‘Det Kgl. Danske Videnskabernes Selskab.
Mathematisk-fysiske Meddelelser. VII, 4.

A THEOREM CONCERNING
SERIES OF POSITIVE TERMS, WITH
APPLICATIONS TO THE THEORY
OF FUNCTIONS

BY

G. H. HARDY AND J. E. LITTLEWOOD

KOBENHAVN

HOVEDKOMMISSIONER: ANDR. FRED. HOST & S@N, KGL. HOF-BOGHANDEL
BIANCOD LUNOS BOGTRYKKERI

1925






1.
It was first proved by Koebe ' that if

(1. 1) w=w(z) =z}t a2+ a;z+...
is regular and schlicht for
(1,11) r=z|<1,

that is to say if the transformation w = w(z) effects a
(1, 1) representation of the unit circle in the z-plane on a
domain in the w-plane, then

(1.2) |w ()| < ¢(r) | O<r<1i)
and ‘
(1.3) lan| < a(n),

where ¢ and « are functions respectively of r and n alone.

It was afterwards shown by Bieberbach? that
(1. 4) lw(~)l = (1 )2’

1 The results (1.2) and (1.3) are included in Koebe’s ‘Verzerrungs-
satz’: see P. Koebe, ‘Uber die Uniformisierung der algebraischen Kurven
durch automorphe Funktionen mit imaginirer Substitutionsgruppe’,
Gdttinger Nachrichten, 1909, 68—76 (73). For proofs see Landau’s book
Darsiellung nnd Begriindung einiger neuerer Ergebnisse der Funkiionen-
theorie, § 27.

2 L. Bieberbach, ‘Zwei Sitze iiber das Verhdlten analytischer Funk-
tionen in der Umgebung wesentlich singulérer Stellen’, Mathematische
Zeitschrift, 2 (1918), 158—170 (161). The actual results (1.4) and (1.5)
appear here for the first time, but (1.4) is, as Bieherbach points out,
merely the result of combining those of two earlier memoirs, viz: L.
Bieherbach, ‘Uber die schlichte Abbildung des Einheitskreises’, Berliner
Sitzungsberichte, 1916, 940—955, and - G. Pick, “UTher den Koebeschen
Verzerrungssatz’, Leipziger Berichie, 68 (1916), 58—64.
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this result being, as is shown by the example

z

(1. 41) w (Z) = m,

the best possible of its kind; and that
(1' 5) l(lnl < Anz,

where A is an absolute constant. Finally Littlewood *
proved that '

(1.6) [an] < An,

which is a best possible result apart from the constant
factor A.

If w is schlicht, then

Sy N 2
1.7 > n|an|?r?t < < g Ianlrn> (r< 1),
1

1

since the left hand side is, when multiplied by =, the area
of the image of the circle |z| < r, and this cannot exceed

n(Max|w|)2§75< § |an|r”>-
| T

I =r

It is natural to ask whether the theorems which we have
quoted are corollaries of (1.7) alone.

. We cannotl expect an entirely affirmative answer, since
(1.7) expresses part only of the data. It will be found,
however, that a great deal, and in particular the results
of Koebe, is directly deducible from (1. 7). Our first object
is to prove this, and so to reduce to the absolule minimum
the amount of genuine function theory demanded by the
proof of Koebe’s theorems. We are then led naturally to

1 J. E. Littlewood, ‘On inequalities in the theory of functions’, Proc.
London Math. Soe. (2), 28 (1925), 481—419 (499); see also ibid. v—ix
(Records for 8 November, 1923).
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developments in other directions, in particular concerning
functions which assume a given value al most a given
number. of times.

2,
2.1. Theorem 1. Suppose that
‘ by=0, bn20 (n>0),
that anr" is convergent for r<< 1, and that

' 2
2. 11) § nbiran §p< § bnr“> \

where p>1, for r<1. Then

(2.12) o< AQ)n PPy,
where
(2.121) = Max (b, by, ..., b)),

and 4 and 8 are functions of p only.

If we write (2.11) in the form

N/ 7
E nbir™ <p g § bm by rmtn,

divide by r, and integrate over the range (0, r), we obtain

2 ..2n 7 7 bmbn m--n
bn 1' é 2p ) m—“—_l_n r .

