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1 .

It was first proved by Koebe 1 that if

(1 . 1)

	

w = w(z) = z+a2 z2 +a3 z 1 + .

is regular and schlicht for

(1,11)

	

r= jzI<1 ,

that is to say if the transformation w = tv (z) effects a

(1, 1) representation of the unit circle in the z-plane on a

domain in the w-plane, then

~m (z) ~<cp (r)

	

(0<r<1)

an Ç cc(n)

where y) and ce are functions respectively of r and n alone .

It was afterwards shown by Bieberbach 2 that

(1 . 4)

	

j w (z) I < (1r 	 l,)2 ,

1 The results (1 . 2) and (1 .3) are included in Koebe's 'Verzerrungs-

satz' : see P . Koebe, ` Über die Uniformisierung der algebraischen Kurve n

durch automorphe Funktionen mit imaginärer Substitutionsgruppe',

Göttinger Nachrichten, 1909, 68-76 (73) . For proofs see Landau's boo k

Darstellung und Begründung einiger neuerer Ergebnisse der Funktionen-

theorie, § 27 .

2 L . Bieberbach, ` Zwei Sätze fiber das Verhalten analytischer Funk-

tionen in der Umgebung wesentlich singulärer Stellen', Mathematische

Zeitschrift, 2 (1918), 158-170 (161) . The actual results (1 .4) and (1 .5 )
appear here for the first time, but (1 . 4) is, as Bieberbach points out ,

merely the result of combining those of two earlier memoirs, viz : L .

Bieberbach, ` Über die schlichte Abbildung des Einheitskreises', Berliner

Sitzungsberichte, 1916, 940-955, and G . Pick, `Ober den Koebesche n

Verzerrungssatz', Leipziger Berichte, 68 (1916), 58-64.

O. 2)

and

O . 3)

1* .
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this result being,

(1 .41)

the best possibl e

(1 . 5)

where A is an absolute

proved that

(1 . 6 )

which is a best possible result apart from the constan t

factor A .

If w is schlicht, then

as is shown by the example

7
w (z)

	

(1-02 '

of its kind ; and that

~anl < An ,

constant . Finally Littlewoo d

I aix I< An ,

. 71~an~2r'n <
(

1

\\ 2

a,Z i r n l

	

(l' < 1) ,

m
--~

since the left hand side is, when multiplied by i , the area

of the image of the circle Iz~ < r, and this cannot exceed

2

-r (Max I w ) 2 <
(~

I an I r°)
-'I r

	

1

It is natural to ask whether the theorems which we hav e

quoted are corollaries of (1 . 7) alone .

We cannot expect an entirely affirmative answer, sinc e

(1 .7) expresses part only of the data . It will be found ,

however, that a great deal, and in particular the results

of Koebe, is directly deducible from (1 . 7). Our first objec t

is to prove this, and so to reduce to the absolute minimu m

the amount of genuine function theory demanded by th e

proof of Koebe's theorems . We are then led naturally t o

1 J . E . Littlewood, 'Ou inequalities in the theory of functions', Proc .
London Math. Soc. (2), 23 (1925), 481-419 (499) ; see also ibid. v-ix
(Records for 8 November, 1923) .
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developments in other directions, in particular concernin g

functions which assume a given value at most a given

number of times.

2.
2.1 . Theorem 1 . Suppose tha t

bo=0, bn>0 (n>0) ,

that 'barn is convergent for r < 1, and tha t

(2 . 11)

	

n bn ren < p

	

barn) ,2

where p > 1 , for r < 1. The n

(2. 12)

	

bn < A
(p) n (P) ,

wher e

(2.121)

	

= Max (b1, b2, . . ., b [p ]) ,

and A and ß are functions of p only .

If we write (2 . 11) in the form

n bn 2 r2rz

	

bmbnl m+n

,

divide by r, and integrate over the range (0, r), we obtain

b 2 1,2n 2plX	 bmbn 1 .m+n
m+ n

Repeating this process 2k+ 1 times, and writin g

(2.13)

we find

en = 12-k bit 7,11 ,

	

1

	

4mn k
u (m, 12) =

	

~

ln +n (112 +n)2) ,

(2. 14) / , cn < 2p

	

Cm en u (m, 12)

=	 + 4
n p~ ~ 7

	

(
Can en LL m, n

n>m>o
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We now write Q for [p], and M generally for a numbe r

of the type A(p)p, . We have then, from (2 . 14) ,

oo
2C

n
o -i- 1

2

n
+A(p)S < M2 -+-A(p) S

oo

(2. 15) ~ cZ < M 2 +~c2 < M2+ 0+1 1 p
(M2

+ A (p) S )

(1-
Q+1)`+1

Cn < Cn

p

~ d-

< M 2 -I-A(p)S ,

where

(1 . 151)

But
n> m> 0

S = Cm en u (7n, il) .

