 instead of 0 .682 would

give a considerably better correspondence . At lower pres -

sures such an alteration of the exponent will not, how -

ever, greatly alter the calculated values, and the explanatio n

may be perhaps that the harmful adsorption phenomen a

make their influence more felt at high than at low tempera -

tures because the adsorption processes take place more

rapidly in the first case .

' Breitenbach, Ann . d . Phys . Bd. 67, 1899, p . 817 .
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In the above I have mentioned that as a guide in the

formation of the general empirical differential formula I

used the theoretical expressio n

dp _ 1	 p
dT

1+~~
2 T

which I thought must hold good when r is very small

but not negligible compared with. 7. . For this case th e

empirical formula gives

dp 1

	

p
dT r 2T .1+2aß

If the theoretical formula were correct, the measurements

should thus have given a = 1 . They have, however, give n

a = 2 .46, which is a considerable discrepancy. Whether

this is due to an incorrect determination of the quantity a

on account of adsorption phenomena or whether som e

error attaches to the theoretical formula I dare not say .

In order to elucidate this latter question, a theoretica l

derivation of the formula ought to be made, based solel y

on the kinetic theory of gases. Such a derivation would

presumably be very difficult in the general case, but woul d

seem feasible here where we are considering the cas e

of r being small compared with 2 . In case this calculatio n

were made and in case it would in future be possibl e

to avoid the adsorption phenomena so that a could b e

determined with sufficient accuracy, this method present s

a direct measurement of ) , this quantity, the mean free

path, of which it is now hardly possible to give an exac t

definition, would in that case be directly compared wit h

the radius r of the tube, and we should have anothe r
Vidensk . Selsk. M:th .-fys . Medd. VIII, 3 .

	

3
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means of obtaining information of the direction in whic h

the molecules moved after the so-called mutual impacts .

With regard to the influence of the adsorption the fol -

lowing remark may be made . In the way the apparatus

was arranged we can hardly suppose that it containe d

mercury in other places than in the trap which was coole d

in liquid air . It may be supposed, however, that there

will be adsorbed water all over the walls of the glass,

which will pass at an extremely slow rate towards the

trap with liquid air . This passage will presumably be s o

slow and regular when the temperature of the apparatus

is kept constant that the hydrogen pressure will practically

be the same throughout. Otherwise when the joint of a

tube is heated or cooled . In the former case water i s

liberated from the walls, in the latter case water is ad-

sorbed. Both processes will produce currents which are

different in the wide tube from those in the narrow tube ,

and these currents may be expected to produce difference s

in pressure which will become sources of error in th e

measurements .

Finally, it cannot be precluded that the hydrogen it -

self may to some extent be adsorbed to the glass wall .

Even if such an adsorption is not appreciably altered a t

the small differences of temperature employed in the ex-

periments, it will, however, cause a, to be smaller close to

the wall of the tube than it is at the axis of the tube ,

and thus explain that the constant a has been foun d

greater than 1.

It might perhaps be supposed that the harmful effec t

of the adsorption phenomena would appear less at high

than at low temperatures . My measurements do not indicat e

this, however . The adsorption phenomena cause currents
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in the tubes lasting at least twenty-four hours and pro-

bably several days and nights, so that a stationary con-

dition is not obtained within a reasonable time . Hence it

is a reasonable supposition that even if the adsorbed

masses are much smaller at high than at low tempera -

tures, the liberation of adsorbed substance at increase d

temperature will take place at a much quicker rate with

a high than with a low temperature, and produce just a s

strong or perhaps stronger currents in the tubes .

In the execution of the above-described measurements

and calculations Mr. K . Thiesen and Mr. G. Nørgaard have

rendered much valuable assistance for which I offer sincer e

thanks. My grateful acknowledgments are also due to th e

directors of the Carlsberg Fund who have granted financia l

aid without which it would have been impossible for m e

to carry through these investigations .
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