Repeating this process 2k-1 times, and writing

1 4mn \k
2. — gk n [ s
(2.13) ¢n = n*bpr", u(m,n) = e (( n)2>
we find ’

N/ I'—’
(2.19) 2 ca < 2p § E cm ¢nu(m, n)
: 2 o] 7
=p §17+4p § § Cmen t (m, n).

n>m>0
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We now write ¢ for [p], and M generally for a number
of the type A(p)p. We have then, from (2. 14),

S eSS

o+1

=p E I—}-l—A(p)S < M*+A(p)S
1

(2 15) §czz<Mz+Z &< Mt jf (M+4(p)S)

o+1
< M%%—A(p)S,

where ,
N N
(1.151) S = E } ¢menu(m, n).
n>m>0
But
7 7 N/
(2.16) 28 éS § (cm+e)u(m, n) = § i Vi + > ca W,
n>m>(
where
24 0
T 4u \edu
7 = = -
(2.161) ¥ m;l n(m,n) < \u(m,x)dx <(1+u)2) ira’

n—1 m
(2.162) W, iu(m n) < \u(y,n)dy = < >k du
T LAY T Watw?) 1+u
' 0
and each of these integrals tends to zero when k—> .
We have therefore

@.17) A@)S <A@ > e

where 7 (k) is a function of 4 only which tends to zero
when k— . We can choose k = k(p) so that

(2.18) ’ A(p)y (k) < L
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and we have then from (2.15), (2.17) and (2. 18),

E 1 §
C121<1‘,/12+—9— C?l,
1
i < g ch < M2,

bar® < Mnk,
This is true for all values of r less than 1. We may
therefore make r— 1, when we obtain (2. 12), with k(p)
for 8(p). ‘

2.2. If we take b, =1, bn=|an|, and p =1, so that

(2.17) reduces to (1.7), we obtain

s A

lan] < AR, " |w(2)| < REEYE

where the A’s and #'s (different in the two inequalities)
are now absolute constants. These inequalities' include
Koebe’'s (1.2) and (1.3). More geﬁerally,‘ if we suppose
that w(z) assumes no value more than p times, (2.11)
holds with bn = |an|. We thus obtain

" : .
Theorem 2. If w(z) = >'anz" is regular for r <1,
. 5 , ,
and assumes no value more than p times, then

lan| < A(P)nB®@p,

where

A

w = Max (ayl, |a,
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3.

- 3.1. It is convenienl at this point to make a digression
into the theory of definite integrals.
Suppose that a >0, f(x) > 0, and that the integral

gfﬁae—”mdw

a
is convergent for all positive values of 0. Then the in-
equality corresponding to (2.11) is

e} reel 2
(3.11) § xf?(x) e 29%dx < p ((\ f(x) e d.cc) ,

where p is now any positive number. We suppose first that
(8.11) is true for every posilive d. We write ¢ = f if x> q,
¢ =10 if @ <a; and (3.11) may then be written in the

form
el

3D A
(3.12) § xg? () e 29%dx < pS S ¢ (@) o () eI~ Wdx dy.
*o o vo

We write { for 0 in (3.12), multiply by
(G- )2
@rk+1)1°
where k is now any number greater than ﬁ%, and inte-

grate with respect to { over the range (J, ). Observing
that

1 wg_ 2k —20% L. o ~—2h—1 _o4x

and writing

. ok —dz ; _ _i_ dxy k
(8.13) yw(x) = x*gp(x)e ,  ulx, ) = Ty (7(:”_}_!])2),

we obtain



A theorem concerning series of positive terms. 9

(3. 14) Swz(a@ de < 2pS &w(aﬁ)w(y)u(x, yydxdy,
vy o

0
the inequalily corresponding to (2. 14).
We have now

S \ W)y @ ulx,y) de dy

0 Yo

gw
Yo

1 QA% T 1 iy 1ol ‘ J—
o So Sowz (@) ‘/% u(x, y) dxdy +E SO Sowz €) l/-f—g u(y, x) dy dx

Sip @S aGw oo (L VaiGD deay

1}

\ Km/ﬂ (x) l/l u(x, y) dedy = S Y2 (x) P(x) dx ,
Jovpy gy . 0 '
where

Vo ‘ 4u \F d
P(x) = '\0 l/%u(x, Ndy = SO((1+Uu)‘Z> (1+u.l)l Va .

is independent of x. Thus (3. 14) gives

(3.15) 1 < 2pJi.