(2.16) 2S <

	

(Cn+ Cti) u (In, n)

	

+

	

Wa ,

where

4u k d u

m+i

u(m, x) dx=
(

(
(2. 161) tim-~ u(m, n) <

	

1+u) 2) 1+u '
m

	

1

mn-1

(2.162)

	

=~
u (m, n) <

4 u k du

u (J, n) d y _
(-	

\

	

(1+u) 2) 1+u '
o

	

a

and each of these integrals tends to zero when k -->- c .

We have therefore

(2. 17)

	

A (p) S < A (p) (k)

	

c,2,

where ~~ (k) is a function of k only which lends to zero

when k -~ . We can choose k = k (p) so tha t

(2 . 18)

	

A (p) ~7 (k) < 21 ,
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and we have then from (2 . 15), (2: 17) and (2. 18) ,

~Cn< 1l!Î2 +

	

C
n

,

Crz <

	

< 1~12 .'
barn < Mu k .

This is true for all values of r less than 1 . We may

therefore make r -+ 1, when we obtain (2. 12), with k(p)

for ß(p) .

2 .2. If we take bi

	

1, bn = land , and p

	

1, so that

(2 .17) reduces to (1 .7), we obtain

A	
land < An d ,

	

w(z)j <

	

'
(1-r) f

where the A's and ß's (different in the two inequalities)

are now absolute constants . These inequalities include

Koebe's (1 . 2) and (1 . 3). More generally,' if we suppos e

that w(z) assumes no value more than p times, (2 . 11)

holds with bn = lank We thus obtain

Theorem 2. If w(z) = .Zanzn is regular for r < 1 ,

and assumes no value more than p times, the n

Ian) <A(p)ntl(P)p, ,

where

u; = Max (l a ll, 1 a2d,	 ap))•
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3.
3 . 1 . It is convenient at this point to make a digressio n

into the theory of definite integrals .

Suppose that a > 0, Ax) > 0, and that the integra l

f(x) e-d's d x

is convergent for all positive values of å . Then the in -

equality corresponding to (2 .11) i s

Ç 00xf 2 (x) e-2rfxdæ < p ( Ç;w e-d'x dx

)~a 0 ' a

where p is now any positive number. We suppose first tha t

(3 . 11) is true for every positive d. We write = fif x > a,

(p= 0 if x < a ; and (3 . 11) may then be written in the

form

Ç x?(x)e 2 dx(3 . 12) p(x)(y)~

	

du .
0

We write 1( for å in (3 . 12), multiply by

G_a)2 k

(2k-F1)! '

where k is now any number greater than - , and inte -

grate with respect to over the range (d, x) . Observin g

that

(~-à)2ke-24xd~ = (2z) 2k-1
T(2k+1) ,d,

and writing

(3 . 11)

(3 . 13)

	

(x) = x-k (x)e -dx , ia (x, y) =
1

	

4xL1

x+ i1 (x-;-tl) 2

k

we obtain
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(3 . 14) p2(x) d x

	

2 p

	

(x) (y) u (x, y) d x d y ,
0~ o

the inequality corresponding to (2 . 14) .

We have now
~ .~

zU (x) (y) u(x, y)dx dy
Jo t)l o

P(x)

	

u(x g)dy
Ç'(	 4u	

z

	

du

	

= Jk

is independent of x. Thus (3. 14) gives

(3 . 15)

	

1 < 2pJk .

But, putting u = e 2z , we obtain

r(k+ ~ )

(3 . 16) Jk = (chz)-27`
.i

dz = 1/,r	 2	
= 0 1

	

T' (Ic 1)

	

(1/k )

for large values of k . Thus (3 . 15) involves a contradic-

lion if k is sufficiently large, so that it is impossible that

(3. 11) should be true for all positive values of å ; and the

analogy between series and integrals so far fails .

3 . 2. There is in fact a theorem for integrals analogou s

to Theorem 1, but before proving this we may point out

a curious corollary of the analysis of § 3 . 1 . If f(x) is any

/ x N I
~yl

u (x, J)

	

i

	

7 u (y x) dxd t(J) x ~ V

	

1

	

.