But, pulling u = e2#, we obtain

_r{k+3) :0(1> |

. A2k —=
(3.16) Jk—S(chJ dz = Vn I'(k+1) Vk

— 0
for- large values of k. Thus (3.15) involves a contradic-

co

tion if % is sufficiently large, so that it is impossible that
(3. 11) should be true for all positive values of d; and the

analogy between series and integrals so [ar fails.

3. 2. There is in fact a theorem for integrals analogous
to Theorem 1, but before proving this we may point oul
a curious corollary of the analysis of § 3. 1. If f(x) is any
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function (real or complex) such that f(x) = O (e**) for

every posilive & then the Tunction
| ]

F(z) = gf(x) e dx,

Y .
where a > 0, is regular for R(z) > 0, and the area of the
image, for F(z), of the half-plane R(z) > ¢ is

WS a|f@2e2%dx

* o0

areas covered more than once being counted multiply.
Suppose that F(z) assumes no value more than p times
in the half plane R(z) > 0. Then it follows, as with series,

that i ) .
qu@n%—%wxg(&ﬂ@u~%¢ﬁ

for ¢ > 0; and this we have seen to be impossible. Thus
we obtain

Theorem 3. If f(x) = 0 (e®®) for every positive e,

then the function
o

H@=Sﬂwf”m3 (a > 0)

cannot be schlicht, or assume no value more than
p times, in the half plane R(z) > 0.

It is essential here that « bhe positive. The considera-
tion of a simple example will help to elucidate the result.
Suppose that

a=1, flx)y=1(@x>1), F{) = 67
Then the equation
e~ =yz
must have, for appropriate values of y, more than any

assigned number p of zeros in the positive half plane; and
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it is easy to verify that this is so. Suppose for example
that y is positive and small. There is then one root which
is large and positive, and an infinity of complex roots.
These roots lie on a curve, symmetrical about the real
axis,  which crosses the imaginary axis at a considerable
distance, and proceeds to infinity in the negative half
plane, in a direction which approximates to parallelism
with the imaginary axis. The number of roots in the pos-
itive half plane is finite for every y, bul tends to infinity
when y — 0.1 ’

The function

on the other hand, is schlicht in R(z) > 0.

3.2, In § 3.1 we supposed that (3.11) was true for
every positive d. We shall now assume less, viz., that

(3.21) S xf?(x) e 29T dxe < (p+e) (< f(x) e_‘)qz"dx)2

Ca
for every positive -¢ and sufficiently small values of J, that
is to say for »
(2. 211) 0 <d =< 0,(e);

or, in other words, thal

(3.22) ﬁ;ﬁ.gwfz(w)e”d”dx (& f(x)e_‘yxdx) =p

d—0

a a

1 For accurate information about the zeros of this and more general
transcendental equations of similar type, see G. H. Hardy, ‘The asymp-
totic solution of certain transcendental equations’, Quarterly Journal of
Mathematics, 35 (1904), 261-282; and E. Schwengeler, ‘Geometrisches iiber
die Verteilung der Nullstellen spezieller ganzer Funktionen’, Dissertation,
Zirich, 1925.
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In this case we can deduce a conclusion analogous to
that of Theorem 1.
If the integral

0
(3.23) o S f(x)dx
is convérgent then
(174
(3.24) x x () da
Y

is convergent, by (3.21). Suppose next that (3.23) is div-
ergent. We may integrate (3.21) or (3.22) over the range
(4, ©), any number 2k--1 of times, and assert the restl-
tant inequality in the same sense as the original inequality,
i. e. for sufficiently small values of d, provided that the
integral which then appears on the right hand
side of the inequality tends to infinity when
d — 07, or, a fortiori, provided that the integral

(3. 25) g 2 () dee

0
is divergent. More generally we may, under the same con-
dition, operate on (3.21) as we operated on (3.11) in
§ 3. 1. We thus obtain the analogue of (3. 14), viz.,

1 From .
lim g(d) »
d»=0 R(f) =’

where g and h are positive, we can deduce

i
\
-

— % ] == o
Jim. (\SJg(g)dé/ng(,)dﬁ) <p,

provided

o

S h()di— =
d
when Jd— 0.
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Swz(x)dx < 2(p+e) S Sl/l(x)@b(y) u e, y)dedy