V
o~ oit,

'2 (y)
x

u(x y) dx dy + 	 ~J
Y- u(y,x)dydx

x
u (x, y) dx dy = \ (x) P(x) dx ,

y 0
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£x forfunction (real or complex) such that f (x) = 0
every positive s, then the functio n

A

F (') ~f(x) e-zxdx

where a > 0, is regular for RG) > 0, and the area of th e

image, for F (z), of the half-plane R (z) > å is

7r~xf(x)e -2d'x dx
•

	

a

areas covered more than once being counted multiply .

Suppose that F(z) assumes no value more than p time s

in the half plane R (z) > 0. Then it follows, as with series ,

~

x If(x)~ 2 e -2åx d

	

( f( )x <

	

x e ex dx}
2

a

	

" a

for d > 0 ; and this we have seen to be impossible . Thus

we obtain

Theorem 3. If f(x) = O (e ux ) for every positive s ,

then the functio n

F(z) = f (x) e-zx dx

	

(a > 0 )
a

cannot be schlicht, or assume no value more tha n

p times, in the half plane R (z) > 0 .
It is essential here that a he positive . The considera-

tion of a simple example will help to elucidate the result .

Suppose that

a= 1, f(x)=1(x>1), F(z)= e 7 z

Then the equation
e_z _ y z

must have, for appropriate values of y, more than an y

assigned number p of zeros in the positive half plane ; and

that
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it is easy to verify that this is so . Suppose for exampl e

that y is positive and small . There is then one root which

is large and positive, and an infinity 6f complex roots .

These roots lie on a curve, symmetrical .about the real

axis,'which crosses the imaginary axis at a considerabl e

distance, and proceeds to infinity in the negative hal f

plane, in a direction which approximates to parallelis m

with the imaginary axis . The number of rook in the pos-

itive half plane is finite for every y, but tends to infinity

when y--}0 .

The function

zx

	

1
dx =e

'o

	

z

on the other hand, is schlicht in R (z) > 0 .

a

for every positive e and sufficiently small values of d, tha t

is to say for

(2. 211)

	

0<à<åo (e) ;

or, in other words, that

(3 . 22) lim
0

	

x f2 (x)
a

	

/(Ç0
f (x)a

For accurate information about the zeros of this and more genera l
transcendental equations of similar type, see G . H . Hardy, ` The asymp-
totic solution of certain transcendental equations', Quarterly Journal o f
Mathematics, 35 (1904), 261-282 ; and E . Schwengeler, ` Geometrisches über

die Verteilung der Nullstellen spezieller ganzer Funktionen ' , Dissertation ,

Zürich, 1925.

3. 2 . In § 3 . 1 we supposed that (3 . 11) was true fo r

every positive d. We shall now assume less, viz ., that

(3 . 21)
Sxfsx)

e-"x dx < (p+e) (Çf(x) e -4x dx) `

< p .
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In this case we can deduce a conclusion analogous to

that of Theorem 1 .

If the integral

(3.23)

	

f(x) dx

is convergent then

c
co

1
x f 2 (x) dx

by (3. 21) . Suppose next that (3 . 23) is div-

ergent . We may integrate (3 .21) or (3 .22) over the rang e

(à, co), any number 2k+1 of times, and assert the resul -

tant inequality in the same sense as the original inequality ,
i . e . for sufficiently small values of a, provided that th e
integral which then appears on the right han d

side of the inequality tends to infinity when

->- 0 1 , or, a fortiori, provided that the integra l

~ -21r 2(3 . 25)

	

x

	

f (x) d .x

is divergent . More generally we may, under the same con-

dition, operate on (3.21) as we operated on (3 . 11) in

§ 3 . 1 . We thus obtain the analogue of (3. 14), viz . ,

1 From

lim g(d)
d o h(Ô) = '

where g and h are positive, we can deduc e

_ ~

	

cc

lim

	

g(S)d / h(S)d Ç P ,
~~o

d

	

d

provided
~

1i (S) dS~ os
JJJd

S

7)

a

(3 .24)

is convergent ,

when d'-*- O .
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w•co

7.p 2 (x) d x < 2 (p H- e)

	

(x) lp (y) u (x, y) d x dy
0

	

0 0

for 0 < rS < Me) . From this we obtain

1<2(p+e)J k ,

as in § 3 . 1 . The equation

	

(3.26)

	

9/-r+) = 1
T(k+1 )

has just one real root k = kp greater than --21 , and large

when p is large, and, if k > kp, we obtain a contradiction .