0 0 Yo
for 0 < o < 0r(e). From this we obtain

1 << 2_(p‘|“€).]k,

as in § 3. 1. The equation

f 1
(3. 26) 2[,1/nr(k+5> -1
rke+1)
has just one real root k = kp greater than —%, and large

when p is large, and, if & > kp, we obtain a contradiction.
We thus obtain

Theorem 4. If a >0, f(x) > 0, the integral (3.23)
is divergent, and the inequality (3.22) is satisfied,
then the integral

(8.27) S (27" f(0) dx

is convergent for all values of k greater than kp,
the root, greater than '—%, of the equation (3.25).

The theorem is flrue, but trivial, when the integral
(3.23) is convergent, since (3.22) then involves the con-

vergence ol (3.24), and kp > —lz'

3.8. It is interesting to observe that the result of
Theorem 4 is, in certain senses, the best possible ob-
tainable.

In the first place, it is plainly not possible to deduce
from the hypotheses a conclusion of the type

f@) = 0@

for the truth of (3.22) vould not be affected by adding
to f any function g such that the integrals
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ngz(rc) dx, Qg@) dx
Yq Y

are convergent, and this function might have, for ap-
propriate sequences of values of x, any order of magnitude
we please.

A more important point is that, in Theorem 4, the
number k, cannot be replaced by any smaller
number.

o1 N
k=% Then

To prove this, suppose that f=x
Sf(x) e o \ e = rlet ) o,
43 L) 2
S o) e P de oo \ w2k e 2% qp = [ (2k41)(20) "F L,
a Q,O

when d—0, and (3. 22) is salisfied if

2_2k—1r(2k+1) < p1«2<k—{—é—>,

or
_T(IC—FL)
pVr Ll =1, k< k
- rk+1) = = P

But the integral (38.26) is divergent.
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4.1. There is a theorem for series which corresponds

exactly to Theorem 4, viz.,

Theorem 5. If by >0, > by is divergent, > bnr™ is

convergent for r<1, and
(4. 11) hm (anz °n/ anl ) ) <p

where p >0, then

(4.12) 2 (kb

is convergent for k' >kp In this proposition, the
number k, cannot be replaced by any smaller
number,

We need only sketch the proof, which follows generally
the lines of that of Theorem 4. We prove, substantially as
in § 3.2, that, if (4.12) is divergenf, and ¢p and o (m, n)
are defined as in (2.13), then

Sk < 2(p+e)> Semen u (m, n)

for r, (¢) < r < 1. We have now

ZZcm cnu{m, n)
_Z y’cm< ) Vu (m,n) - K ];1 >g; l/ll(_n,}IT)
< —;— !/ ~a{(m, n) 1-72 2 m]/—— u(n, m)
_y> ml/u(m n) *Z P s
where

S m /. n _
P, = ; l LU (m, n) = 2 u (1, f>l n -1-—
= n 7 m/fY n m’

n=1 n=1
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and so "
(4.13) § (1—2(p+oP,) e <0.
n=1 ’
Now when m —~ 0,
P o r{ktby)
. —_— o __ — - = _—
w7 \u @ ==V Tay < g,
0
if k> kp; and then
(4.14) 1—2(p+eP,>9>0

for sufficiently large values of m. This contradicts (4. 13)
-if (4.12) is divergent.

That kp is the smallest number which can occur in
Theorem 5 may be shown by what is substantially the
example of § 3.8

5.

5.1. Our 61~igi11a1 proof of our principal theorem
{Theorem 1) has undergone a series of simplifications
since the thorem was discovered, in which we have been
assisted by the observations of friends- to whom we had
communicated it. In particular Prof. E. Landau sent us,
in a letter dated 3 Feb. 1925, a proof of the theorem, for
p = 1, which is considerably simpler than any which we
then possessed, and is in principle the same as that of
§ 2. He also remarked that one of the essential improve-
ments in the proof had been suggested to him by Prof.
I. Schur. Finally we should add that Theorem 5 was
pointed out to us by Prof. G. Pélya, to whom we had
communicaled Theorem 4, and that we have improved
our proof of the latter theorem by assimilating it to Pélya’s

proof of the former, which is that which we give in § 4.

Feerdig fra Trykkeriet den $1. December 1925.