We thus obtain

Theorem 4. If a > 0, f(x) > 0, the integral (3 .23)
is divergent, and the inequality (3 .22) is satisfied ,

then the integra l

	

(3.27)

	

(x
s f(x)) 2 dx

a

is convergent for all values of k greater than kp ,

the root, greater than = 2 , of the equation (3. 25) .
The theorem is true, but trivial, when the integra l

(3.23) is convergent, since (3 .22) then involves the con -

vergence of (3 . 24), and kp > - 2 .
3.3. It is interesting to observe that the result of

Theorem 4 is, in certain senses, the best possible ob-

tainable .

In the first place, it is plainly not possible to deduce

from the hypotheses a conclusion of the typ e

f (x) = 0 (xi ) ;

for the truth of (3 . 22) vould not be affected by addin g

to f any function g such that the integrals
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xg 2 (x)dx,

	

g(x)dx

ü

are convergent, and this function might have, for ap-

propriate sequences of values of x, any order of magnitud e

we please .

A more important point is that, in Theorem 4, th e

number k1, cannot he replaced by any smalle r

number .

To prove this, suppose that f = x 'c-L . Then

e-d'x dx = T(k+
21

)

x fa(x) e -26x dx

	

x 2k e 2d'xdx
= I'(2k+1)(2d)-2k-i

,

a

when 6-->- 0, and (3 . 22) is satisfied if

1
2-

21`-
1 T (2 k +1)

	

p T 2 k+
1

2

or

T(k +
2pV

T(k+1)

> 1 , k < ku .

But the integral (3 . 26) is divergent .

Xf (x) e-
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4.
4.1. There is a theorem for series which correspond s

exactly to Theorem 4, viz . ,

Theorem 5 . If bn > 0, 1bn is divergent, Zbnrn is

convergent for r < 1, an d

(4. 11) ~iTTl (»bn l2n /

	

bl~ r ,n12) < p ,

where p > 0, the n

(4. 12)

	

(12-k bn) 2
is convergent for k>kr, . In this proposition, th e

number kr, cannot be replaced by any smalle r

number,

We need only sketch the proof, which follows generall y

the lines of that of Theorem 4 . We prove, substantially a s

in § 3. 2, that, if (4. 12) is divergent, and en and u On, n)

are defined as in (2 . 13), then

< 2
~

~ C t

	

(p i E)ZL'Cm Cn n (rn, n)

for rk (E) < r < 1 . We have now

Cm Crz a (ln, n)

/ n~

	

r

Cm m ta (m, n) • en~J

	

n

	

Ç-(

	

nt

1
< 2 G.-, ~ c ;,!

m

	

1

	

i nu(m, n) +	 	 c
I-

u(n, rn)n

	

9
2

~ m m

Y rnc 2 un

	

(nl, I2 )

where

rn
u (m, nn

n=1

	

n.=1
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and so

(4.13)
cc,

)
,
(1-2(p O Pin) em < 0 .

n= 1
Now when m -- oc ,

o

dy

	

c
(k+ 2)

	

1--* (l ,i~)	 ~ = Jk =vc

	

-
~1J

	

T(k-F-1) .

	

2 p

if k > kp ; and then
(4.14)

	

I. - 2 (p E) Pm > > 0

for sufficiently large values of In . This contradicts (4 . 13)
if (4. 12) is divergent .

That kp is the smallest number which can occur i n
Theorem 5 may be shown by what is substantially the
example of § 3 .3 .

5.

5 . 1 . Our original proof of our principal theore m
(Theorem 1) has undergone a series of simplification s
since the thorem was discovered, in which we have bee n
assisted by the observations of friends to whom we ha d
communicated it . In particular Prof. E. Landau sent us ,
in a letter dated 3 Feb . 1925, a proof of the theorem, for
p = 1, which is considerably simpler than any which w e

then possessed, and is in principle the same as that of
2 . He also remarked that one of the essential improve-

ments in the proof had been suggested to him by Prof.
I . Schur. Finally we should add that Theorem 5 wa s
pointed out to us by Prof. G . P51ya, to whom we ha d
communicated Theorem 4, and that we have improve d
our proof of the latter theorem by assimilating it to Polya' s
proof of the former, which is that which we give in § 4 .

Færdig fra Trykkeriet den 31 . December 1925.




